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A general construction of alternative algebras with three anticommuting elements and a unit is 
given. As an exhaustive result over the real and complex fields, we obtain the Clifford algebras H 
(quaternions), N, (dihedral Clifford algebra which is related to real 2-spinors), and S, (algebra of 
Pauli matrices which is related to complex 2-spinors). What is important is that the algebras N, 
and S, possess inverses everywhere except on a region akin to the light cone of the Minkowski 
space, while the quaternion algebra H has inverses everywhere except at the zero element. We 
discuss the reasons why the three algebras N" H, and S, are so difficult to distinguish in the 
representation space of 2 X 2 complex matrices. 

PACS numbers: 02.1O.Tq 

I. INTRODUCTION 

The aim of this paper is to discuss the structure of all 
possible algebras with three anticommuting elements over 
the real and complex fields Rand C that can arise in physical 
descri ptions. 

We present a general construction of alternative alge
bras with three anticommuting elements and a unit. Associa
tivity is a result of the construction, and three nonisomor
phic algebras are obtained. This is, moreover, an exhaustive 
result over the fields Rand C. We are able to utilize a pre
viously published classification of all Clifford algebras, '.2 in 
order to identify the three algebras obtained by the general 
construction of this paper with known Clifford algebras. 
They are (i) the quaternions H, (ii) the dihedral Clifford alge
braN" which is related to reaI2-spinors, and (iii) the algebra 
of Pauli matrices Sf' which is related to complex 2-spinors. 

Of additional interest is the demonstration that all three 
algebras possess unique two-sided inverses. The algebras N, 
and S, possess inverses for all elements except those on a 
region akin to the light cone of the Minkowski space. The 
quaternion algebra H is free of such a singular region and is 
therefore a division algebra, in the usual sense. 3

•
4 This impor

tant property is a feature of all Clifford algebras up to dimen
sion eight (see Ref. 5). In order to distinguish between the 
divisibility properties of the Clifford algebras up to dimen
sion eight and those of the larger Clifford algebras which 
possess the more restricted "sectional divisibility" (see Refs. 
1 and 2), it is convenient to introduce a special terminology. 
Those algebras which possess well-defined inverses except 
on a region akin to the Minkowski light cone can be referred 
to as 'singular division algebras"; those algebras that do not 
possess this singular region are simply "division algebras" in 
the traditional sense. 

These results are fully consistent with the Frobenius 
theorem,3.4 which presupposes the absence of singular re
gions such as those discussed here. In addition, the algebra 
S, is an algebra over the complex field C, and the Frobenius 

theorem does not apply since it classifies division algebras 
over the real field R. 

The algebraic construction is detailed in Secs. II and 
III. In Sec. IV we use the classification of finite groups corre
sponding to Clifford algebras given in Refs. 1,2 in order to 
identify the algebras obtained. The structure is summarized 
in the multiplication tables (Table II). In Sec. V, we explicitly 
construct the inverses in each algebra. For the case of Sf' we 
employ the realization of S, as a Clifford algebra that was 
given in Ref. 1. 

From group theoretical methods we obtain the relation
ship S, = H ® C = N, ® C, which demonstrates the iso
morphism between the algebra of Pauli matrices and the 
algebra of complex quaternions. Using this relation as a 
starting point, and following an alternate procedure from 
that outlined in this paper, one can obtain the three algebras 
N" H, S, as subalgebras of the complex quaternions. 

In Sec. VI, the matrix representations of the algebras H, 
N" andS, are given in terms of the Pauli matrices (Table III), 
and the relationship of the algebra N, to real 2-spinors is 
indicated explicitly. The relation S, = N, ® C shows the 
connection between complex and real 2-spinors in a very 
simple way. A point worth noting is that the three algebras 
H, N" and S, are almost impossible to distinguish in the 
representation space of 2 X 2 complex matrices. 

II. THE ALGEBRAIC CONSTRUCTION 

Consider a set of three elements and a scalar unit, [ 1, e" 
e2 , e, l. These elements are defined to anticommute. Then, 
the general multiplication ofthese elements can be written as 
a linear combination of the other elements, with constant 
scalar coefficients. (The following analysis will determine 
those cases when they are real and those when they are com
plex.) The multiplication of the elements can be written in 
the most general manner using nine scalar coefficients, au 
(3;, y;, i = 1, 2, 3, as follows: 
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e l e2 = a l e l + a 2 e2 + a 3 e3 , 

e1 eo = (31 e l + (32 e2 + (3~\ e" 

e, e l = YI e l + Y2 e2 + y, e,. 

We define a scalar square for each element, 

(Ia) 

(Ib) 

( Ic) 

(2) 

where. a I, a2 , and a3 are each equal to either + lor - 1. We 
leave them in this general form for the moment, since the 
distinct cases will in fact determine the structure of the cor
responding algebras. 

We impose left and right alternativity as the only condi
tion other than anticommutativity. This condition enables 
us to obtain relations between the scalar coefficients a o (3i' 
Yi in the following manner. Using left alternativity and (2), 
we have the identities 

el (e l e2 ) = (e l ede2 = a l e2, 

e2 (e l e3 ) = (e 2 e2 )e3 = a 2 e3 , 

(3a) 

(3b) 

e3 (e3 el) = (e3 e3)e l = a3 e l • (3c) 

Similarly, right alternativity gives the identities 

(e l e2 )e2 = a2 el, 

(e2 e3 )e3 = a3 e2 , 

(e3 ede l = a l e3 • 

(4a) 

(4b) 

(4c) 

Our procedure is to rewrite the alternativity conditions 
(3) and (4) in terms of the general prescription (1). In this way 
we obtain relations between the coefficients ai' (30 and Yi' 

Left multiplying (Ia) by e l and using (3a) and (2), we 
obtain the following equation: 

(5) 

Substituting (la) and (Ic) on the right-hand side of (5) 
and using anticommutation gives us a linear equation involv
ing only the ei with scalar coefficients: 

a le2 = alai + (a la 2 - a 3yde l + (a~ - a 3Y2)e2 
+ (ap, - a 3h)eJ • (6) 

From Eq. (6), we can find a set of relations between the 
coefficients ai' /3i' and Yi by equating scalar coefficients of 
each distinct e I' These are 

alai = 0, a la 2 - a 3YI = 0, 

a~ - a 3Y2 - a l = 0, ap3 - a 3Y3 = O. (7) 

In a similar manner, all the other equations in ( 1) can be 
treated using first left and then right alternativity, to obtain 
six distinct sets of equations relating the scalar coefficients 
ai' /30 and Yi' These are collected in Table I. 

III. ANALYSIS 

From Table I, we see that, since ai #0, then 

a l =a2=/32=/33=YI =Y3=O. (8) 

Hence, we are left with the following very simple alge-
braic structure 
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(9a) 

(9b) 

(9c) 

TABLE I. Equations between the scalar coefficients. 

a,a, = 0 
a,a, - a,y, = 0 

a; -a,y;J.=a l 

a,a,-a,y,=O 

/3,a, = 0 
- /3,a, + /3J3, = 0 

/3,/3, - /3,a, = 0 

/3i - aJ3, = a, 

y',a, = 0 
~ - y,/3, = a, 
y,y, - /3,y, = 0 
y,1'< - y,/3, = 0 

a,a, =0 
a; - a,f3, = a, 

a,a, - a,f3, = 0 

a,a, - a,f3, = 0 

/3,a, = 0 
- /3,y, + /3,/3, = 0 

/3i - /3,y, = a, 
/3,/3, - /3,1'< = 0 

y,G, =0 
y,y., - a,y, = 0 

y,y., - a 2 y, = 0 
~ - y?a] = G 1 

From Table I, substituting (8), the remaining equations 
are 

a l = - a., Yz, 

a l = - a 3 /3" (10) 

a,= - Y2(3I' 

The ai can be expressed by eliminating the a 3,/3I' and Yl 
constants. The ai are equal to either + 1 or - 1. Since they 
can be permuted into each other, it is sufficient to consider 
the following four distinct cases: 

al=I, a 2 =I, a 3 =I, 

a,=I, a 2 =1, a 3 =-I, 

( IIa) 

( lIb) 

a l = 1, a 2 = - 1, a3 = - 1, (Ilc) 

a l = -1, a2 = -1, a,= -1. (lId) 

The four separate cases give the following values for the 
multiplication coefficients a 3 , /31' and Y2; using Eq. (10), 

case (a): a 3 =(31 =Y2=i or -i, (I2a) 

case (b): - a, =(31 = Yz = 1 or - 1, (12b) 

case (c): a 3 = Y2 = - (31 = i or - i, (12c) 

case (d): a, =/31 = Y2 = 1 or - 1. (12d) 

We have been forced in cases (12a) and (I2c) to find 
solutions of Eq. (10) over the complex field. This is very im
portant in the analysis that follows, since it in fact doubles 
the size of the corresponding algebra. 

An interesting point is the fact that the four algebras 
obtained are associative. This can be checked directly using 
(9) and (12). Associativity was not assumed in the analysis; 
hence, it appears as a consequence of our construction. 

IV_IDENTIFICATION WITH CLIFFORD ALGEBRAS 

In general, the structure of an associative algebra is de
termined by the structure of the corresponding finite group 
defined by its generators. 1.2 For small dimensions, the order 
of the group elements is sufficient to define the algebra. 

A construction and classification of all Clifford alge
bras in terms of their corresponding finite groups was given 
in Refs. 1 and 2. We can apply those results in order to identi
fy the associative algebras obtained above with Clifford alge-
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bras. Note that all associative algebras are not necessarily 
Clifford algebras; those under discussion happen to be. 

We proceed to find the order of the elements in each of 
the algebras defined by (9) and (12). The order of each ele
ment is defined as the power to which that element has to be 
raised to obtain the unit one. For the group structure, we 
must consider the negative elements as separate group ele
ments, even though this distinction is not necessary when 
considering the algebra. 

For example, we compute the group order of case (12d). 
We have, from (lld), 

(ek)2 = - 1~(ed4 = 1, k = 1,2,3. (13) 

This gives us three elements of order 4. By including! - 1, 
- e" - e2, - e3) separately, we have one element of order 

2, and three more elements of order 4. In total, we have the 
unit (order I), the negative of the unit (order 2), and the three 
generators plus their negatives (order 4). This can be written 
as 

order = I'2W) or (1,1,6). (14) 

The orders of the groups defined by the other three 
cases (11) and (12) are calculated in the same manner. It is 
important to observe that in cases (I2a) and (12c), where we 
have been forced to go to the complex number field, the 
order of the group is doubled, since all combinations of the 
elements with i must be counted separately. 

The orders of the finite groups defined by the multipli
cation (9) in the four distinct cases (I2a), (12b), (12c), (12d) are 
presented below: 

case (a): order = (1, 7, 8), (I5a) 

case (b): order = (1, 5, 2), (I5b) 

case (c): order = (1, 7, 8), (I5c) 

case (d): order = (1, 1,6). (I5d) 

Note that case (15a) is isomorphic to case (ISc), yet the 
multiplication table is not identical (Table II). 

In Refs. 1 and 2, the finite groups corresponding to each 
Clifford algebra were constructed and classified. We can use 

TABLE II. Multiplication tables of the algebras N,. H. and S,. 

e, e2 e, 

Quaternion algebra H (d) e, -1 e, -e2 
e2 -e) -I e, 

e, e2 -e, -1 

e, e, e, 

(b) e, -e) -e2 

e, e, e, 
Clifford algebra N, 

e, e, -e, -1 

e, e2 e, 
e ie.l - ie2 (a) , 
e, - ie) ie, 

Algebra of Pauli Matrices S, 

e, ie2 - ie, 
e, e, e, 

(c) e, iey. - ie, 

e, - ieJ -1 - ie, 
e, ie2 ie, -I 
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a table giving the orders of each group (Table IV 1
•
2

) to identi
fy the algebras obtained in this paper with the Clifford alge
bras constructed in Refs 1 and 2 simply by comparing the 
orders. Since these algebras are of small order, equivalence 
of the orders implies an isomorphism between_the algebras. 

A comparison with the tables of the orders of the "vee
groups" shows that the group defined by (14) with order (1, 
1 ,6) is isomorphic to the quaternion group Q4' Therefore, the 
algebra of example (14) is isomorphic to the quaternion alge
braH. 

In the same manner, by comparing cases (15a) and (15b) 
to the group orders in Refs. 1 and 2, we can identify the other 
two groups with the known finite groups: 

(1, 1, 6) = quaternion group Q4' 

(1,5,2) = dihedral group D 4 , 

(16a) 

(16b) 

(1, 7, 8) = Pauli spinor group = 24 ® 22 ® 2 2 , (16c) 

The Clifford algebras corresponding to the finite groups 
(16) are obtained from Refs. 1 and 2, and are the following: 

Q4-<-+quaternion algebra H, (17a) 

D 4-<-+dihedral Clifford algebra N" (17b) 

24 ® 22 ® 2 z-<-+algebra of Pauli matrices S,. (17c) 

The results of the preceding discussion can now be sum-
marized by giving the multiplication tables of the three alge
bras. From equations (2), (9), (11), (12), (15), and (16), we can 
construct the multiplication tables, which are presented in 
Table II. 

We recall the relation: group = algebra ® 2 2, where 22 
is the cyclic group of order 2 composed of the two elements 
! 1, - 1).'·2 Hence, the group multiplication tables can be 
obtained from Table II after including the negative bases as 
distinct elements. 

The quaternions H and the dihedral Clifford algebra Nl 
are both of order 4 over H; the algebra of Pauli materices S, is 
of order 4 over e (or as a Clifford algebra of order 8 over 
H).,,2.S 

This completes the identification of all the algebras con
structed by the general prescription (1). 

V. DIVISIBILITY AND NORMS 

It is important to stress that we have assumed neither 
normality nor divisibility in our construction. Therefore, a 
key result of this paper is the demonstration that all three 
algebras obtained possess two-sided inverses. This is shown 
by explicitly constructing the inverse elements in each case. 

The Frobenius theorem3
,4 gives all associative division 

algebras over H without divisors of zero (except for the single 
point corresponding to the zero element) as the algebras H, 
e, and H. The algebra N, circumvents this theorem since N, 
has a string of singular inverses, i.e., divisors of zero. 

The inverse of an element in the algebra Nl is easily 
obtained. Any element in N, has four real components; we 
denote the expansion of the three components on the alge
braic bases by the familiar vector notation: 

(18a) 
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Define a conjugate element ii as follows: 

ii = UO - ule\ - u2e2 - u3e3 = UO - u. (18b) 

A scalar product can be defined as the algebraic prod
uct (denoted by the symbol V) of u and its conjugate, 

u V ii = ii Vu = (uOf - (U I)2 - (U Z)2 + (U 3)2. (19) 

This scalar is not positive definite; hence one cannot 
define a real norm in the usual manner, as Ilull = (u V ii)l/z. 

The inverse of u is simply obtained from (19) as 

u- I = ii/(iiVu). (20) 

This can be verified directly. The inverse (20) possesses 
a singularity at the point where ii V u = 0, which corre
sponds to the null cone of the vector u. This is a result of the 
noncompactness of the metric induced by the conjugation 
(ISb). This type of singularity is a common feature of field 
theory in Minkowski spacetime, and poses no serious calcu
lational problem. 

The algebra SI is also a singular division algebra. This 
algebra was constructed as a Clifford algebra of order 8 over 
R in Ref. 1, and the products of fields were given. The COn
nection with this paper is obtained by identifying the com
plex unit i = V-I in C with the volume element in Euclid
ean 3-space (j)3 = dx I A dx 2 A dx3

. Recall from Ref. 1 that (j)3 

commutes with all elements in SI and has square equal to 
- I. SI is therefore generated by the elements ( 1, ektiek,il. 

k = 1,2,3, and has center equal to C. 2 UtiliZing these results 
here, we can explicitly give the inverse of every element a in 
SI' Define a conjugate ii as follows: 

a = UO + u + iv + ivO, 

a = UO - U - iv + ivo. 

A complex scalar product can be defined as 

(21a) 

(21b) 

a Va = [(UO)2 - lull + Ivl2 - (VO)Z] + 2i(uOvO - (u·v)). 
(22) 

It is obvious that we cannot define a real norm in this 
algebra. 

The inverse of each element a is easily obtained by find
ing the inverse of the complex scalar product (22). Denote by 
x and y respectively, the real and complex parts of (22): 

x = (U
D)2 - lul 2 + Ivlz - (vOf, 

(23) 

The inverse of (22) is simply the inverse of a complex 
number, 

x - iy 

a Vax + iy x2 + y2 
(24) 

Hence, the inverse of any element a in SI is just 

_I a a =--
aVa 

(25) 

The identity a Va = a Va ensures that this inverse is 
two-sided. 

For completeness, we recall the well-known corre
sponding results for the quaternion algebra H. Equations 
(I8a) and (18b) are the same, and expression (20) for the in
verse is valid, with the difference that the scalar product is 
now positive-definite and is given by 
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iiVu = (UO)Z + (ulf + (uzf + (u 3f = (UO)2 + IUI 2. (26) 

Hence, in the case of the quaternion algebra H, one can 
indeed define a real norm as Ilull = (ii V u) I/ z. 

On the question ofnormed algebras,4,6.7, it is important 
to note that the expression II u 112 = ii V u satisfies the normed 
identity IIullzllvl1 2 = llii V vllz, in both the algebras NI and H. 
In the case of H, Ilull is a real norm (26), while, in the case of 
N I, Ilull is either real or purely imaginary, (19). (On this 
point, see the Conclusion.) 

VI. MATRIX REPRESENTATIONS 

We include a discussion of the matrix representations of 
the algebras H, N\) and SI for the important reason that it is 
nearly impossible to distinguish these algebras in representa
tion space. From the multiplication tables (Table II) it is easy 
to find representations corresponding to the four cases (a), 
(b), (c), and (d) in terms of the familiar Pauli matrices. These 
are given in Table III: 

( 0 1) (0 - i) (1 0) 
7 1,72,73 = 10' i ° ' 0 - 1 . (27) 

The representation space of the algebras of interest has 
been determined in Refs. 8 and 9 in the manner outlined in 
Ref. lO. Recalling those results for the algebrasNI andSI, we 
have 

NI+-->-R(2), 2 X 2 real matrices, 

Sr<--+(;(2), 2 X 2 complex matrices. 

(28a) 

(28b) 

The reality of the representation space of NI is offunda
mental nature (see Table III). The case of S I is, of course, well 
known. Any complex representation of H spans only one
half of the space (;(2), as can be verified directly. We note that 
any other matrix representations of these algebras are rei at -
ed via a similarity transformation to those given here. This 
follows from the universality of the Clifford algebras. K 

The relationship between the algebras H, N\) and SI is 
obtained by relating their corresponding group orders (16). 
By multiplying the group orders following the procedure in 
Refs. I and 2, we obtain the following relationships. Here, Z4 
is the complex group, isomorphic to the cyclic group of order 
4, 

(29) 

Recalling the discussion at the end of Sec. IV, we can 
obtain from (17) the following relation between the algebras: 

H®C=N\®C=S\. (30) 

This simple relationship is confirmed by the matrix re-

TABLE III. Matrix representations of the algebras N" H, and S" in terms 
of the Pauli matrices. 

Basis 

e, 
e, 
e, 

H N , 
S, S, 
case ia) case (c) 

1', 1', 

" i1', 
1', iT, 
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presentations (Table III). 
We now proceed with an outline of the relation between 

the algebra NI and the formalism of 2-spinors used in phys
ics. 11-14 Recall from Refs. 1 and 2 the geometrical properties 
of NI as a Clifford algebra. The product of two vector fields u 
and v in two-dimensional space A 2.0 = NI is 

u V v = (ule l + u2e2 ) V (vle l + v2e2 ) 

(31a) 

or 

u V v = (u, v) + e3(u X v). (31b) 

The anti symmetric part of the product is used in defin
ing the invariant product of 2-spinors as 

(32) 

Here, ~B is the symplectic matrix representing e3, 

~B = (i'T2)AB (Table III). A spinor rotation by a real param
eter 0 is described as follows: 

(33) 

The rotation operator in the matrix representation is 
simply 

SinO). 
cosO 

(34) 

which has determinant equal to + 1. Alternately, one can 
describe Lorentz transformations of the vector field w in 
two-dimensional spacetime A 1.1 = NI as 

w = w2e2 + w3e3, (wf = (W2)2 _ (W3)2, 

w' = exp(Oel)w = (coshe + elsinhO )w. 

(35a) 

(35b) 

The transformation operator in the matrix representa
tion again has determinant 1, as is required in the Lorentz 
group: 

(
COShO 

exp(Oel)~ sinhe 
Sinhe). 
coshO 

(36) 

We have used the identity that the Clifford algebras A 2.0 

and A 1.1 are both isomorphic to N I.
I.2•5 

For the construction of higher rank spinors as irreduci
ble representations of the rotation and Lorentz groups and 
their relationship to Clifford algebras, see Refs. II and 14. 

This completes the discussion on the matrix representa
tions of the algebras H, N I, and S .. and their relation to the 
formalism of 2-spinors. 

VII. CONCLUSION 

We have provided a simple method of generating alge
bras with three anticommuting elements over the fields !R 
and C. As an exhaustive result, we obtained the Clifford alge
bras: (i) the quat ern ions H, (ii) the dihedral Clifford algebra 
N I, which is related to real 2-spinors, and (iii) the algebra of 
Pauli matrices SI' which is related to complex 2-spinors. The 
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algebras Hand N) are of dimension 4 over JR, while the alge
braS) is of dimension 4 over C. [We note that the aigebraN1 

is often referred to in terms of its representation space as 
!R(2).] 

The three algebras obtained were shown to possess in
verses which were explicitly constructed. The algebra NI cir
cumvents the Frobenius theorem on real division algebras,3,4 
since NI possesses singular inverses other than that of the 
zero element. Because those singular inverses lie just on a 
region akin to the light cone of the Minkowski space, we can 
treat the algebra N) as a division algebra everywhere outside 
this singular line. 

Of the three algebras N I, H, and S I' only the quaternion 
algebra H is a normed algebra, in keeping with the Hurwitz
Albert theorem.4

•
6

•
7 However, it is important to note that all 

elements in the algebra NI satisfy the normed relation 
lIu[[[[v[[ = [[uVv[[, even though 
[[U[[2 = (uOf - (U I)2 - (u 2f + (U 3)2 does not define a norm in 
the usual sense. The familiarity of working in noncompact 
spaces which has developed since the classic work ofFroben
ius3 and Hurwitz6 allows us to consider this, along with the 
divisibility properties, as natural extensions of the tradition
al algebraic properties. 

Via group-theoretical methods, we determined the rela
tionship S) = H ® C = N) ® C, which demonstrates that 
these algebras can be considered as subalgebras of the com
plex Quaternions. ,Also, the connection of the algebra NI to 
the formalism of real 2-spinors was explicitly outlined, and 
representations of the two-dimensional rotation and Lorentz 
groups were given. 

We believe that this discussion clarifies the structure 
and properties of real and complex algebras with three anti
commuting elements which can arise in physics. 
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Algebras with three anticommuting elements. II. Two algebras over a singular 
field 

Nikos Salingaros 
Physics Department, The University o/Crete, Iraklion, Crete, Greece 
Physics Department, University 0/ Massachusetts, Boston, Massachusetts 02125 

(Received 25 February 198 I; accepted for publication 29 May 198 I) 

The Clifford algebra .0 generated by the elements! I,w) with (lU)l = + I, is an Abelian ring of 
dimension two with properties analogous to the complex field C. The ring .0 has a string of 
singular inverses, and may be regarded as a "singular field" which circumvents both the 
fundamental theorem of algebra and the Frobenius theorem. We construct two associative 
algebras of dimension four over .0: the Clifford algebra il I and the biquaternions of Clifford il2, 
and de~onstrate that both algebras possess inverses everywhere except on a singular region akin 
to the light cone of the Minkowski space. Matrix representations are discussed, as well as the 
importance of the algebras il I and il2, in the description of physical vector fields. 

PACS numbers: 02.1O.Tq 

I. INTRODUCTION 

This paper extends the construction of algebras with 
three anticommuting elements over the real and complex 
fields Rand C given in Ref. 1, by considering algebras over 
the ring .o. 

Motivated by the appearance of the Clifford algebra .0 
(elsewhere denoted R (j3 R) as the only abelian Clifford alge
bra other than Rand C,2-5 we here interpret it as a field 
extension of R of dimension two, analogous to the complex 
field C. The key difference is that the ring .0 possesses a 
string of singular inverses. For this reason .0 circumvents 
both the Fundamental theorem ofalgebra6

,7 and the Froben
ius theorem. 8.9 

I t is possible to extend the construction of algebras with 
three anticommuting elements and a unit given in Ref. 1 to 
the case where the underlying field can be the ring .0 . Two 
new algebras are obtained, which are identified by group
theoretical methods to be isomorphic to the Clifford algebra 
il I [elsewhere denoted NI (j3 NI or R(2) (j3 R(2)] and the biqua
ternions of Clifford il2 (elsewhere denoted H ffi H ).4,5,]{) We 
then show explicitly that the algebras ill and ill possess 
inverses everywhere except on a singular region akin to the 
light cone of the Minkowski space. Therefore, the algebras 
il I andil2 are division algebras with zero divisors, or "singu
lar division algebras" of dimension four over the ring .o. 

The analysis of Ref. I and the present paper, combined 
with the results of Refs. 4 and 5, leads to a natural identifica
tion of the Clifford algebras of dimensions one, two, four, 
and eight (Table III) as associative singular division algebras. 
Of these eight algebras, the three familiar algebras R, C, and 
H are the associative division algebras without zero divisors 
other than the zero element. 

II. THE SINGULAR FIELD n 
We construct .0 following the procedure of Refs. 4 and 

5 as follows. Consider a one-dimensional flat Riemannian 
space M 1,0 defined by the differential I-form w = dx and the 
metric gil = W V w = (w,w) = + 1. We consider the set 
! I,w, - w, - I). These elements along with the "vee" prod
uct V define a finite group isomorphic to the Gauss-Klein 

"Veergruppe" Z2 ® Z2' which is isomorphic to the dihedral 
groUpDl' 

From this group we can construct an associative Abe
lian ring over R, which we denote .o. (Note that in Refs. 2-5 
.0 was denoted as IR ffi IR; the reason for this is discussed in 
Sec. IV.) An element a of the ring .0 can be written as 

a = x + wy, x,YER. (1) 

Define a conjugate of a, denoted by a tilde (as in q, 
a = x - wy. (2) 
Then a scalar product is 

a Va = a Va = (x + wy)(x -wy) = x 2 - y2. (3) 

Clearly, the inverse a-I inn is given by 

_I a a =--
aVa 

X -wy 
1 7 • x--y 

(4) 

There is a string of singularities at the points where 
x = ± y; hence the ring .0 has more than one divisor of zero 
(Fig. 1). This property poses no great difficulty in physics, 
where singularities of this type are a common feature offield 
theory in Minkowski space. We may therefore manipulate 
the elements in .0 with the same ease as complex numbers in 
C, except along the singular lines. Since .0 is an Abelian 
associative division ring with zero divisors, we may refer to 
.0 as a "singular field," for brevity. 

Note in particular the case of x = y = 1 in (1) and (4). 
The elements (1 + w) and (1 -w) have singular inverses. 

The ring .0 circumvents the Frobenius theorem on the 
construction of associative division algebras over R, which 
does not permit singular points other than the point corre
sponding to the zero element [i.e., the point (0,0) in Fig. 1].8.9 
In the Frobenius construction, one uses the lemma that 
when a product of terms is zero, then at least one of those 
terms is zero.8

•
9 Clearly this is not true for elements of n, and 

this is the reason why n is not well known as a division 
algebra in the usual sense. 

The reason why .0 is not identified as a field is that fields 
are usually constructed via the fundamental theorem of alge
bra.6

•
7 We note, however, that, in this context, the equation 

x 2 
- 1 = 0 (5) 
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FIG. 1. Singular regions of the singular field n. 

has a solution both in R and in fl, as follows: 

x = ± lER, 

x = ±wEfl. 

(6a) 

(6b) 

Because a solution of (5) already exists in R, the usual 
field construction as defined by the roots of a real polynomial 
overlooks the existence of the ring fl entirely. 

Note that factoring Eq. (5) with (6b) to obtain 
(1 +w)(l-w)=Odoesnotimplythatw= ± l,sinceboth 
factors (1 + w) and (1 - w) have singular inverses, and one 
cannot divide by either to obtain (1 ± w) = O. (This is the 
point that is important in the proof of the Frobenius 
theorem.) 

This completes the description of the ring fl. We have 
paid particular attention to the qualities of fl, which make it 
a useful algebraic tool. 

III. TWO ALGEBRAS OVER THE SINGULAR FIELD n 
We recall the construction of algebras with three anti

commuting elements and a unit which was presented in Ref. 
1. The general multiplication of the three elements e I' e2, e3, 
can be written using scalar coefficients a k J3k 'Yk' k = 1,2,3 
which are elements of some field: 

ele2 = aiel + a 2e2 + a 3e3, 

e2e3 = /3le l + /32e2 + /33e3' 

e3el = Ylel + Y2e2 + Y3eJ' 

We define a scalar square for each element as 

(7) 

(ek)2 = ak' ak = ± 1, k = 1,2,3. (8) 

Imposing alternativity reduces the system of equations 
(7) to the following (see Ref. 1): 

ele2 = a 3e3, 

e2e3 = /3le l' 

e3el = Y2e2' 

(9) 

over a field. Since the constants ak are either 1 or - 1 (8), it is 
sufficient to consider the following four distinct cases. 

!a.,a2,a31 = p, 1, I) 
= ! 1,1, - I) 
=! 1, - 1, - I) 

= ! - 1, - 1, - 11. 

( l1a) 

(lIb) 

(IIc) 

(lId) 

We proceed to solve Eq. (10) in each case (11) over a field 
of dimension two, i.e .• either C or fl. We obtain the following 
solutions, which are easily checked: 

a 3 = /31 = Yz = ± i, 
-a3 =/3I=Y2= ±w, 

(I2a) 

(12b) 

a 3 = -/3I=YZ= ±i, (I2c) 

a 3 = /31 = Y2 = ± w. (12d) 

Cases (12a) and (I2c) were identified with the algebra of 
Pauli matrices SI in Ref. 1. Cases (Ub) and (lId) have al
ready been factored over R in Ref. 1, and they defined two 
associative Clifford algebras of dimension four over R: the 
Hamilton quaternions H and the dihedral Clifford algebra 
NI [elsewhere denoted R(2)]. 

We now show that cases (I2b) and (I2d) factored over 
the singular field fl define the Clifford algebra 11 1 [elsewhere 
denoted NI Gl NI or R(2) Gl R(2)], and the biquaternions of 
Clifford 112 (elsewhere denoted H Gl H). 

The identification is obtained by computing the order of 
the finite group corresponding to each case (12b) and (I2d). 
Each group consists of the elements! ± 1, ± ek , ± wek , 

± w J, k = 1,2,3. Following the procedure of Refs. 1,4, and 
5 in computing the order of each element, we obtain the 
group order corresponding to cases (12b) and 12d), using (11) 
and the property (wf = + 1: 

case (b): order = 112 1144 = (1,11,4), 

case (d): order = 11234 12 = (1,3,12). 

(I3a) 

(13b) 

We recall from Refs. 4 and 5 that every Clifford algebra 
has a corresponding finite group. The correspondence is list
ed in Table I, for algebras up to order 8. Here, Zn are the 
cyclic groups, D n are the dihedral groups, and Q4 is the qua
ternion group. For details on the construction of Table I, see 
Refs. 4 and 5. Using the fact that, for small order, equiv
alence of the orders implies a group isomorphism, we find 
that case (b) is isomorphic to the group D4 ® Zz, and case (d) 

TABLE I. Finite group corresponding to Clifford algebras. 

Dimension Algebra Finite group Order 

IR Z, (1,1,0) 

In addition, alternativity implies the following relations 2::----------------------C Z4 (1,1,2) 
between the scalar coefficients a k, /3k' Yk and ak I: 

a l = - a 3Y2' 

a2 = -a~I' (10) 

a3 = - /3IY2' 
In order to determine the structure of the algebra de

fined by relations (9), it is necessary to solve relations (10) 
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4 

8 

n D, = Z,®Z, (1,3,0) 

N, D4 (1,5,2) 
N,=H Q4 (1,1,6) 

S, Z4®D, (1,7,8) 
ill D4®Z, (1,11,4) 
il, Q4®Z, (1,3,12) 
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TABLE II. Multiplication tables of the algebras il, and il,. 

V e, e2 e, 

e, - (iJe,~ - cue2 il, 
(uel cue, e, 

e, (tJe 2 -(ue 1 -I 

V e, e2 e, 

e, -I -we:\ (ue2 il, 
we) -I - we, e, 

e, -we2 (ue l -I 

is isomorphic to the group Q4 ® Zz. The corresponding Clif
ford algebras are also obtained from Table I, and are the 
following: 

case (b): order (1, 11,4)-D4 ® Zz-il I' 

case (d): order (1,3, 12)_Q4 ® Z2-ilZ' 

(14a) 

(14b) 

The algebra ilz was first explicitly constructed by Clif
ford himself, and named the "biquaternions." 10 The algebra 
il I is not well known. 

A useful summary of the algebraic construction of the 
algebras il I and il2 is obtained by giving their multiplication 
tables (Table II). This completes the construction of the alge
bras ill and ilz via an extension of the method introduced in 
Ref. I to the singular field n. 

IV. DISCUSSION 

We recall the construction of Clifford algebras given in 
Refs. 4 and 5. We were able to construct all Clifford algebras 
as three distinct types of algebras N, S, and il (See Table I). 

The abelian cases correspond to the "fields" R, e, and 
n. The algebras with anticommuting elements are defined 
by N k, Sk' and ilk' k = 1,2,.··. Of the N algebras, N z = H, 
the quaternions of Hamilton. Elsewhere, we have identified 
N3 as the algebra of the Majorana matrices. II 

Of the S algebras, S I is the familiar algebra of Pauli 
matrices while Sz = D is the Dirac algebra. Of the il alge
bras, only il2 is well known, and was discovered by Clifford 
as the "biquaternions." 10 

Using group-theoretical methods, 1,4,5,11 it is possible to 
derive the following key relations between the algebras, 

Theorem 1: 

Sk =NZk ®e=NZk _ 1 ®e, (15a) 

ilk = Nk ® n, (15b) 

In particular, these relations (15) clarify the following 
point: The biquaternion algebra ilz i~ freque?tl~ c?nfused 
with the algebra of complex quatermons Wh1Ch 1S 1somor
phic to the algebra of Pauli matrices S I' F,rom (15), th~se 
algebras are related to the quaternions H m the followmg 
simple manner (Table I): 

ill =H®n, SI =H®C, (16) 

This relationship illustrates the distinction between the 
biquaternions and the complex quaternions. 

Following the analysis of Sec, II, it is possible to consid
er the fields e and n as field extensions ofR, by the elements i 
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and OJ, respectively. These can be written as 

e = R61IR, (17a) 

n = R EBOJR. (I7b) 

Using (17) in Theorem I [Eq. (15)] gives us the following 
relations: 

Sk = N2k $ iN2k = N2k _ I $ iNzk _ I' 

ilk = Nk 61OJNk· 

(1 Sa) 

(ISb) 

These relations form the basis for constructing and re
lating the higher-order Clifford algebras. 

We now clarify a point which is an important distinc
tion to previous work. It is clear that the vector space corre
sponding to the ring n is a plane R2 which is isomorphic to 
the sum of two real lines R $ R. This vector space isomor
phism has previously been employed in discussing the struc
ture of Clifford algebras,2-5 and is responsible for the nota
tion Nk $ Nk for ilk' instead of Nk $ OJNk, (ISb). In 
particular, the biquaternions il2 were identified with H $ H 
instead of H $ OJH = H ® n, (16). This interpretation has the 
serious disadvantage that it does not give the correct finite 
group corresponding to each Clifford algebra (it gives a 
group one-half the size), and also that it effectively hides the 
singular field n. 

An important structural result is the determination of 
the center of each algebra. This was obtained in Refs. 4 and 5, 
and follows in part as a corollary of Theorem I [Eq. (IS)]: 

Theorem 2: 

{

Nk {R' 
The algebras Sk have center e, 

ilk n. 

(19a) 

(I9b) 

(I9c) 

Following the notation introduced in Ref. 4 and 5, we 
can consider the "fields" R, e, and n as the zeroth algebras 
of type N, S, and il as follows: R = No, e = So, n = ilo. 

These results summarize many of the properties of the 
Clifford algebras. We conclude with a classification of the 
Clifford algebras up to dimension eight, which is given in 
Table III. Recall from Refs. 4 and 5 that each Clifford alge
bra is generated by the basis forms of a flat Riemannian 
space M p.q of dimension n = p + q. The metric is the scalar 

TABLE Ill. Clifford algebras corresponding to Riemannian spaces. 

dimension 
over !At 

R 1 

fl C 2 
N, N, N,=H 4 

S, il, S, il, 8 

dimension 
over IR 

A 0,0 1 
A 1.0 A 0,1 2 

A ',0 A I.' A O,? 4 
A ',0 A'" A'" AO,\ 8 
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form 

gaa = (( + 1, + 1, ... , - 1, - 1, ... ), a = 1, ... ,n, (20) 

where there are p plus ones, and q minus ones (the order of 
signs is immaterial). 

One considers the set of 2n p-forms of all ranks. '2 These 
basis forms, when endowed with the "vee" product,4.5 define 
an associative ring of dimension 2n over JR, isomorphic to the 
Clifford algebra A p,q. 

Our construction in terms of the N, S, and il algebras 
indentifies those A p,q which are isomorphic for distinct me
trics, (20) (Table III). For example, for the Clifford algebras 
up to order 8 we can read off the following isomorphisms 
from Table III: A 2,0:::::A ',' and A 3.0:::::A \,2. 

V. DIVISIBILITY AND INVERSES 

The demonstration that the algebras ill and il2 are sin
gular division algebras can be given in two different ways, 
First a simple algebraic proof based on Theorem 1 and the 
results of Ref. 1. 

Theorem 3: ill = N, ® nand il2 = H ® n are singular 
division algebras of dimension four over the ring n. 

Proof Since Hand N, are singular division algebras of 
dimension four over JR, ' it follows that their Kroenecker pro
ducts with the ring n are singular division algebras of the 
same dimension over the ring n. 

For the practical interests of physics, it is not enough 
merely to show the existence of inverses; one should actually 
display them. We proceed to explicity construct the inverses 
in each algebra, utilising the "vee" product formalism from 
Refs. 4 and 5, and the multiplications of Table II. 

An element a of il2 can be written with eight real coeffi
cients un, uk, Vk, vo, k = 1,2,3 as follows. The vector notation 
denotes expansion on the three basis elements. 

(21a) 

(21b) 

The product in this algebra is obtained using the vector 
product rule, given here in terms of the familiar dot and cross 
products (see Refs. 4 and 5 for the role of the duality theorem 
in the product): 

U V v = - (u'v) - liJUxv. (22) 

Following the discussion of Sec. IV, we have identified 
the element liJ, which is in the center of il2, (19). (This corre
sponds to the volume element liJ3 in the geometrical con
struction of Refs. 4 and 5,) Define a conjugate for a as 
follows: 

ii = Uo - U - liJV + liJVo. (23) 
Note that the conjugate does not mean that just 

iii = - liJ; it is a definition on all the basis elements. 
Using (21)-(23), we obtain the product a Va, which is a 

quantity in the singular field n: 

aVa = (UO)2 + lul2+ IvI 2 +(vO)2+2liJ[uOvo+(u·v)]. (24) 

We separate (24) into a real part, and the coefficient of liJ 

(which in the case of C would correspond to the complex 
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part): 

x = (UO)2 + luI 2 + IvI 2 + (VO)2, 

Y = 2(uOvO + u·v). (25) 
The inverse a-I in il2 is now obtained from (1), (4), and 

(25) as follows: 

a-I = ~ = a(x -liJY) (26) 
aVa x 2 _ y2 

Note the existence of a singularity at the point where 
x = ± y (Fig. 1). The identity a V a = a V a ensures that the 
inverse is two-sided. This demonstrates explicitly that the 
algebra il2 is a division algebra with zero divisors. 

Using a identical method and Table II, we can give the 
inverse in the algebra ill as formula (26), with the following 
substitutions: 

x = (UO)2 + (VO)2 _ (U')2 - (u2f + (U 3 )2 _ (V')2 

_ (V2)2 + (V3)2, (27a) 

y = 2(uovo - u'v l 
- U2V2 + U3V3

). (27b) 

This completes the explicit construction of the inverses 
in the algebras ill and il2. 

VI. MATRIX REPRESENTATIONS 

I t is easy to find a 2 X 2 matrix representation of the 
algebras ill and il2. Using Theorem 1 [Eq. (15)], we have the 
relations 

ill =N, ®n, 

il2 = N2 ® n = H ® n. 
(28a) 

(28b) 

Recall from Ref. 1 that the representations of NI are 
2 X 2 matrices in JR; those of Hare 2 X 2 matrices in C, which, 
however, do not span the space C(2). Using (28), we obtain 
the representation space of ill as 2 X 2 matrices over n. The 
representations of il2 are 2 X 2 matrices over C ® n . Once we 
know the representation space, it is not difficult to find a set 
of matrices satisfying the products in Table II. These are 
given in Table IV. 

For those preferring not to work with the algebraic unit 
liJ, it is possible to construct 4 X 4 matrix representations of 
ill and il2 over If{ and C, respectively. This is achieved by 
employing the following 2 X 2 matrix representation of the 
field n over JR: 

(29) 

Substituting (29) in Table IV, one obtains two sets of 
4 X 4 matrices: a real representation of ill and a complex 

TABLE IV, Matrix representations of the algebras il I and il2· 

ill il2 

e l (~ ~) (~ ~) 
e2 (01 ~ J CO) o -i 

e, (~(U U) 0) (~U) U) 0) 
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representation of fl 2. These matrices can be used to repro
duce the representation-free manipulations of the previous 
section. 

VII. CONCLUSION 

In conclusion, we have been able to demonstrate some 
interesting properties for the Clifford algebras up to order 8 
(Tables I and III). The algebras of dimension one and two are 
Abelian algebras: Rand C are the well-known fields, while 
the singular field n is not as well known, and has the interest
ing feature that it possesses a string of singular inverses, i.e., 
divisors of zero. 

In this paper, we showed that the Clifford algebras fl 1 
and fl2 are singular division algebras of dimension four over 
the singular field n . In Ref. 1, we did the same thing for the 
Clifford algebras N

" 
H (Hamilton's quaternions), and SI (the 

algebra of Pauli matrices) as singular division algebras over 
the fields Rand C. All of these algebras, except H, possess 
strings of singular inverses. 

Usually, when one considers associative division alge
bras with three anticommuting elements, one thinks only of 
the quaternions H. The present discussion demonstrates that 
the singular division algebras with three anticommuting ele
ments N

" 
SI' fl I' and fl2' can be considered just as useful as 

the quaternions H. The connection of some of these algebras 
with physically relevant structures, i.e., N, with the real 2-
spinors; SI with the complex 2-spinors; and flz with the fa
miliar vector algebra4

•
10

•
13 demonstrates the importance of 

these algebras in physical description. 
Another point is that we provide an answer to the ques

tion of generalizing the quaternions H while retaining asso
ciativity and divisibility. Following the discussion of this pa
per, both the algebra of Pauli matrices SI and the 
biquaternions of Clifford fl2 are associative generalizations 
of the quaternions H which maintain divisibility, but intro
duce strings of singular inverses. 

If the Clifford algebras are considered, as is implied by 
our discussion, as a useful framework for physical descrip-
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tion, then there are several unique advantages to this 
scheme. First, there are an infinite number of Clifford alge
bras (which by definition are all associative). Second, the al
gebras of dimension 16 and 32 include the Dirac, Majorana, 
and Clifford algebras in Minkowski spacetime, 4.5.11.14 which 
are offundamental importance in field theory. Third, all the 
algebras of dimensions larger than 8 (over R), while not divi
sion algebras, possess the more restricted property of "sec
tional divisibility.,,4.5 (This means that any antisymmetric 
tensor field has a unique two-sided inverse in the algebra, a 
fact which simplifies many manipulations.) The Clifford al
gebras that are division algebras, or singular division alge
bras, are just those which have three anticommuting ele
ments. Hence the concept of an associative division algebra, 
with or without zero divisors, appears to be a property pecu
liar and unique to the algebras with three anticommuting 
elements. 

We believe that this paper, along with Ref. 1, has clari
fied the structure of associative algebras with three anticom
muting elements that are applicable to the description of 
physical systems. 
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Point groups and their general irreducible (vector and projective) representations are 
characterized by the subgroup conditions for SU(2) in a unified scheme: these conditions are given 
by simple polynomial equations imposed on the matrix elements of the 2 X 2 unitary matrices of 
SU(2). The general irreducible representations for the point groups D 00 ,D n (with arbitrary integer 
n;:;>2), 0, and Tare given by four simple and effective tables. 

PACS numbers: 02.20. - a 

1. INTRODUCTION 

Let GR be a point group in three-dimensional Euclid
ean space and G s be the 2 X 2 double-valued spin or represen
tation ofGR .1,2 As usual, Gs may be simply referred to as the 
double group of GR' Evidently, double group Gs is a sub
group of SU(2), the group of all 2 X 2 unitary matrices with 
determinant 1. However, the direct relation between a dou
ble group Gs and SU(2) has never been investigated system
atically. In the present work, we shall show that one can 
define a subgroup Gs ofSU(2) by imposing a set of poly nom i
al equations on the matrix elements of the 2 X 2 unitary ma
trices ofSU(2). For simplicity, such a set of equations may be 
called a subgroup condition for SU(2). The effectiveness of 
this approach lies in the fact that the subgroup condition for 
a subgroup Gs provides the necessary and sufficient condi
tion for reducing all irreducible representations ofSU(2) into 
those of Gs . This is simply due to the fact that all the irredu
cible representations of SU(2) are described by the matrix 
element of UESU(2). The irreducible representations of Gs 
thus obtained are general representations in the sense that 
they hold for any element of G s, each element being charac
terized by a set of roots of the polynomial equations which 
define the subgroup. This kind of general representation for 
the point groups of finite orders has never been reported 
previously (for the most comprehensive recent work on the 
point groups see Ref. 3). 

We shall outline the content of the work. In Sec. 2, we 
shall first discuss the group requirements which should be 
satisfied by a subgroup condition ofSU(2). Then, we shall 
discuss how the subgroup condition should be used to con
struct the point groups as well as their irreducible represen
tations. As it has been proposed by many authors,4.5 the irre
ducible representations of the double groups can be 
presented very effectively through the projective representa
tions of the point groups. In the present work we shall follow 
this proposition. 

In the remaining sections, we shall apply the general 
theory developed in Sec. 2 to individual subgroups ofSU(2), 
i.e., the double groups of the point groups D 00 ,Dn , Coo, Cn , 

0, and T. There exists one more proper point group of finite 

"Present address. 

order known as the icosahedral group I. 6 Since its analysis is 
much more involved and it is less important for applications, 
it may well be discussed elsewhere. In the final section, we 
shall briefly discuss how to extend the present results to im
proper point groups. 

2. GENERAL DISCUSSION 

An element of the group SU(2) is given by a 2 X 2 uni
tary matrix written as 

U(a,b) = (_ab * :*), 
where a,b range over all complex numbers satisfying 

[a[2 + [b [2 = 1. 

(2.1a) 

(2.1b) 

A pair of numbers (a,b ) may be regarded as a unit vector (or 
spinor) in a two dimensional space S (2) over the complex 
field. Then, by definition there exists one-to-one correspon
dence between the unit vectors in S (2) and U (a,b ) in SU(2). 
OnemaydefineasubsetGs = [U(a,b)) ofSU(2) by imposing 
a set of polynomial equations 

J;(a,b) = 0, 0<:i<:2 (2.2) 

on the matrix elements a and b. In order for the subset Gs to 
form a subgroup, the set must satisfy the group 
requirements: 

(i)J;(I,O) = 0, 

(ii)J;(a*, - b) = 0, ifJ;(a,b) = 0, 

(iii)J;(a la2 - bib !,a lb2 + bla!) = 0, 

ifj(al,b l ) =/(a2,b2 ) = 0. 

These follow since U( 1,0) is the identity, U(a,b )-1 
= U(a*, - b), and U(al,bd U(a2 ,b2 ) 

(2.3) 

= U(a la2 - bib !,a lb2 + bla!). These conditions may also 
be regarded as the requirements for a set of unit vectors 
[(a,b)) in S(2) to be transitive with respect to a subgroup of 
SU(2). In order for Gs to be a double group of a point group, 
it is necessary to impose one more additional property, 

(iv)J;( - a, - b) = 0, ifJ;(a,b) = ° (2.4) 

which means that U ( - a, - b) = - U (a,b ) is contained in 
Gs if U(a,b )EGs . Hereafter, we may include (iv) in the sub
group condition ofSU(2) unless otherwise specified. The 
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simplest subgroup condition for SU(2) is 

b=O, (2.5) 

which means that lal = 1. It characterizes the spinor repre
sentation ofSO(2). Another simple subgroup condition is 
given by 

ab = 0, (2.6) 

which means that either lal = lor Ib I = 1. This condition 
characterizes the double group D;" of the dihedral group 
D 00 • This group will be discussed in detail as a prototype 
example. A less obvious subgroup condition is given by 

aM = 1 or b 8 = 1 or a4 = b 4 = ±!, (2.7) 

which will be shown to characterize the double group 0' of 
the octahedral group O. It is well known° that there exists 
only ajinite number of point groups if one excludes the un
iaxial groups en and the dihedral groups Dn. This means 
that there exist only a finite number of different subgroup 
conditions for SU(2), unless ab = 0. 

We shall now discuss how to construct the irreducible 
representations of a subgroup Gs ESU(2) from those ofSU(2) 
by means of a subgroup condition. Let us introduce the basis 
set belonging to the (2) + 1) X (2) + 1) irreducible representa
tion D (f)( U) of U (a,b )ESU(2). It is defined by a set of (2) + 1) 
monomials of two variables SI and S 2 

¢ (j,m;SI,S2) = S~+ mS~- m/[(j + m)!(j - m)!]1/2, 

(2.8) 
m =},}-1, ... , -}, 

where} is an integer or half-integer. The set transforms ac
cording to 

¢ (j,m;S; ,S;) = I ¢ (j,m';SI'S2)D Ijl( U (a,b ))m',m (2.9a) 
m' 

under the transformation of the variables 

(2.9b) 

where (SI>S2) is regarded as a raw vector. It should be noted 
that D (1/21( U) = U. The general expression of D Ijl( U) is well 
known as a function of a and b, I but it is not needed in the 
present work. In the reduction of D Ijl( U) we shall incorporate 
the subgroup condition directly into the left-hand side of 
(2.9a) and obtain the reduced representations by construct
ing the invariant subs paces spanned by appropriate linear 
combinations of the spinor components. As we shall see in 
the actual examples, it requires a trivial amount of the alge
braic manipulations and provides the general expression for 
each irreducible representation of G s' which holds for any 
U (a,b )EGs . The reason is that the subgroup condition does 
not contain any individual characteristic of each group 
element. 

Now, we shall discuss how to characterize the individ
ual group element of a subgroup G s defined by a subgroup 
condition ofSU(2). For this purpose, we shall introduce the 
parameter space ofSO(3) and SU(2); a vector a in the space 
defines a rotation R (a)ESO(3) as well as the double valued 
spinor representation ± S (a)ESU(2) (see, for example, Ref. 
5). The vector a is called the rotation vector and is related to 
the axis of rotation n and the angle of rotation a about n (in 
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the clockwise direction along n) by 

a = an, I n I = 1. 

We set 

U (a,b ) = exp[ - iaoO'] = S (a), 

(2.10) 

(2.11) 

where 0' is the Pauli spin. Then, we obtain the so-called 
Euler-Olinde-Rodrigues parametrization of a and b, 

( ) 
a.. a 

a a = cos - - In sm-
2 z 2' 

(2.12) 

Here, 0< lal <21T, which will be reduced to 0< lal <1T later by 
introducing the projective representation. Substitution of 
(2.12) into the subgroup condition (2.2) yields a set of possible 
values of the rotation vectors a's, which then defines 
Gs = (S(all aswellasGR = (R(a)j. The correspondence 
between Gs and GR is obviously two-to-one since 
S (a + 21Tll) = - S (a) while R (a + 21Tll) = R (a). 

In practical applications, it is more convenient to intro
duce a projective (or ray) representation Gs , which makes 
one-to-one correspondence with the point group GR . It has 
~en established by the authorS that the projective set 
Gs = (S (all of GR = (R (a) J, which preserves the class 
structure of GR , is given by the correspondence 

U(a,b) = S (a)+--+R (a), 

(2.13) 
O<lal<1T, 

where a's are chosen equivalently for equivalent R (a)'s if 
there exist more than one a corresponding to a given R. In 
fact, this is the case for a binary rotation on account of the 
cyclic boundary condition R (1Tll) = R ( - 1Tll). If, however, 
the binary rotation is bilateraV i.e., 1Tll and - 1Tll are equiv
alent, one may choose anyone of them. Frequently, it is 
convenient to choose the one on the positive hemisphere, a 
domain defined by 

1Tn .. > ° or 1Tn .. = O,1Tn I > 0, 
or 

(2.14) 

1Tn .. = 1Tn I = 0,1Tn 2 > 0. 

The correspondence (2.13) defines the projective factor sys
tem as follows. Let Si = S (ai) and Ri = R (a i ), then 

SIS2 =/12S, if R JR 2 = R" (2.15a) 

where 

(2.15b) 

In terms of the projective set Gs = (S (a) j, the double group 
ofGR = (R (all is given by Gs = [ ± S (a) j.1t is well estab
lished that all irreducible representations (integral and half
integral) of G R are constructed by the irreducible representa
tions of G s' Let P IjI(S ) be an irreducible representation of 
G s, with} being integral or half-integral. Then, correspond
ing to (2.15), we have 

(2.16) 
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Accordingly, when j is integral P (ll(S ) gi ves a vector represen
tation of GR ; whenj is half-integral P VI(S) gives a projective 
representation ofGR belonging to the factor system (2.15). It 
is also evident from (2.16) that all irreducible reJ>resentations 
of the double group Gs follow from those of Gs ' 

Based on the general discussion given in this section we 
shall discuss the point groups D 00 , D n , Coo, C n , 0, and Tin 
the following sections. 

3. THE GROUP D '" 

The subgroup condition for the double group D :., of the 
group D 00 is given by 

ab = 0. (3.1a) 

It is evident that this condition satisfies the group require
ments (2.3) and (2.4). It is equivalent to 

lal = 1 or Ib 1= 1. (3.1b) 

Thus, there exist two types of the general elements, 

u(a,o)=[~ aO.], U(O,b) = [_ob. ~]. (3.2) 

The set [ U (a,O) 1 forms a normal subgroup of D :., , which is 
the double group ofSO(2). The element U (O,b ) is involutional 
in the sense that 

[U(O,b W = -1, (3.3) 

where 1 is the 2 X 2 unit matrix. This property ensures that 
U(O,b) represents a binary rotation, as will be seen shortly. 

In terms of the Euler-Olinde-Rodrigues parametriza
tion (2.12), we have 

a = ala) = exp[ - (i/2)a], 

b = b f!J) = - i exp[ - (i/2)/3], (3.4) 

where - 21' < a ,/3<. 21' for the double groul? The one-to-one 
correspondence between the projective set Os = [S (a) land 
GR = [R (a)l introduced by (2.13) yields 

U (a,O) = exp [ - (iI2) aaz ] +------>-Cz (a) , 

(3.5) 

U (O,b ) = - iu·h/3+-+C ;./3' 

where - l' < a,/3<,l', h/3 = (cos!f3, sin~,O), and Cz(a) de
notes the rotation about the z axis through an angle a and 
C ;./3 denotes a binary rotation about the vector h/3' Since 
these binary rotations are bilateral, their rotation vector l'h/3 
are placed in the positive hemisphere in accordance with 
(2.14). The correspondence (3.5) proves that the subgroup 
condition (3.1) indeed defines the double group D :., . 

TABLE I. The irreducible (vector and projectivej representations of D ro • 

We shall now construct all the irreducible (vector and 
projective) representations of D 00 • From (2.9a) one can show 
that the subgroup condition (3.1) makes invariant the spinor 
spaces spanned by ¢ (j,O) ifj is an integer, and by 
[¢ (j,m),¢ (j, - m) J with m = j,j - 1, ... ,1 or~, respectively, 
under all U (a,b )ED :., . The corresponding 2 X 2 
representations 

_. [a2m 0] 
MJm [U(a,O)] = ° a'2m' 

Mjm [U(O,b)] = ( - i)2
j
[Ub ~'2m (ib )2m] 

° ' (3.6) 

are irreducible since it is impossible to satisfy a 2m = a '2m for 
all a's on the unit circle in the complex plane. In many practi
cal applications, it is more convenient to introduce the fol
lowing bases: 

¢+(j,m) = 2- 1/2(¢ (j,m) + ¢ (j, - m)), 

(3.7) 
¢_(j,m) = - a- 1/2(¢ (j,m) - ¢ (j, - m)). 

Then, the corresponding representations are given by 

. [Rea
2m 

Ima
2m

] 
MJm [U(a,O)] = _ Ima2m Rea2m ' 

[ 
Re(ib )2m 

Mj [U(Ob)] =(_i)2j 
m' _ Im(ib )2m 

(3.8) 
- Im(ib fm] 
_ ReUb )2m ' 

where Re and 1m denote the real and imaginary parts, re
spectively. These satisfy the equivalence relations 

M j - Mj M j, - a Mjo 
-m -Uz mO'z' m - y mO'Y' (3.9) 

whereje (jo) is aj with an even (odd) integral part and az ,ay 
are the Pauli spin matrices. On account of these equiva
lences, for a given m ditferent/s do not give any new respre
sentations except for the constraintj;;.m. Thus, inequivalent 
2 X 2 irreducible representations are determined by malone, 
which can be taken to be 

m = !,1,~,···. (3.10) 

The one dimensional representations M ~ on ¢ (j,O) occur 
whenj is integral and is given by 

M~[U(a,O)] = 1, M~[U(O,b)] =(- W, (3.11) 

which splits into two inequivalent representations depend
ing onj = je or jo' The final results for the irreducible repre
sentations of D 00 are given in Table I, where use has been 
made of the Euler-Olinde-Rodrigues parametrization (3.4) 
with - l' < a,/3<. 1'. It is noted that if one takes 

Ci,13 Bases 

cPU,.O) A, 
A2 

[
cosima) 
sin(ma) 

- Sin(ma)] 
cosima) 

-1 

( _ i)2j[cos(mp ) 
sin(mPJ 

sin(mp) ] 
-cos(mpj 

cP Uo.O) 

(cP+U.mj.cP_U.m)) 

(1) m = 1.2.3 ..... for vector representations. m = ~'1'"'' for projective representations. 

(2) - 71'<a.p<11'. 
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- 21T < a,/3<:,.21T, then Table I gives the irreducible represen
tation for the double group D ;" . 

4. THE GROUP On 

The subgroup condition for the double group D ~ of the 
dihedral group D n is given by 

(4.1) 

Since D ~ is a subgroup of D ;" , one can use the previous 
results of D' for this case with due modifications. Firstly, 
the subgrou; condition (4.1) limits the allowed values of the 
angles a and {3 of (3.4) to the following values: 

(4.2) 

where k,q = 0, ± 1, ... , ± (n - 1),n. The corresponding val
ues of a and b are given by 

ak = exp( - i1Tk In), ibq = exp( - i1Tqln). (4.3) 

From (3.5), the correspondence between the projective set 
Gs and G R is given by 

U(ak,O) = exp( - iaz 1Tk In)+-+e~, 

(4.4a) 
U(O,b ) = - i(a-hq)+-+e ;.q' 

where hq = (cos(1Tqln), sin(1Tqln), 0), and en is the n-fold 
axis of rotation in the z direction and e ;.q is a binary rotation 
about hq • It is noted here that the equivalent sets of the bina
ry rotation vectors are [1Thq;q = 0, ± even land 
[ 1Thq ;q = ± odd l and also that when n is even all e ;.q are 
bilateral while when n is odd all e 2,q are unilateral. Thus, for 
the projective representations which preserve the class struc
ture of D n , we take 

k,q = 0, ± 1,00', ± (n/2 - 1),n/2, for an even n 

(4.4b) 
2k,q = 0, ± 2,00', ± (n - 1), for an odd n 

consistent with (2.13) and (2.14). 
Now all the irreducible representations of Dn follow 

from those of D 00 with slight modifications. Substituting a k 

and{3q of(4.2) into a and{3 in Em of Table I, we obtain Em as 
given in Table II, which satisfy 

(4.5) 

TABLE II. The irreducible (vector and projective) representations of Dn' 

C
n 

k 

1 
I 

(-IJ" 
( - Ilk 

From this and the equivalence relations (3.9), the inequiva
lent 2 X 2 representations are limited to 

O<m <n/2. (4.6) 

When m = n/2,En /2 of Table I is reduced into two one di
mensional representations denoted as B \ and B2 of Table II. 
Accordingly, there exists a total of (n + 3) irreducible repre
sentations for D ~ , of which four are one dimensional and 
(n - 1) are two dimensional, satisfying 

4n=12+12+12+12+(n_l)22. (4.7) 

This is consistent with the class structure of the double group 
D ~ [U(a,b) l given by 

E,E = U( - 1,0),[ U(O,bq);q = 0, ± even], 

[U(O,bq);q = ± odd], [ U(a k ,0),U(a _ k ,0)], 

where k,q = 0, ± 1,00', ± (n - 1),n. 

(4.8) 

The final results of the general irreducible (vector and 
projective) representations of the dihedral group D n are pre
sented in Table II. It is noted that when n is even, all four one 
dimensional representations A \ 42 and B \ ,B2 are vector re
presentations while when n is odd, A \ and A2 are vector re
presentations, and B\ and B2 are projective representations. 
This is due to the fact that when n is even, all the binary 
rotations in D are bilateral while when n is odd all the bina
ry rotations innD n are unilateral. It is also noted that in Table 
II all the spin or bases of the proper rotation group SOl 3) are 
classified according to the irreducible representations of Dn. 
Thus, one can read off the rotation group compatibility rela
tions with D from the table without any further calcula
tions. Since ;he table is completely general for any Dn, the 
notations introduced for the group elements as well as for the 
irreducible representations seem most rational choices. In 
particular, the integral or half-integral suffixes m for Em 
distinguish the vector and projective representations most 
effectively. 

5. THE GROUPS C"" AND Cn 

The general representations for these two abelian 
groups are completely known. However, for the sake of com
pleteness, we shall discuss these groups in the present line of 

C ;.q 

I 
-I 

( - IIq;"lnl 

( - I)q + 1iO ln , 

Bases 

rjJ(je,O),rjJ+(j"n),rjJ (jo,n) 
rjJ (jo,O),rjJ + (jo,n),rjJ _ (je ,n) 
rjJ + (jo,n!2),rjJ -(je ,n!2) 
,p + (j, ,nI2),,p ... (jo,n!2) 

[
cOS(217"mk In) 

sin(217"mk In) 
- sin(217"mk In)] 
cos(217"mk In) 

- ifJ[cOS(217"mqln) Sin(217"mQln)] 
( sin(217"mQln) - cos(217"mQln) 

(I) O(n, odd) = I; O(n, even) = 2. 
(2) k,q = 0, ± I, ... , ± (n12 - 1),n!2; for an even n, 2k,q = 0, ± 2, ... , ± (n - I); for an odd n. 
(3) m =!, I, ... ,!(n - I). . 
(4) rjJ (j,m) and rjJ (j,m + n) belong to the same representation for m #0. 
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approach. The spinor representation of the uniaxial group 
Coo [or SO(2)] is characterized by the subgroup condition 

b == 0, (S.l) 

which is equivalent to la I == 1 on account of (2.1 b). Thus, 
from the Euler-Olinde-Rodrigues parametrization (3.4), the 
projective correspondence (3.S), and the representation (3.6) 
we have the following irreducible (vector and projective) re
presentation for C"" , 

Mm[Cz(a)] == exp( - ima), -1T<a,1T, (S.2) 

m == 0, ± ~, ± 1,·· 
with the basis set ifJ (j,m). 

The subgroup condition for the double group C ~ of the 
group Cn is given by 

a 2n == 1. (S.3) 

Thus, there exist 2n irreducible representations given by 

Mm(C~) == exp( - i21Tmk In) (S.4) 

with the bases ifJ (j,m),ifJ (j,m ± n), where m are integers or 
half-integers in the range 

(S.S) 

and 

k == {O, ± 1, ... , ± (n/2 - 1),n/2, for an even n (S.6) 
0, ± 1, ... ± (n - 1)/2, for an odd n 

6. THE GROUP 0 

The subgroup condition for the double group 0 / of the 
octahedral group 0 is given by 

aH == 1 orb H == 1 ora4 ==b 4 = ±!. (6.1) 

In the Appendix, we shall show that these conditions do 
satisfy the group requirements (2.3) and (2.4). It is also a 
trivial matter to show that the order of the group defined by 

T ABLE III. The irreducible Ivector and projective) representations of O. 

o 

r"E 

r4 ,T, 

E,9S I 1TIl), 8S ((211/3)n),6S ((1TI2)n) 

I - I)" sgn(a4 + b 4) 

[
1_ Inlal4 + Ib 14) 

213)'/2a'b' 
213)"

2
a

2
b .'] 

a4 + b 4 

[ 

Re(a' - b ') Imla2 + b 2) - 2 Re(ab )] 

_ Imla2 _ b 2) Rela' + b ') 2 Im(ab ) 

2 Relab *) 2 Im(ab *) aa· - bb· 

the subgroup condition is 48. 
We shall next show by using (2.13) that the ~bgroup 

condition (6.1) indeed leads to the projective set 0 of the 
group O. For this purpose, let us assume for the spinor repre
sentations S (a) of (2.13) to represent binary or threefold or 
fourfold rotations. Then we obtain the following results: 

(a) For binary rotations, S (1m) == U( - in3 , - in l - n2 ), 

we have 

n 1
2 ==1 orn/==l orn/==l or 

(6.2) 

n l
2 == n/ ==! or n/ == n32 == ~ or n/ == n l

2 ==~, 
which define 9 binary rotations, for R (1m) == R ( - 1m). Since 
these are all bilateral, one may place their rotation vectors 
1m'S in the positive hemisphere. 

(b) For threefold rotations, S ((21T13)n) 
== U(~(l - i3 1/2n3 ), - Wn l + n2 )), we have 

n l
2 == n/ == n/ == t, 

which define 8 threefold rotations. 
(c) For fourfold rotations, 

(6.3) 

S((21T14)n) == U(2- 1/2(1 - in 3 ), - 2- 1/2(in, + n2 )), we have 

n/==1 orn/==1 orn/==l, (6.4) 

which define 6 fourfold rotations. 
These axes of rotations together with the unit element E 

indeed define a total of24 elements of the group 0 == ! R (a) l 
and its projective set 0 = ! S (a) l. The projective set given in 
Table III is in accordance with (2.13) so that it preserves the 
class structure of O. The double group 0 / is obviously given 
byO' ==! ±S(a)j. 

Now, we shall construct the irreducible representations 
of the group O. Again, the subgroup conditions (6.1) is very 
effective in obtaining all the general irreducible (vector and 
projective) representations as given in Table III. For exam
ple, E and T2 of Table III are obtained by showing that the 

Bases 

1,6_(3,2) or xyz 

[ - i<P-II,I),i<P+(I,I),<P (1,0)] or (x,y,z) 

[

I - I r Re(a' - b 2) - I - I r Imla2 + b ') 

( - I)" Imla' - b 2) 1_ I)K Re(a' + b 2) 

- 4 Re(ab ') - 4 Imlab ') 

4 Relab"3) ] 
_ 4 Im(ab .3) 

la4 
_ b 4 ) 

Fr"EI/2 

r7 ,E;/, 
rK,Q 

U(a,b) 
A,X Ula,b) 

EX Ula,b )"",E", 

( I) K = 21 ab I: K = 0 if ab = 0; K = I if ab ,.. o. 

[1,6 I~,M (~, - m 
<p_(3,2)[<p (~,~),<p (~, - m 
[1,6 (~,i),<p (M),<p (1' - ~),<P G, - !ll 

(2)S(1TIl)=U(a= -in"b= -in,-n2):n,=lorn2 =lorn3 =I;n,= ±n2=2-'/2orn3= ±n,=2- II',orn,= ±n,=2- II '. 

13) S((21T/3)n) = Uta = ~(l - i(v'3)n3)' b = - 1(in, + n2)): n~ = ni = n; = l' 
(4) S((21T/4)n) = Uta = 2~ "'(1 - in,), b = - 2 -'/'(in, + n 2)): n~ = I or n~ = I or n3 ='\. 
15) r l - rK, the notations used by Koster et al. IRef. 9). 
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TABLE IV. The irreducible (vector and projective) representations of T. 

T E,3S(1TO),8S((21T/3)n) Bases 

r,.A I lor t,6_(3,2) or xyz 
r"B, ( _! + i2(3)'/2a2b ') K 2 -1/2[t,6 (2,0) + it,6 + (2,2)] or 

2-'/2(U + iv) 
r 3,B, ( _! _ i2(3)'I'a'b ')K 2-'12[t,6 (2,0) - it,6+(2,2)] or 

2-'I2(U - iv) 
r 4 ,T T,ofO ( - it,6 _( 1,1),it,6 +( I, 1),t,6 (1,0)) 

or (it,6+(2,1),;t,6_(2,1),t,6_(2,2)) 
or (x,y,z) or (yz,zx,xy) 

rs,El/' U(a,b) (t,6 (!,!),t,6 (~, - !II 
r6 ,Eil2 B,XU(a,b) 2 - 1/'(u + iv) X (t,6 (!,!),t,6 (!, - !II 
r 7,E;;, B,X U(a,b) 2- '/ '(U - iv)X(t,6 (!,!),t,6 (!, - HI 

(I)K=2Iabl· 
(2) u = 3z' - r-',v = 3'I2(x' - i). 
(3) S(1TO) = Uta = - in3, b = - in, - n,); n l = lor n, = I or n3 = I. 
(4)S((21T/3)n) = Uta = !(I - i3 1/'n3),b = - ~(inl + n2));ni = n~ = n~ = t. 
(5) r, - r7 ; the notations used by Koster et al. (Ref. 9). 

condition (6.1) reduces the five-dimensional spinor space 
spanned by (4) (2,m );m = 2,1,0, - 1, - 2 J into two- and 
three-dimensional invariant subspaces. The bases sets given 
in terms of x, y, and z in Table III are spherical harmonics 
belonging to exactly the same representations as the spinor 
bases (not just up to a similarity transformation). We have 
given only the most elementary basis sets for each irreducible 
representation. If necessary, additional basis sets based on 
spherical harmonics can easily be obtained by the method 
recently introduced by the author. 8 This method is different 
from the ordinary projection operator method. It uses the 
elementary basis sets instead of their irreducible 
representations. 

7. THE GROUP T 

This group is a subgroup of O. Proceeding as in the case 
of the spinor representation of 0, we can show that the dou
ble group T' of the tetrahedral group Tis characterized by 
the subgroup condition, 

a4 = 1 or b 4 = 1 or a4 = b 4 = - A, (7.1) 

imposed on U (a,b )ESU(2). The projective set T = (S (a) I of 
T = (R (all is given by the unit element U (1,0) and 
(a) threeS(1TJl) = U( - in 3 , - in , - n2)'s with 

n,=1 orn2 =1 orn]=I, (7.2) 

(b) eight S((21T/3)n) = U(~(1 - i3 '/2n3) - ~(int + n2))'s with 

n/ = n/ = n/ = t. (7.3) 

The irreducible representations of T given in Table IV 
are obtained by reducing those of 0 given in Table III. In 
fact, by using the subgroup conditions (7.1) one can easily 
show that 

A I.A 2-+A , E-+BI +B2' 

T
"

T2-+T, (7.4) 

E3/2 r;;;,fE XEI/ 2-+B t XEI/ 2 +B2 XEI/ 2' 

8. CONCLUDING REMARKS 

We have constructed the proper point groups D 00 ,Dn , 
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Coo, Cn , 0, and T and their general irreducible (vector and 
projective) representations by imposing simple polynomial 
equations on the matrix elements of 2 X 2 unitary matrices 
U (a,b ) with determinant 1. In the forthcoming paper we shall 
discuss the icosahedral group I which is the only finite prop
er point group that is not discussed in the present work. 

Ifwe know all the proper finite point groups GR 's, one 
can also construct all the improper finite point groups in a 
simple and well-defined manner on account of a well known 
theorem (see Ref. 6, p. 341). According to this theorem, an 
improper finite point group OR takes one of the following 
two forms: 

(a) OR = (P,JP' I, where J is the inversion, P is a sub
group of index 2 in a proper point group GR , and 
P' = GR -Po 

(b) OR = (GR ,JGR J, the direct product of the group of 
inversion GJ = (E,J J and a proper point group GR' 
In case (a), OR is isomorphic to GR' Hence, the irreducible 
representations of OR and their spin or bases are the same as 
those of GR , since the inversion J leaves the spinor bases 
invariant. In case (b) theJ>rojective set of OR be taken as 
GR = (Gs,JGs J where Gs is the projective set of GR' Thus, 
all the irreducible (vector and projective) representations of 
GR follow from thoseofGR and thoseofJ(see Refs. 2 and 5). 

One may also state that the present results are more 
than sufficient to produce all the irreducible representations 
of the 32 point groups. 
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APPENDIX 

We shall show that the set of condition (6.1) satisfies the 
group requirements (i)-(iv) given by (2.3) and (2.4). For this 
purpose, it is convenient to restate (6.1) as follows, combin
ing with (2.1 b), 

ifab=0,a8 = 1 orb 8 = 1, (AI) 

ifab #0, a4 = b 4 = ±!. (A2) 

The proof will be given only for (iii) of(2.3) since the proof for 
the rest is trivial. It is to show that when (at,b l) and (a 2 ,b2 ) 

satisfy (AI) or (A2), so does the set (a,b) defined by 

a=a l a2 -btb!, b=a lb2 +b ta!. (A3) 

When anyone of the two sets (al,b t) and (a 2,b2 ) satisfies (AI), 
one can easily show that (a,b) satisfies (AI) or (A2). Thus we 
are left with the case 

a l
4 = b l

4 = a2
4 = b2

4 = ± A. (A4) 

Let x = a la 2/(b lb!) then X4 = 1. Since one can write 

a4 =a I
4a24(x-I)4, b 4 =a I

4a/(x+ 1)4, (A5) 

we have a8 = 1 or b 8 = 1 or a4 = b 4 = ± A (Q.E.D.). 
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We discuss a convenient way of parametrizing certain finite groups. They comprise groups with 
abelian normal subgroups and central extensions thereof; they include the groups D n , T, 0, and 
their double groups, as well as the SU(3) subgroups Tn,..d (3n 2 ),..d (6n 2 ), ~ (72), ~ (216), ~ (36) and 
their Z3-extensions. The method allows for a rapid calculation of representations and coupling 
coefficients; in particular, it solves the "multiplicity problem" of nons imply reducible groups. We 
illustrate the method treating the Hessian group ~ (216) and its central extension. 

PACS numbers: 02.20. + b 

I. INTRODUCTION 

For physical applications of finite groups it is important 
to have a good way of parametrizing their elements, which 
allows for convenient formulae for representations, 
Clebsch-Gordan coefficients, and other quantities. In recent 
papers 1-4 we have developed a convenient procedure for han
dling certain finite groups. As main results we derived ana
lytic formulae for the group product rule, matrix elements of 
representations, and, most interesting, Clebsch-Gordan co
efficients. In particular, this procedure led to a natural solu
tion of the "multiplicity problem," that is, of the question 
how to label the several equivalent irreducible representa
tions occurring in the Clebsch-Gordan series of a nonsimply 
reducible group. The groups investigated so far are the 
groups .9(n) and Q (n) (Zn -central extensions of Zn ® Zn)' 1 

the Z-metacyclic groups,2 including the dihedral groups D n 

as SU(2) subgroups and the "trihedral" groups Tn as SU(3) 
subgroups,3 the double dihedral groups Dn *, the sequences 
..d (3n 2

) and..d (6n 2
) as SU(3) subgroups,3.5 including the tetra

hedral group T and the octhedral group 0~S4 and their 
double groups T* and 0 *, respectively.4 

In this paper we wish to explain our method in more 
detail and indicate what types of finite groups can be treated 
this way. We will show that the groups best treatable are 
those which have an abelian normal subgroups and are semi
direct (or "almost" semidirect; see Sec. II for an explanation) 
products of this normal subgroup with its factor group. Then 
the method works straightforwardly, if representations, etc. 
of the factor group are known. Of course, it is desirable to 
treat the factor group by the same method. 

At the expense of less transparent results (and more 
work), the above requirements can be considerably weak
ened. In particular, the method is also applicable to central 
extensions of the groups mentioned above, for instance, if the 
normal subgroup is a central extension of an abelian group. 
As an illuminating example for both cases, we will apply the 
method to the Hessian groupo of order 216 (and its sub
groups of order 72 and 36, respectively) and to their Zr 
central extensions. All these groups are SU(3) subgroups5.7; 
in fact, all subgroups ofSU(3) are either covered by the pre
sent method or are simple. 

"'Supported by Studienstiftung des deutschen Volkes. 

We hasten to add that we do not involve new mathemat
ical concepts here. Rather, we show that known mathemat
ical procedures lead to eminently practical ways for han
dling many finite groups. 

The remainder of this paper is organized as follows. In 
Sec. II we explain how the groups are parametrized and how 
one finds representations. Section III contains a detailed 
treatment of the Hessian group and its subgroups; in Sec. IV 
we treat the Z~-extension. 

II. DESCRIPTION OF THE METHOD 

The basic idea in our treatment of finite groups is to 
parametrize the group in terms of abelian subgroups. This 
means we label any element of the group by indices which 
take values in some abelian group and express the product of 
the group elements as a function of their indices: 

(2.1 ) 

As long as the functionsJ; are reasonable [necessary condi
tions such as the associativity of (2.1) and the existence of an 
inverse element restrict theJ; considerably], this way of ex
pressing the product offers sizeable advantages over group 
tables in most calculations. It is even more useful if one is 
able to express the representations and their matrix elements 
in a similar way as functions of abelian group parameters: 

(2.2) 

where the parameters iy label the representations and the ri , 

r; the basis vectors; and they take values from the abelian 
groups used to parametrize the group. Equation (2.2) is espe
cially suitable for evaluating Clebsch-Gordan coefficients or 
similar constructions. To do this, one has to perform sums 
over the group manifold, and they are far easier done as 
multiple sums of the respective parameter ranges. In all 
groups treated so far this way, the multiplicity problem of 
nonsimply reducible groups is solved automatically as a con
sequence of the parametrization. 1-4 

How does one find the most suitable abelian parametri
zation for a given group? The first thing to do is to find 
normal subgroups (NSG) and corresponding factor groups 
(FG) (if a group has no proper NSG, e.g., is simple, the meth
od is not applicable). There may be several NSG's, and we 
will, in principle, first look at the smallest one. In practice, 
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however, it is not necessary to start with the smallest one. Let 
the starting NSG be N and the corresponding factor group 
GINbeF. 

The simplest possibility is (beside trivial factorization) 
that G = NsF, s denoting the semidirect product. In this 
case we can label the group elements by 

G 3 gl3; aEF, (3EN 

with the group rule 

(2.3) 

where M is a mapping F---+Aut(N) and can be regarded as a 
representation of F over the group N. 

The method works best (almost trivially) if N is abelian; 
among the cases considered so far are N = Z n , N = Z n ® Z n 
(and its central extensions, see below). 1.4 Generalizations to 
N = Zn ® Zn'" ® Zn (k times) and central extensions thereof 
are straightforward. In this case one identifies the group al
gebra of N with the K-dimensional module over the ring Zn 
and gives M (a) in matrix form. Further simplifications al
ways occur when n is prime, for then Zn is a field and Zn k a 
vector space. Easy cases are given if Facts transitively on this 
vector space (transitivity means that there are only two or
bits of F in N, namely (0 I, consisting of the identity of Nand 
one other orbit containing all other elements). The orbit! (3 I 
of Fin N defined as the set of elements (3' for which 
(3' = M (a)f3 for some aEF. If N is a central extension of the 
group Zn ® Zn ® ... ® Zn (k times) and if G is an "almost" 
semidirect product of N with F (see below for a definition), 
one can still apply the procedure. Let us write 
N = Z/ o((Zn ) k) for the I-central extension of Zn \ and para
metrize the elements of Nby 

n(3.i' (3E(ZJ, iEZ/. 

The group rule for N can now be written as 

n(3,i·n (3'.i' = nIl + (3',i + i' + ((3,(3')' (2.4) 

where (, ) is some quadratic form in Zn k. Now, if M(a) is 
unitary, i.e" (M (a)(3, M (a)(3') = ((3,(3') for all aEF, the rule 
for the entire group G takes the form 

a a' ".a.a' 
g(3,i·g(3';i' = 5(3 + M(a)(3',i + i' + ((3, M(a)(3') +/(a,a'I' (2,5) 

wheref(a,a') is a function which may be necessary in order 
to obtain the correct group rule. We will call departures from 
the semidirect product rule such as the additional term 
f(a,a') almost semi direct products. They produce no further 
difficulties and result in additional phases in the repreenta
tions only,4 If M (a) is not unitary under ( , ), (2,5) is not asso
ciative. To render it so, one might reparametrize N such that 
the new form ( , ) - is invariant under M or add correction 
terms; an example is 0 *.4 

To take full advantage of the method, one analyzes the 
FG F in the same way as G, and so on. At the end of the 
procedure one has the decomposition (provided the group 
allows for it!) 

G = N l o(N2o ... oN l oF) ... ), 

where the Ni are abelian, or central extensions of abelian 
groups and F simple. (As mentioned before, it is not always 
practical to go all the way in the decomposition of G; often 
several NSG's or big FG's are already known and can be 
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used,) G is now parametrized by indices (3i from the Ni and 
aEF, and the product rule is 

Here we have written only a semidirect product, but general
izations of the type indicated in Eq. (2,5) can be included, At 
this stage, G is fully described. 

Equation (2,6) is now very helpful in deriving the repre
sentations, Take first a group G with abelian NSG N (such as 
Zn k) and assume the representations ofF = GIN are known. 
Equation (2,6) now reduces to Eq, (2.3); the representations 
of G are now found trivially, using the method of induced 
representations.x In this formulation ofG it is extremely easy 
to use, and one is, in fact, led to it automatically. 

We label the basis vectors of a representation space by 
indices taken from N. It is straightforward to see that 

T(g:;): T(g")e _UJb.M '(al(3e_ 
... (3 b - M '(alb (2.7) 

(where UJ = e2m1n, (3,bEZ Z; M denotes the transpose of M 
and the dot the ordinary scalar product) is a representation 
of G. Such a T is reducible and not a complete system of 
representations. To reduce it, we must find the minimal in
variant subspaces of M (a) in N, which are, of course, the 
orbits of Fin N. Once the orbits are calculated, a set of repre
sentatives of each orbit may be selected to label the represen
tations of the form (2.7). Let R be this set. The basis vectors of 
the representation T', rER, can then be labelled by e,W(al" 

Obviously, the number of basis vectors in the representation 
T' (its dimension) is equal to the number of elements in the 
orbit! rj. 

All representations of G are now found by taking the 
tensor products of the representations T' and the represen
tations of the little group of ! r I (the little group of ! r j is that 
subgroup of F which leaves r fixed). 

If N is not abelian (and G is not just a semidirect prod
uct), but a central extension of an abelian group, with a prod
uct rule of the form (2.5), we cannot give such an easy pre
scription. In this case, one must first find the representations 
ofN. 

These representations are then used to construct one 
faithful representations ofG of the same dimension as that of 
the representation of N. This is the only difficult step. All 
other representations are then given as tensor products of 
these representations and representations of F. The proce
dure will be exemplified in Sec. IV. 

From the irreducible representations obtained this way, 
one may calculate Clebsch-Gordan coefficients using stan
dard methods. 9 Due to our parametrization, performing 
sums over the group is simplified. The resulting expressions 
are very transparent; in all cases considered we have always 
been able to label several identical representations occurring 
in a Clebsch-Gordan series (multiplicity problem) in a natu
ral and self-suggesting way.IO We consider this an important 
indication of the advantages of our method. 

III. THE HESSIAN GROUP .1'(216) 

The intention of this and the following section is two
fold. First we will use a rather complicatedly structured 
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group as an illustration of the method outlined in the pre
ceeding section. Second, we will treat a group which is possi
bly important for applications. We will thereby complete our 
treatment of the finite SU(3) subgroups3 (the remaining sub
groups are simple). 7 

The Hessian group is generated by the two elements T 
and U satisfying6 

T3 = U 3 = (TU)4 = 1, (TUTfU = U(TUT)2. (3.1) 

As is known,5 this group possesses an abelian normal sub
group of order 9 and factor group T * of order 24. Starting 
from this, one finds that ~ (216) can be decomposed as 

~(216) = (Z3 ®Z3) s T* = (Z3 ®Z3) s (Q s Z3) 

= (Z3 ® Z3) s (Zzo(Zz ® Zz) s Z3)' 

Here, ® is the direct, s is the semidirect product, ° what we 
termed almost semidirect product [see the previous section, 
after Eq. (2.5)], Q is the quaterion group, and we have used 
the fact that T* = Q S Z3. 4 Following Sec. II, we label the 
elements of the Hessian group by six indices: 

g
E.a. y 
T , {

a, /3,yEZz, 

~,1'I,1'2EZ3' 
(3.2) 

The indices ~, a, y label the factor group T *, for which the 
product rule is4 

gE.a.Y.gE',a',y = gE + E'.a + Mia',y + y' + (a,M;a'l, (3.3) 

with M z = t: ~) and (a,a') = aa' + /3/3' + a/3'. 
In order to find the rule for the whole group, we have to 

find a two-dimensional representation of T * over Z3' Some 
inspection shows that the following works: 

R (~,a,y) = pf3Q"( - WM~, 

with 

Q= (
-1 

1 
- 1) _ (- 1 

0' M3 - 1 

As matrices with entries in Z3 they satisfy 

Q z = P z = _ JR, M) = JR, PQ = - QP, 

MQ = PQM, MP = QM, (3.5) 
which reflects the product rule (3.2) of T *. Observe, that 
because a, /3EZz' we must keep in mind that 

Q"Q'" = Q,,+a'.( _1)"a', etc. 

The rule for ~ (216) is now 

E',a,y €',a',y' _ E+€',a+Mia'.r+y'+(u,Miu ') 
gT 'gT' - gT + p I3Q"( - WM'T' . (3.6) 

Setting 

and using (3.6) one indeed recovers (3.1). 
From (3.6) one easily obtains the rules for the subgroups 

~ (72) and ~ (36): 

2110 

~ (72) = (Z3 ® Z3) s Q (~=O), 

g
a,y ga'.y' _ ga + a',y + y' + (a,a') 
T • T' - T + pI1Q"( - IjYT ' , 

~ (36) = (Z) ® Z3) s Z4' (~,a 0), 

g
f3,y'gf3',y' = gf3+f3',y+ y' +f3f3' 
T.,.' T+pf3(_1)Y1'" 
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(3.7) 

(3.8) 

The next step of reduction leads to 
~ (18) = (Z3 ® Z3) s Zz, which is isomorphic to D} ® Z3 and 
has been studied before. 2 

Let us now derive the representations of the Hessian 
group. As we already know those of T *, the induced repre
sentation can be written down immediately. 

T * acts transitively on Z3 ® Z3' Thus, there are only two 
orbits, ! (g) I oflength 1 and [(: ) J oflength 8 (the "length" of 
an orbit is the number of its elements). The little group of 
[(g II is, of course, T *, while that one of [n II is Z3' Thus, 
~ (216) has as its representation those of T* and three eight
dimensional ones. The first ones are 

( [(
0 i)f3( - i 

X 0",1 i ° ° 
where m = (g) or (: ), iEZ3, KEZ2 and 

K = 0, i = ° ifm = (: ), 
K = 0,1, i = 0,1,2, ifm = (g), 

ei1r
/

4 
( - 1 r=-

\12 i 

(3.9) 

(3.10) 

The eight-dimensional representations are labelled by the 
representative (: ) and by the Z}-indices k of its little group, 
They are 

[T [(:I,k l( E,a,y)] gT p"Q"( - I (I:),P"Q"I - 1)'(:) 

= (j)kEu/ihQa( In:H - l)"M 'Q"? Or 

XOp"'Qa(_I)'(:),pI'Q"( II'M 'P "Qa(_ln:I' (3.11) 

where A denotes the transpose of A and Aits inverse. Notice 
that Qa = ( _ l)aQ". Thus (3.11) is equal to 

in an obvious notation. 
The corresponding form ulae for ~ (72) and ~ (36) follow 

easily. For ~ (72) the eight-dimensional representation re
mains irreducible; it is given by (3.12) with k =0 and ~=o, 
The representations are just those of Q and are given by I 

[T 1i,j.kl(gu.y)] -0 
T a.b - ko,k Ib + f3) 

X ( - l)klY + ab - la' +f3'I/2) + ia + lf3, (3.13) 

where k = 0,1, and i,j = ° for k = 1 and i,j = 0,1 for k = 0, 
~ (72) is the smallest group with an eight-dimensional 

irreducible representation. II 
For ~ (36), the eight-dimensional representation is no 

longer irreducible, but splits into two four-dimensional ones, 
They correspond to the orbits 

{C)} = {C)( = ~)( - ~)( - ~)}, 
{(~)} = {(~)( - ~)( - ~)(~)} 
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of Z4 in Z3 ® Z3' Thus we have 

[T[tl( gfY) Jp'hl_ l(t.phl- In 
_ phi - WI-( - 1)" '/Jp/J~ " 
- {U -Upb'( ~ t(t,ph + ff( _ l)C + y + (3 t bOt 

(four-dimensional) (3.14) 

T [k,/ I( gf"Y) = i2fll + k 12y + fl') (one-dimensional), 

where t = n), (6), k,/ = 0,1. 

Since the characters are often important in applications, we 
given them in an appendix explicitly. 

IV. THE EXTENDED HESSIAN GROUP (Z3 EXTENSION) 

The Hessian group ~ (216) is not only a subgroup of 
SU(3) but also ofSU(3)1Z3' because the Z3-center is not con
tained in it. One can make it a subgroup ofSU(3) only, by 
adding this Z3-center through a central extension with Z3' 
The resulting group will be denoted by ~ *(216) and is of 
order 648. The same construction can be done with its sub
groups. As shown in Sec. III, ~ (216) is a semidirect product 
of T * with the abelian normal subgroup Z3 ® Z3' In order to 
extend it, we first extendZ3 ® Z3 to Q (3).1 This group is of the 
form Z3 o(Z3 ® Z3)' where ° is the almost semidirect product 
described before. The elements of Q (3) are labelled by g~ k 

with TEZ ~, kEZ3 , and the rule is ' 

(4.1) 

where < T,T'> = TIT; - T2T; .12 The elements go,k form the 
center. 

Q (3) is the normal subgroup of the extended Hessian 
group, with factor group T *. To obtain the multiplication 
rule, first restrict T * to Q [that is, consider the extension of 
~ (72)]. Since the orders of Q and Q (3) have no common prime 
factor, the extended ~ (72) is a semidirect product of Q with 
Q (3) (theorem ofZassenhaus).13 Using the matrices Pand Q 
(and, later on, also M) from the previous sections, the prod
uct rule is 

ga.Yoga·.r' _ ga + a·.y+ Y' + la,a') (42) 
~,k ~',k' - ~+pI3Qal_l)'~'.k+k'+(~,p/JQal_l)Y~')· . 

(4.2) is associative, because P and Q (and also M) are unitary 
with respect to < , >. 

Next we include c. Obviously, the < , > is just changed 
to < ,P flQ a( - l)Y ME>, but one can add codependent terms in 
various ways. We will consider two possibilities, defining 
two different extensions of ~ (216): 

g~:~' Y og~:X: r' 

E + E' + a + M;a',y + y' + (a,Mza') 
= g~ +- p fJQ"1 _ I)YM'~',k + k' + (~,p 13Q"I_ I)YM'~') + KEE'IE + E' + 1)' 

(4.3) 

with K = 0,1. 
The representations are constructed as sketched at the 

end of Sec. II. Q (3) is not abelian; it has twothree-dimension
al and nine one-dimensional representations. They are la
belled by 

3-dim: [O,k], k = 1,2, 

I-dim: [t,O], tEZ~. 

The one-dimensional representations are those of 
Z3 ® Z} and give rise to the ordinary representations of 
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~ (216), given in (3.9)-(3.12); they are not faithful, because all 
elements differing just by the index k have the same 
representations. 

In order to find all other representations, we must find 
the faithful three-dimensional representations based on the 
three-dimensional ones of Q. Then, the representations not 
given as representations of ~ (216) are just the tensor pro
ducts of those of T * with the faithful three-dimensional ones. 
The representations of T* have the dimensions one (three 
times), two (three times), and three (once). Thus there will be 
six three-dimensional, six six-dimensional and two nine-di
mensional representations. They are labelled by the usual T * 
indices and a number k = 1,2. 

Let us denote the representation matrices of the faithful 
three-dimensional representation (k = 1, say) as follows: 

T( llg)O) E T (Olg)l) G 
glg)O =, = glg)O = , 

01~)0 olg)O 
T= (glg)o) =Al' T(gl~)o) = T 1• 

01~)0 olg)O 
T( glg)O ) = A2, T( gl~)O ) = T2, 

T( olg)o) k 2 '/3 
glg)k = 0) 1, 0) = e 1rI , 

(4.4) 

One must determine these matrices such that they satisfy the 
product rule (4.3); for example 

E 3 = 1 (K = 0), E 9 = 1 (K = 1), 

A I
2=A/=G, G 2 =I, T I

3 =T2
3 =1, 

A 1A 2=GAzAl' EA 2=A 1E, T 1T2 =0)2T2T 1• 

However, some care is required when considering the repre

sentation of elements such as g~I)~O, since they are not just 

d f h fi olg)O olg)O f h fi pro ucts 0 t e orm gl~)O ·gl~)O ' but are 0 t e orm 

olg)O olg)O olg)O 
gl~)O ·gl~)O 'glg)2 . 

It is easy to see that the representation of g~i~~O is given by 
Tl a T2 flO) - afl. As for the n indices, no such problem arises. 
Using the known representations of Q (3),1 the above equa
tions determine the matrices in (4.4). After some algebra we 
find 

( 
0)2 W) G 0) :} (e41r119r ~ Al = ;3 0): 

0)2 E=-- 1 
iY/3 1 0) 0) 0)2 

A2 = _1_(: 0) :'} T,~G 0 !} (4.5) 
iy/3 1 0)2 0 

G~(~ 
0 

D T'~(~ 
0 

~) 0 0)2 

1 0 

The three-dimensional representation is then given by 

TllI( gE(:}) = O)k - T,T'T T'T T'G Y A a'A a'E E 
(~:)k I 2 I 2 , 

(4.6) 

while the k = 2 representation is just the complex conjugat
ed one. As mentioned, all representations of the extended 
Hessian group are tensor products of the representations of 
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T * and (4.6) and its conjugate one, along with the representa
tions (3.9)-(3.12) of ~ (216) itself. Formula (4.6) contains, in 
an obvious manner, the representations of the extensions of 
~ (72) and ~ (36). 

From (4.5) we notice that all matrices have determinant 
= 1, except E; in fact, detE = 1 if K = 1, and detE = w, if 

K = 0. Thus, of the two extensions defined by (4.3) only the 
case K = 1 leads to a subgroup ofSU(3). 
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APPENDIX 

In this appendix we give the formulas for the characters 
of the groups ~ (216), ~ (72), and ~ (36) as derived from the 
expressions for the representations in Sec. III. They coincide 
with the tables given by Fairbairn et al. 5 

1.17(216) 

[1:I.k l( •. a.y) _ ~ ~ ~ ~ (8~ :f) X gT - u •. Oua.ou(3.ouy.o UT.O - UT.o 

+ Oa.00(3.00Y.0(0.,IW'j(7t! + 0.,2 W2k/h)) 

+ Oa,00(3.10Y.l (0 •. IW'j(7\ - 72 ) + 0.,2 W2k/(72 - 7d) 

+ Oa,I0(3,OOy.\ (0 •. \W
k
/(7\ + 7 2) + 0.,2 W2k/(7t!) 

+ 0a,I0(3,\Oy,\ (0.,\W k/(7z) + 0 •. 2W2k/(7\ + 7 2)), (AI) 

where 

and 

/(7) = 207 ,0 - 87 •0 

- {O, 
0 7 •0 = 1, 

G,p 

if 7 = 0, 

if 7#0. 

X[OK.l[e ~r(-~ ~rr·Lp +O~] (A2) 

Specialized, this gives 

2112 

X 10.m.o,oJ( g.,a,y) = 0 (30 - 8 ) 
,. €,O (t.0 (t.0 , (A3) 

(A4) 

X [0.0./'/ I( g~.a,y) = ( - 1)Y w i·(20 •. 00a.00(3,O - 0 •. \ + 0 •. 2 ), 

(AS) 
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2.17(72) 

X [I:il( g~'Y) = 0a.00(3.00y.0 (801'.0 - 81'.0), 

X
[O.i.j.kl(ga

T
.y)= 2 ~ ~ ( l)iCl 1 i(3+ky f Uka.O U k(3.0 - , 

where 

- {I, 
k= 

2, 

3.17(36) 

for k = 1, 

for k = 0. 

X IltlJ( g;'y) = 0(3.001'.0(601'.0 + 0TEltl - 20n 'ltl)' 

X [O,k,/ I( g;'y) = i 21(3 + k 121' + (3'1. 

(A6) 

(A7) 

(A8) 

(A9) 
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ones seems to contradict the assumption made there that such a "mini
mal" group should possess only n-dimensional and one·dimensional re
presentations. However, this assumption was made only to find the mini· 
mal number of elements such a group should have, and is sufficient but not 
necessary. A two·dimensional real representation occurring twice in the 
product 8 ® 8 absorbs the same number of states and makes the same 
number of group elements necessary as four one-dimensional 
representations. 
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The Racah algebra for groups with time reversal symmetry.11 
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In a previous paper[J. Math. Phys. 22, 233 (1981)jit was shown that a Racah algebra could be 
developed for groups containing the antilinear operator of time reversal. Here the Ijm and 2jm 
symbols are constructed explicitly, and it is shown that the 3jm symbols may be found in terms of 
those of the linear subgroup. Thus the Racah algebra of these groups is known once the Racah 
algebra of the linear subgroup is known. 

PACS numbers: 02.02.Hj, 03.6S.Fd 

1. INTRODUCTION 

In a previous paper] henceforth denoted as I, we gave 
the elements of the Racah algebra for the compact groups 
with time reversal symmetry using the theory of corepresen
tations. 2 Although the algebra of such a group differs in 
many important respects from that of a linear group, the 
broad sweep remains the same: coupling coefficients and 3jm 
symbols may be found, and both the Wigner-Eckart theo
rem and Racah's lemma hold. 

A compact group G of this type containing both linear 
and antilinear operators has a subgroup H consisting of the 
linear operators only. On restriction to this linear subgroup 
each irreducible corepresentation (ICR) of G becomes a pos
sibly reducible representation of H. It was noted in I that 
according to the three types of irreducible representations of 
H under the Frobenius-Schur classification, there are exact
ly six types ofICR. These ICR's are built up in a very definite 
manner from the IRs of H. 2,3 

In view of this fact that the ICR's of G can be easily 
found once the IR's of H are known, we investigate in this 
paper how the n-jm symbols of G can be found from a knowl
edge of the n-jm symbols of H. Thus we here give prescrip
tions for producing the n-jm symbols and their symmetries 
in G from given symbols and symmetries in H. To achieve 
this in a definite manner, we have found it necessary to take 
specific matrix forms for the time reversal operator e. This in 
turn implies that the IR's of H must be taken in certain stan
dard forms. There is no loss of generality in this as a unitary 
transformation may always be applied to bring these into 
forms which may be commonly used for specific groups. 

In the next section the symmetry properties of the 2jm 
and 3jm symbols of G are given in terms of those of H. An 
interesting result is that in certain cases a 3jm symbol in G 
must possess [21] symmetry even if no such symmetry exists 
in H. Sections 3 and 4 give complete constructions for the 
Ijm and 2jm symbols. In Sec. 5 we deal with the 3jm symbol. 
Due to the large number of cases it is not possible here to give 
exhaustive constructions, so we give a number of examples 
showing the methods involved. A complete list is available 
from the authors. 

alPresent address: Department of Physics, Universiti Pertanian Malaysia, 
Serdang, Selangor. Malaysia. 

2. SYMMETRIZED POWERS OF ICR'S 

In I it was shown that the symmetries of the n-jm sym
bols for a grey group may be found in exactly the same way as 
for a linear group, namely by reducing the representations of 
Sn induced by the permutations ofthe n-jm symbols. Now 
the ICRs of G may be constructed from the IRs of the linear 
subgroup H in a definite manner (Sec. 3 of I), and we may use 
these constructions to relate the symmetries in G to those in 
H. We shall illustrate the method for a few of the more inter
esting cases. 

The symmetry of the 2jm symbol in representation the
ory is intimately related to the Frobenius-Schur invariant 
which classifies the IRs into the first, second and third kinds. 
Let 

Ck = ~ lXdU2) duo 
H H 

For an IR of the first kind, Ck = 1,0 is contained in the 
symmetric product k 181 [2] (or [k 2]), and there is no change in 
the value of the 2jm symbol (k k 0)' m,Om, under transposi
tions. For an IR of the second kind, Ck = - 1,0 and the 
symmetry of the 2jm symbol is undefined. Butler and King4 
have discussed various possibilities for this case of k=l=k *. 

In the grey groups the situation differs in two respects: 
firstly, the multiplicity of 0 inj I8Ij may be higher than one, 
and secondly, every ICR is equivalent to its complex conju
gate. Defining the Frobenius-Schur invariant for grey 
groups by 

Cj = _2_ 1 Xj(u 2
) du, 

IG I H 

it is not hard to show that Cj completely characterizes the 
symmetry. Consider for example an ICR of type (E) which is 

TABLE I. Symmetry types of 0 inj®}. 

Multiplicity of 0 Multiplicity of 0 Frobenius-Schur 
Type ofICR inj ® [2] = [/] inj®[12] = If I invariant 

A 0 I 
B 3 -2 
C 1 1 0 
D 0 -I 
E 3 2 
F 1 0 
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formed from two IR's of the first kind: 

. (k(U) 0) 
](u) = 0 k(u)' 

Then 

Xj(u) = 2xdu) and Xj(u2) = 2Xk(U2). 

The multiplicity m12 ] of 0 inj ® [2] is 

m12 ] = 1 ~ 1 L [Xj(U)]2 + Xj(u
2
) du, 

which, since k is of the first kind, gives 

m12 ] = 3. 

Similarly, the multiplicity m[I'] of 0 inj ® [12] is 

m[I'] = _1_1_ r [Xj(ulf - Xj(u 2) du 
G 1 )H 

=1. 

This rather curious result may be illustrated with grey 
C t treated as a subgroup of grey SU(2). The ICR E' of type 
(E) has couplings to A of 

(3/2)E' ® (3/2)E' -<lA, IA,3aA,3bA, 

and taking the symmetry from the sum ofthej values there 
are three symmetric and one anti symmetric terms. 

The symmetries of the 2jm symbol for all types ofICRs 
are given in Table I. 

Turning now to the 3jm symbol, let us look at the case 
when all threej's are equivalent. Permutations of the 3jm 
symbol generate a representation rj of S3 which may be re
duced to 

rj = m{ I'] [ 13
] EI1 m{3] [3] EI1 m{21 d 21], 

where the Young diagrams have been used to label the IR's 
of S3 and the multiplicities are given by 

nir3 J = _1_ r ([ Xj(uW + 3Xj(u2)Xj(u) + 2Xj(u3)} du, 
31G 1 )H 

m{1'J = _1_ r ([Xj(uW - 3Xj(u2)Xj(u) + 2Xj(u3)}du, 
31G 1 )H 

and 

nir21 J = _2_ r ([Xj(uW - Xj(u3)}du. 
31G 1 )H 

If the ICR is of type (a), thenj(u) = k (u). [The Frobenius
Schur classification is irrelevant for the triple product and so 
it is not necessary to separate this into types (A) or (D).] the 
representation rj is clearly equal to r k' the representation of 
S3 generated by the 3jm symbol of the linear subgroup, and 
so there is no change in these multiplicities. For a type (b) 
ICR, letting 

m73 J = _1_ r {[ xdujp + 3xdu2)xdu) + 2xdu3)} du, 
61H 1 )H 

etc., and Xj(u") = 2xdu"), gives the results 

m{1'] = 4mtl' J + 2mt21 J' 
. k k 

nir3 J = 4m[3 J + 2m[21 J' 

and 
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. k k k 
nir21 J = 2m[l'] + 2m[3] + 6m[21 J 

or 

rj = (4[3] EI12[21])®rk • 

This shows that there must be at least two [21] symmetry 
terms in the permutation matrix of the 3jm symbols. 

The last type of ICR, type (c) has 

. (k(U) 0) 
](u) = 0 k(u)*' 

withk (u)$k (u)*. Thetripleproductj ®j ®jwill give the pro
ducts k ® k ® k, k * ® k * ® k *, k ® k ® k *, and k ® k * ® k *. 
The 3jm symbols for k ® k ® k and k * ® k * ® k * yield equiv
alent representations of S3 (Ref. 5) and as before we may set 
m71" J equal to the multiplicity of [1 3

] in the representation 
generated by k ® k ® k, etc .. Setting mfl' J to be the multiplic
ity of kin k ® [12] and mf2 J to be the multiplicity of kin 
k ® [2] gives 

nirl' J = 2mfl' J + 2mfl' J' 
. k k 

nir3 J = 2m[3] + 2m[2 J' 

and 
. k k k 

nir21] = 2m[21 J + 2m[I' J + 2m[2 i' 

showing that if k is contained in k ® k then again we must 
have the mixed symmetry term [21]. 

In a similar manner the symmetries whenjl i2$j3 
may be found in terms of the symmetries of the linear sub
group. These are given in Table II. When none ofjl,j2' andj3 
are equivalent the symmetry may be chosen arbitrarily. 

3. THE 1jm SYMBOL 

The Ijm symbol (Ref. 5) is defined to be the matrix 
which transforms an ICR to its complex conjugate. It was 
shown in Ref. I Sec. 6 that although this matrix is not neces
sarily unique, the time reversal operator may always be used: 

j(u) = j(8 )j(u)*j(8 )-1 andj(a) = j(8 )j(a)*j(8 )-1*. 

Thus the problem reduces to finding a matrix form ofj(8). 
Some discussion in Ref. 1 was given to block diagonalizing 
j(8) but it turns out that this is not a particularly useful form 
and that it is better to find the Ijm symbol in H and extend it 
to G. This may be done explicitly for IR's of the first and 
second kinds by a suitable standardization of the IR 

TABLE II. Symmetry structure Fid", of the 3im tensor (j,i,i2) in terms of 

the symmetry structure Fk",k, of the tensor (k,k ,kz) of the linear subgroup. 

® is the inner direct product, 0 the outer direct product. 

(a) (a) (a) 

(a) (a) (b) 

(a) (a) (c) 

(b) (b) (a) 
(b) (b) (b) 

(b) (b) (c) 

(c) (c) (a) 

(c) (c) (b) 

(c) (c) (c) 

F k "". 

2F"k,k. 
2Fk,k,k. 
(3[2] Ell [12]) ® F"", 
(6[2] EIl2[IZ]) ® F""k. 
(6[2] Ell 2[12]) ® Fk",k 

2[2] ® rk,k,. EIl2[1]0F ", f' 

4[2] ® F"k,k. EIl4[1]0F k" f' 

2[2] ® r"k,k, Ell 2[2] ® Fk,k, k r EIl4[1]0F"kfk. 
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matrices. 
An IR of the first kind is equivalent to its conjugate and 

also to a real representation. Choose this real form: 

k(u) = k (u)*. 

An irreducible representation of the second kind is equiv
alent to its conjugate but not to a real representation. A suit
able form is 

with 

k(u)=(~ -~)k(U)*( _~ ~), 
with each block square. This may be obtained from the form 
given by Wybourne6 by a permutation of the basis vectors. 

For an IR ofthe third kind we make the obvious choice: 
if k is represented by k (u) then the complex conjugate k * is 
represented by k (u)*. 

These standardizations may be combined with the re
sults of Bradley and Davies, 3 Sec. 2.4, to fixj(O) to within 
phase. Since, however, under a change of basis 
f(O) = Pj(O )p*-I, this phase may be chosen arbitrarily and 
we choose the following as the various kinds of ICR: 

type (A)j(u) = k (u) andj(O) = I, 

type (B) j(u) = (k (u) 0) 
o k(u) 

and 

j(O)~V 
0 0 

~} 0 -I 

-I 0 

0 0 

type (C) j(u) = (k bU
) k (~)*) and j(O) = (~ 

type (D) j(u) = k (u) and j(O) = ( _ ~ ~), 

type (E) j(u) = (k bU
) k ~u)) and j(O) = ( _ ~ 

type (F) j(u) = (kb
U

) k(~)*) and j(O) = (~ 

and 

2115 

o 
I 

o 
o 

JlO)' ~u 

o 
o 
I 

o 

0 

0 

-I 

0 

0 

-I 

0 

0 ~} 

o 
-if 

o 
o 
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~) , 

o 
o 
if 

o 

in which the Ijm symbol is given explicitly. The Ij symmetry 
t/>j upon interchange of the m values is trivially found from 
this. 

4. THE 2jm SYMBOL 

Using the conventions of the previous section the 2jm 
symbol7 may easily be constructed by use of Eq. (7.9) of I 

( 'O·)r =[.]- 1/28. [ffl3 ] <J'O!J')rm, J ] ffl
1
0m

2 
J m 4 m 1 mID' 

m2 

where [ m, m, ] = j(O )-1 and the coupling coefficients are 
given in Sec. 7 of I. Whereas in representation theory there is 
essentially only one coupling coefficient, in corepresentation 
theory there may be up to four. Each row of the 2jm symbol 
may be found separately and after checking orthogonality 
between rows the complete symbol may be found. It turns 
out to be already in symmetrized form. 

I 

type (A): (jO!j) =I and j(O)-1 =1. 

Now (jO!j) isa [Jl by [Jl matrix, asisj(O)- t, whereas (j 0 j) 
is one by UY The 8 term "smears" the product on the right 
as we illustrate by the case [Jl = 2. We have 

the only non vanishing term occurs when ffl3 = m4 = 1 so 

(j OJ)1101 =2- 1/2. 

Similarly, 

(j OJ)1201 = (j OJ)1102 = 0 

and 

(j OJ)1202 = 2- 112. 

Thus 

(j OJ)1 m,Om, = 2- 112(1 0 0 1)1 m,Om, . 

The general case when [Jl = n follows similarly as 

(j OJ)lm,Om, = U]-1/2(E IE 2···En )lm,om, ' 

where E j is an elementary row vector with n columns and a 
one in the ith position and zeros elsewhere. 

type (B): 

o 
o 
o 
- iI 

- iI 
o 
o 
o 

~iI) (~ o ,or I 

o 0 

o 
o 
o 
I 

-I 

o 
o 
o 

where the coupling coefficients drawn from I Sec. 7 have had 
their block size adjusted to conform to the block size of 
j( 0 ) - I. A construction similar to the last applied to each of 
the four coupling coefficients gives the four rows of the 2jm 
symbol, which may be combined as 
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(j OJ)' m,Om, = 
101 102 103 104 201 202 203 204 

1J1-{ 
-E 0 0 E 0 0 0 

iE 0 0 -iE 0 0 0 

0 0 -iE 0 0 iE 0 
0 0 E 0 0 -E 0 

withE as the row vector (E I,E2, ... ,En ). The block structure of 
the m values is shown along the top from which it is found 
that the first three rows possess [12] symmetry and the last 
[2] symmetry as required. 

type (C): (j01l> = (~ ~) or (~iI ~) 
and 

to give 

101 102 201 202 

( 'O')r =[.]-1/2(0 J If m,Om, J 
o 

-iE iE 

E E ~ )' 
with the first row antisymmetric and the second symmetric. 

type (D):(j0lj) = (~ ~) and j(e)-I = e -J, 
giving one antisymmetric row 

101 

( . 0 ')1 U']-1/2( 0 ) J mIOm_,= 

type (E): (j0il) = (~ ~), 

(
-if 0) ( 0 
o if' -if 

and j(e)-I = (~ 
yielding 

(j 0 j);",Om, 

101 

~ UJ-"( ~ 
-iE 

E 

102 

-E 

iE 

0 

0 

102 201 202 

201 202 

) E 0 

iE 0 

0 iE 

0 E m\Onl~ 

The first row is antisymmetric and the other three 
symmetric. 

Here 

jl ® j2 ® j](u) 

(k2(U) 0) (k3(U) ) 
= k1(u) ® 0 k2(U)* ® 0 k3(U)* 

301 302 303 304 401 402 403 404 

0 0 0 -E 0 0 E O} 0 0 0 -iE 0 0 iE 

; .0. 0 -iE 0 0 iE 0 0 
0 -E 0 0 E 0 0 

(/ 0/) or (-Oi/ /0./) type (F): (j01 j) = 0 

from which, 

(j 0 j)'m,om, 

101 102 201 202 

= U]-1/2 (~ -iE -iE 

~) m,Om, E -E 

where the first row is symmetric and the second 
antisymmetric. 

5. THE 3jm SYMBOL 

We have seen in the last two sections how the Ijm and 
2jm symbols may be constructed explicitly. In considering 
the 3jm symbol, however, there are such a large number of 
cases that it is not possible to deal with them all here. We give 
a number of examples illustrating the methods and the prob
lems which arise. A complete list of constructions is 
available. 

Example l:jl,j2' and), all of type (A). 
This is the simplest case, for j(e) = / and on descent to 

the linear subgroup H there is no branching. Suppose P re
duces the triple product in G: 

jl ® j2 ®),(u) = P *7PtB .... 

and 

jl ®j2 ®j3(a)=P*lp*tB····, 

or more conveniently, 

and 

(5.1) 

(5.2) 

where the number of rows of Pequals the multiplicity of 0 in 
jl ® j2 ®), and the number of columns is [JI] X [j2] X [J3]' 
From Eq. (5.1), sincejdu) = kl(u) etc., Pmust also reduce 
k I ® k2 ® k, and hence is a 3jm symbol of H. By setting 
a = e in the second equation we find P = P *. Thus any real 
3jm symbol of H is also a 3jm symbol of G. 

Example 2:jl of type (A),j2 and), of type (C). 

= 
(

kl ® k2~0® k3(U) 0 0 0) 
kl®k2®kt(u) 0 0 

o kl®k~®k3(U) 0 

o 0 kl®k~®kt(u) 

(5.3) 
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and 

o 
o 
1 
o 

o 
1 

o 
o 

(5.4) 

There are two relevant 3jm symbols of H: PI which reduces k I ® k2 ® k3 [with P r reducing k I X k ~ X k TJ and P2 which 
reduces k I X k2 X k T [with P ~ reducing k I ® k ~ ® k3J· From the linear equation a trial value for P would be 

p* 
2 

but Eq. (5.4) mixes the first and last rows and also the second and third rows, and a little experimentation shows thatPmay be 
taken as 

o o 

(5.5) 

o 
Note that there are no restrictions on the choice of PI and P2 so this is one ofthe easiest cases to construct. 

Example 3:jl andj2 of type (A),j3 of type (B). We have 

. . (k 1 ®k2®k3(u) 0 ) 
jl ®h ®h(u)= 0 kl®k2®k3(U) 

(5.6) 

and 

jl ®j2 ®iJ(B)=(_~ ~, (5.7) 

where 

J=( 0 1). 
-1 0 

(5.8) 

Now the multiplicity of 0 in kl ® k2 ® k3 is even4 and [k3J is even, so the matrix PI which reduces kl ® k2 ® k3 may be written as 

PI = ~:) = (;: ;:) 

and with the standardization of k3 we also have 

P = ( PI P2) 
I -p~ pf 

(5.9) 

or that 

P~ = PT and P3J = - P~. (5.10) 

The reason for this particular choice is as follows: from Table I of I, the multiplicity ofj3 injl ® j2 is exactly one-half the 
multiplicity of k3 in k I ® k2 and the multiplicity of 0 inj3 ®j3 is four. Equation (7.13) ofI which gives the 3jm symbol in terms of 
the two sets of coupling coefficients implies that that we should look for a 4 X 2 block structure of the 3jm symbol rather than a 
2 X 2 block structure as suggested by Eq. (5.6) and that each block row should be made up of P2 and P3• As the 3jm symbol must 
also reduce Eq. (5.7) a relation between P2 , P3 , and J is required, of the form of Eq. (5.10). After these preliminaries it is 
straightforward to verify that P may be taken as 

(5.11) 
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This comparative complexity seems to be shared by all couplings involving an IR of the second kind due to the form ofthe 
matrix which gives equivalence to the conjugate. We conclude this section with probably the most extreme case: 

Example 4:jl = j2 = j3 of type (B). Here 

(

k®k®k(U) 0 ) 
j®j®j(u) = k®k®k(u) ••• 

o k®k®k(u) 
is an 8 X 8 block matrix, and 

j®j®j(e) 

= 

o 

(5.12) 

(5.13) 

o 
Again themultiplicityofOink ® k ® k is even and now [k] X [k] X [k] is divisible by eight. Thus PI which reducesk ® k ® kmay 
be written as 

PI = (;:) = (;: 
P2 P3 P4 Ps P6 P7 Ps) 
PIO PII PI2 PI3 PI4 PIS PI6 

It is straightforward but tedious to verify that, similar to the last example, we may choose P3 to satisfy 

P2(J®J®J) = PT and P3(J®J®J) = - P!. (5.14) 

If each block row is to be constructed from P2 and P3 we shall need sixteen such rows, with eight block columns. There is an 
additional complication, for from Sec. 2, rj = (4[3] + 2[21]) ® r k where rj and r k are the S3 symmetries of the 3jm symbols 
in each group. Taking these into account and using the permutation matrices for [21] of Butlers or Hamermeshs gives, with the 
block labelling at the top and the symmetry structure down the side 

111 112 121 122 211 212 221 222 
P2/y2 0 0 0 0 0 0 P3/v2 

~ [3] ® r, P,/y2 0 0 0 0 0 0 -P2/y2 

iP2/y2 0 0 0 0 0 0 - iP3/y2 f [3] ® r, 
iP~/y2 0 0 0 0 0 0 iP2/v2 

0 P2/y6 Pzly6 -P3/y6 P2/y6 -P3/y6 -P3/y60 f [3] ® r, 
0 P3/y6 P3/y6 P2/y6 P3/y6 P2/y6 P2/y6 0 

0 iP2/y6 iP2/y6 iP3/y6 iP2/y6 iP31v6 iP3/y6 0 f [3] ® r, 0 iP3/y6 iP3/y6 - iP2/y6 iP3/y6 - iP2/y6 - iP2/y6 0 
P= 0 P2/y3 -P2/2y3 P3/2y3 -P2/2y3 i 1 [21] @T, 

P3/2y3 -P3/y3 0 
0 P3/y3 -P312y3 -P2/2y3 -P3/2y3 -P2/2y3 P2/y3 0 

0 0 P2/2 P3/2 -P2/2 -P3/2 0 0 
0 0 P3/2 -P2/2 -P3/2 -P2/2 0 0 

0 iP2/y3 - iP212y3 - iP3/2y3 - iP2/2y3 - iP312y3 iP3/y3 0 ! 1[21] or, 
0 iJ\/y3 - iP3/2y3 iP2/2y3 -iP3/2y3 iP2/2v3 -iP2/y30 

0 0 iP2/2 - iP3/2 - iPzl2 iP3/2 0 0 
0 0 iP3/2 iP212 - iP3/2 - iP2/2 0 0 (5.15) 

It hoped that these examples are sufficient to show the 
problems which arise and their method of solution. 

the linear subgroup. This means that we do not have to start 
from scratch if time reversal is added to a particular linear 
group, which should give a great saving in computations. 
This is of course not the only way of finding these symbols
tables are available from the authors of 3jm symbols and 
some 6j and isoscalar symbols for the grey double point 

6. CONCLUSION 

The examples of the last section show how we can ex
press the n-jm symbols of a grey group in terms of those of 
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groups which were calculated using descent in symmetry 
from grey SU(2). 

The coupling coefficient has not been dealt with explic
itly, but it can be constructed in much the same way as the 
3jm symbol. 
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The connection between Bessel series and SU(2) is reviewed from the standpoint of the outer 
multiplicity problem for this group. Its extension to any complex semisimple Lie algebras allows 
one to introduce new objects called "generalized Bessel series." Some applications concerning the 
special function theory (addition theorems) are given. 

PACS numbers: 02.20.Sv, 02.20.Qs, 02.30.Gp, 02.30.Lt 

In this work we generalize the connection that exists 
between Bessel functions and the representations of certain 
Lie groups. 

In this first place one notices that the Bessel series coef
ficients I are, to within a factorial, the multiplicities of the 
unitary irreducible representations (UIR) of SU(2) in the 
Clebsch-Gordan (CG) decomposition of the successive ten
sor powers of the fundamental representation of the group. 
This is brought out by means of the generating function 
exp(ik·r). Indeed, ik'r = ikr cose = 2ikrx (e), where X is the 
character of the SU(2) fundamental representation. 

The generalization then becomes apparent. 2.3 We intro
duce for all semisimple compact Lie group G a generating 
function expzx", (g) where gEG and X'" is the character of a 
UIRA of this group, and we define a generalized Bessel func
tion associated with G as the Fourier coefficient of the ex
pansion of this exponential on the XI' basis. In fact, one can 
do without the Weyl "unitarian trick,,4 by examining the 
problem in Z[P] (and its extension Q[P]) which is the algebra 
of the weight group P of a semisimple Lie algebra g.3.4 

The physicist can exploit the formula thus established 
in two ways since: 

(1) It is of interest to have a general formula for certain 
outer multiplicities in the reduction of certain tensor pro
ducts (whether it be in problems concerned with unitary 
symmetries in particle physics or in problems originating in 
couplings in nuclear, atomic, or molecular physics). As an 
example, we give here the multiplicities of the UIR's ofSU(n) 
in the CG decomposition of any tensor power of a certain 
fundamental representation of this group [in the SU(3) case, 
that called "quark" or its conjugate "antiquark"]. Another 
example concerning Spin (5) is given. 

(2) Besides, we generalize certain addition theorems met 
with in special function theory, especially those relating to 
solid harmonics with decentered argument and used for in
stance in many-body problems in which appear potentials 
with spherical symmetry. This generalization consists in ex
panding matrix elements /fl ImJ" (x' + x'ln m' of finite ana
lytic irreducible linear representations of G L (n,q, where x', 
x", x' + x"EGL(n,C).5 

Actually it can be shown that a broad category of addi
tion theorems can be expressed in this way (provided some 

alLaboratoire "Matiere et Rayonnement" associe au C. N. R. S. 

analytic continuation on the indices are made in many cases). 

I. INTRODUCTION 

Let us consider the following formula, drawn from the 
special function machinery I: 

+00 
expab=(a12)-J.T(A) I (A+n)I", Ln(a)C;(b), 

n=O 

where C; is a Gegenbauer polynomial and I,. a modified 
Bessel function. 

(1) 

Let x be a nonsingular 2 X 2 complex matrix. We can 
verify that 

C ~ (Tr x/2(det x) I 12) = (det x) - nf2Xn (x), (2) 

where X n is the character of the totally symmetrical, (n + 1)
dimensional analytic irreducible representation of GL(2,q, 
that is labeled by (n,O) in the Gel'fand notation.' 

We put A = 1, a = 2 (detx)1/2, and b 
= (Tr x)/2 (detx)1/2 in Eq. (I). 

This leads to the following expansion, taking into ac
count that of the In + I function in powers of a 

(n + I)(det x)q 
exp(Tr x)-expxdx) = I Xn(X)' 

n,q?O q!(q + n + I)! 
(3) 

formula to compare with the usual development 
+oc 

eXPXI(x) = I (xdx))'/rL (4) 
r= 0 

By restricting the above expansions to the elements x of 
GL(2,q which can be written under the form 

x = (det x) I 12U, uESU(2), (5) 

and by using the evident homogeneity properties 

Xn ((det x) I 12U) = (det x)"f2Xn (u), 

(x I(Xj)' = (det X)'f2(x I (u))', 

the development of the rth power of XI(U) in terms of the 
orthogonal set of the characters X n (u), or equivalently, the 
Clebsch-Gordan decomposition of the rth tensor power of 
the fundamental representation ofSU(2), can be considered 

txduj)' = I m~:nXn(U)' (6) 
n 
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By replacing (6) in Eq. (4) and comparing the latter with 
Eq. (3), we obtain the interesting result6 

mr = 8 (n + 1 )rl (7) 
I;n n.r- 2q ql(q + n + 1)1 

As a consequence of all this, the following series 

+ <X! zr 
II;n (z)= L m~;n I" 

r~O r. 
+ 00 z2q 

= (n + 1 )zn L ' (8) 
F 0 ql(n + q + 1)1 

is closely related to the modified Bessel function 

II;n(Z) = [(n + 1)/2z1/n+ d2z). (9) 

That is the reason why we shall name the former "Bes
sel series" associated to the Lie algebra A I of the group 
SL(2,Q, the real compact form of which being SU(2). 

The following section makes the most of this idea by 
extending it to any complex semisimple Lie algebra. 

II. GENERALIZED BESSEL SERIES ASSOCIATED WITH 
COMPLEX SEMISIMPLE LIE ALGEBRAS 

In the following, the notations used are related to 
Ref. 3. 

Let g be a complex semisimple Lie algebra of rank I. Let 
f) be a Cartan subalgebra of g (dim f) = I). Let R be the set of 
roots of g with respect to f). P + + designates the set of domi
nant weights with respect to a basis of the root system R. For 
AEP + + , let V (A ) be the corresponding finite-dimensional 
simple g-module with highest weightA. For allllEP + + ,let 
m~;I' be the multiplicity of V( Il) in the Clebsch-Gordan de
composition of ® r V(A), the rth tensor power of V(A): 

®rV(A)= ~C~,:'t'i!JV(Il)' (10) 

The following series 

1;';I'(z) = L m~;I,zr/r! (11 ) 
r,;,O 

will be named "(A;Il) generalized Bessel series associated 
withg". 

For instance, in the A I case, and for A = w, unique fun
damental weight, we recover the definition (8) by identifying 
I,;;;niij with II;n' 

An equivalent definition lies in the fundamental expan
sion formula below, involving such series, and using the 
"Weyl unitarian trick II of g. Let G be the simply connected 
compact Lie group having the compact real form of g as Lie 
algebra, X;. the character of the unitary irreducible represen
tation D;' of G. Any invariant function on the group Gis 
completely defined by its restriction to T, the Cartan sub
group of G, and it is apparent that the functions X;. are com
plete with respect to any continuous invariant function on G. 

The properties in analyticity of the invariant function 
exp(zX;. (g)), gEG, entail the pointwise convergence of its de
velopment in terms of X" 

exp(zX;.(U)) = LI;,;I,(z)X,,{u), UET. (12) 
I' 
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III. GENERATING FUNCTIONS FOR THE MULTIPLICITY 
rrf;.;I" AND ALGEBRAIC FORMULAS 

We denote by P the group of weights of g, by Z[P] the 
algebra of the groupP, and by Z[P 1 W the subalgebraofZ[P] 
whose elements are fixed with respect to the action of the 
Weyl group Wof R.3,4 Let le'7j'7EP be a basis ofZ[P]. 

For each tpEZ[P 1 w, we have 

tp = L tpl'chl' , 
I-lEP ~ + 

where ch is the character of V( Il); i.e., the characters chI' I' 
generate the set of the W-fixed elements. 

Now, if if; is defined by if; = de -Ptp, where 

p =! L a, d = L c(w)eW1pI
, 

a>O WE:W 

[c(w): signature of the transformation w], we have if;EZ[P], 
and accordingly 

<p = L<P'7 e'7. 
'7EP 

The Weyl formula for the characters is written as follows 

chI' = d -I( ~w c(w)ew(1' + PI). (13) 

We use this expression in Eq. (12) and we observe that, for all 
IlEP + + ,w( P + Il) -IlEP + + ,only ifw = 1, the identity in 
the Weyl group, so that it can be concluded easily: 

Proposition: Let tpEZ[P 1 W satisfy tpl' = 0 except for a 
finite number of indices Il. Then, if 1JEP + + ' we have <P'7 
=tp,/. 

We turn now to the case in which tp = (ch;. r--tp1rl,A 
EP + + and <P Irl = de - P tplrl. We have, therefore, 

and 

tp Irl = L m~;1' chI" 
j.lEP-t + 

¢>Irl = L m~;'7e'7. 
'lEP 

(14) 

(14') 

The following relation is a consequence of the above 
proposition 

( 15) 

The possible extension of the proposition to infinite se
ries in Q[P] can be tackled in the frame ofthe Weyl unitarian 
trick of g and the analyticity properties of the objects consid
ered. Thus, we can introduce the extended Bessel series 1;.;1' 
and two analytic generating functions for the extended mul
tiplicities m~;1' 

de -P(1 - zch;.) - 1= L zr<p Irl 
r;>O 

(16) 

f;.;I'(z) = L m~;l'zr/r! (17) 
r;>O 

de - Pexp(zch;.) = L f;.;1' (z)eI'. (18) 
I'EP 

A general expression for the multiplicities involving in-
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ner multiplicities, can be obtained from the character formu

la. We denote by II (A ) the weight system of V (A ) and by 
m{..1,;O) the multiplicity of OEP in n (A ). 

We have by definition 

ch,l = I m{..1,;O leO. (19) 
1'IE11(,l) 

We develop the expression de ~P{ch,d' in order to apply the 
relation (15) 

( 
r ) . x. IT (m{..1,;O )ye 

".]0 '" 1'IE11(,l) 

"[.MJ + wlp) ~ P 

Xe" 

(J:. ) denotes the multinomial coefficient 
r!/III'IEII(,lJIJ!' It follows that: 

m' = ~ ~ 8 
,l;p ~ ~ '. "[. j" 

WE.'W J(j fh-I/(AJ 

( 
r ) X8 X . 

P+P. "[. j"lJ+w(p) ··JIJ··· 
&<=.IIIA \ 

X IT (m(..1,;O )ye . (20) 
I'IEfl(,l) 

Now we notice the following relations verified by the ex
tended multiplicities m;''!l' They are a direct consequence of 
Eq. (14'): 

I m;.;p e" = ( I m;.;~ 1e")Ch,l , 

PEP pEP 

Im~;f.1e"=de~P= I €(w)eW(P)~p. 
PEP WEW 

Therefore the extended multiplicities m;';p satisfy the 
finite difference equations 

-, "(1Ll)-'~1 m,l;p= ~ mA;Om,l;f.1~IJ' 
1'IE1I1,l) 

(21) 

with the initial conditions 

m~;f.1 = I €(w)8f.1'W(PJ~P . 
WEW 

Thus we can obtain numerical expressions for m;.;!" by 
using standard routines for solving linear finite difference 
equations. 

IV. PARTICULAR CASES OF INTEREST 

Explicit expressions for a few multiplicities m;';p can be 
obtained by considering the following special cases. 

TABLE I. Diverse choices of fundamental representation. 

Simple Lie algebra AI 

Dynkin diagram "'I "'z "'1-1 "'J 
0_0_ ... _0_0 

Highest weight of 
chosen representation w, 

"'I "'z "'J~. "'1-1 "'1 
0_0_ ... _o_c¢:o 
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FIG. 1. Graph for (k"k, ..... k,). Recall that (kjok2 .... ,k,) is taken to be zero if 
any of k, is strictly negative. 

For the classical algebras A I' BI, CI, D1
3

-
5we denoted by 

WI"",WI the fundamental weights. In each case, we denote by 
1 the chosen 9 module, by n (1) its weight system. We have 
calculated the weight system by means of the Dynkin algo
rithm.4 Then any weight TJEll(l) can be written 

I 

TJ= I kA, 
i= l 

where k i equals zero or + 1 or - 1. Furthermore, any 
TJEll (1) is in the W-orbit of 1, the inner multiplicity m(l;TJ) is 
one and by denoting m(v,v';,u) the multiplicity of V( fl) in 
V(v) ® V(v') ("outer multiplicity") we have 

m(l,v;v) = 0 for all vEP + + . 

The diverse choice of fundamental representations are 
shown in Table I. 

The figures also help to visualize the effect of the tensor 
product of 1, with V( fl), where fl = ~~ = I kiWi> is an arbi
trary dominant weight, on the components k i of fl. For in
stance, in theB2 case, 1, is chosen to be the four-dimensional 
fundamental representation V (w2 ) (spinor representation3

), 

and for any weightfl = kIWI + k2W2' k i ;;,.0, we denote V( fl) 
as well as fl by (k 1,k2 ) and we have the CG reduction 

(0,1) ® (k l ,k2) = (k l ,k2 + 1) Ell (k1,k2 - 1) 

Ell (k1 - l,k2 + 1) Ell (k, + l,k2 - 1). (22) 

It goes without saying that we define (k l ,k2 ) to be zero if 
k, or k2 is strictly negative. It will now be attractive to read 
Eq. (22) through the following apparent graphic illustration 

Figures 2-5 are concerned with similar processes for 
the algebras AI' BI, CI, DI, respectively, 

According to Eq. (22) or Eq. (22'), we can compute the 
multiplicity m~;p in the B2 case. The result is 

FIG. 2. AI case; I = (1.0 ..... 0); dim(I) = I + I. 

"'I "'2 "'[-. "'1-1 "'[ 
o~o_ ... .o_~ 

w, 

DI 

w, 
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I------.k. +1 
i Jp_1 \-1 ----; 

i1 < j2 <:: ••• < ip 

{i1) .•. )ip }~A 

L-kl+1 

FIG. 3. B, case; 1 = (0,0, ... , I); dim(l) = 2'. We denote by &(X)the class of 
all subsets of X("power set of X") and by [I, ... ,nj the set of all integers i such 
that I<;;i<;;n. 

X X kl X kl kl 

1 ---> Lx Gl x~ k2 k2 + 1 k2 - 1 

Ikl:l k l -l X 

I Gl Gl 

k2 - 1 X k2 + 1 X 

m r =8 1;1' r,2k, + k, + 2q 

(22') 

r!(r + 2)!(k l + 1)(k1 + l)(k l + k2 + 2)(2kl + k z + 3) X . 
q!(q + kl + l)!(q + kl + k2 + 2)!(q + 2kl + k z + 3)! 

(23) 

The presence in the above expression of the Kronecker 
symbol, i,e" r - 2kl - k2 must be even, means a "2-ality" 
phenomenon exactly like the SU(2) case illustrated by Eq, (7), 

Formula (23) can be rewritten by using the bilinear form 
( ) on q* X q, deduced from the Killing form restricted to 
q X q where q is the Cartan subalgebra of B2 corresponding to 
the fundamental weights WI' and wz. We recall that HaEq is 
defined by: (a,Ha) = 2 for some aER and (Wi>Ha) = 8 jj , 
where a j,j = lor 2, is a basis element of R.3 Equation (23) 
now reads 

r c r!(r + 2)! m -u 
I"l - r,Zk, + k, + 2q q! 

ITa>o(p +p,Ha) 

(24) 

Similar expressions can be given for A {, for alII, and the 
chosen representation 1 is here 1 = (1,0, ... ,0). For 
p = L; ~ I kiWi> we have 

m;,1' = 8r,k, + 2k, + ... + Ik, + (/ + I)q 
r!IT;<j(ki +ki + 1 + ... +k j _ 1 +j-i) 

(25) 

This equation is consistent with theA I case [Eq (7)]. It can be 
also rewritten by using the "root-weight" outfit 
m;,1' = 8 r,k, + 2k, + ... + Ik, + (; + IJq 

r!ITa>O (p + p,Ha) 
X-----'----'---'------,--

q!ITl<i</(q + (p +p,Hai + ... + a»)! 
(26) 

The factor 8 r,k, + 2k, + ... + Ik, + (I + I)q is a consequence of 
the concept of "/ + l-ality", well familiar in the representa
tion theory ofSU(l + 1), the Lie algebra of which is the real 
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k'l 
kk1+1 k,-1

J k, r rk1 

k2 k2 k2 
k.-': kj +1 

0 0 .. ·0 1 ~+'@J 1+1 

kl_,! • kj+,'. 

kl_, I I kl_, 
kl 1 hl kl kl kl 

@ @ 
k, I 

0 
I k, 

FIG. 4. C{ case; 1 = (1,0, ... ,0); dim(l) = 2/, 

compact form AI' In this connection, it is useful to employ 
the Gel'fand-Zeitlin5 notations, namely, 

k l +k2 + .. ·+k{=ml, 

k2 + ... + k{ = m 2 , 

k{=m{. 

We put Ipi =L;~lmj' Then,wehave 

r!ITi<j(m j - m j + j - i) 
m;;1'=8r,II'I+(I+I)q'IT . (q+m.+I+l-i)'· q. 1</</ 1 • 

(27) 

(28) 

We can note in the numerators of the expressions (24) 
and (26) the appearance of the numerator of the Weyl formu
la for the dimension of a g-module V( 1l)3: 

. (p + p,Ha ) 

dl' dlm VIp) = IT ( ) 
a>O p,Ha 

(29) 

This oddness is certainly not accidental and calls for a 
deeper investigation which could allow us to perform the 
sum in Eq. (20) for more general cases, However, we think 
that the above results, Eq. (23) and Eq. (25), are new. 

V. ADDITION THEOREMS 

The multiplicities m~;1' satisfy a recurrence formula, 
easily established by exploiting (ch,tY+ r' = (ch,tY(ch,tY', 

m~; r' = L m(v,v';Jl)m~;vm~;v" (30) 
V,V'EP \ \ 

o ". <tJ 

FIG. 5. D{ case; 1 = (1,0, ... ,0); dim (I) = 2/. 
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Equation (30) can be particularized 

m r + 1 -
... ;1-' - L m(tl,v;,u)m~;v' 

VEP t t 

(31) 

These formulas are of interest for computing both m~;1-' and 
m(tl,v;,u). 

The (tl;,u) generalized Bessel series exhibit an interest
ing addition theorem deduced from Eq. (12) by combining 
exp(z + z')X ... (u) = exp zx ... (u)exp z'x ... (u) with a CG 
reduction, 

I ... ;I-'(z +z') = L: m(v,v';,u)I"';v(z)I ... ;v' (z'). 
V,v 

(32) 

We turn now to an important addition theorem general
izing toA, or GL(1 +1,q which is encountered in the spe
cial function theory, particularly in the three Euclidean 
space group approach to spherical harmonics and Bessel 
functions. 7 

We shall use henceforward the Gel'fand-Zeitlin para
metrization with a light modification with respect to that 
introduced in Eq. (27) for labeling the unitary irreducible 
representations D I-' of SU(n), 

mfI 

([:~}m," 
m(n_1 mfn_1 

m2n mn_ In 

m~_1 m{;. _ I 

and 

are deduced from the former by subtracting mnn from each 
of its indices, 

Let X[mIJx) [resp. XI-' (u)] be the character of the repre
sentation [m1n ofGL(n,q [resp,}l ofSU(n)], 

( ) '" ,@[m)"(x)m'm ' X[m)"x = ~ 

We introduced in Sec. 4 the particular An _ I -module 
1 = p,o,,, .. ol. For x = Ix Il/nu and [m 1 n = (1,0), i.e., for the n-

n-I 

dimensional matrix representation of GL (n,q, we have 

X[ml"(x) = Tr x = Ixll/nTr U = Ixll/nX.(U), 

and the use ofEq. (12) leads to 

exp(Tr x) 

L 11'11 (lxllln)X,,(u) 
I-' 
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Similarly5 the n-tuple 

[m1n = (}l,m nn ) = (mln,···,mn_ln,mnn) 

with 
n 

O<;m nn <;mn -In and 1m I = L min 
i= 1 

(33) 

indexes a finite analytic irreducible representation ~[m)" of 
GL(n,q. 

Consider xEGL(n,q such that 

x = Ixillnu, Ixl-detx, uESU(n). (34) 

The link between respective representation matrix elements 
ofGL(n,q and SU(n) with respect to Gel'fand basis5 is giv
en by 

~[ml"(x)m m' 

= Ixlm""~['!ll,,(x)'!l '!l' (35) 

= Ixllml/n~r(u)'!l' '!l' , 

where 

denotes a double Gel'fand pattern5 

m> n - In - 1 

mnn 

m< n - In -" 1 

(35') 

(36) 

• 

L Ixl- Iml/nII;1-' (lxll/n)X[ml.!x). (37) 
Iml"~(I-'.OI 

It is apparent that expansion (37) can be extended ana
lytically to any matrix x in GL(n,q. 

We consider now two elements x' and x" of GL(n,q 
such that x' + x" is in GL(n,q. Let u be an element ofSU(n) 
andz a complex variable, By expanding according to (37) on 
expTr z(x' + x") u = (expTrzx'u)(expTrzx"u) and by using 
the main matrix representation group property 

X[m)"(xu) 

L ~[ml.'(xu)m' 
m' 

m ,m' 

we obtain 

m ,m' 
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L L IX'I-lm'l/lIlx"l- Im"1/1I 

lm'l" = (1l'.O) m>-' .m' 

[m"I,,=(Il",O) m" .m"· 

X/1;1l' (zlx' I 1I11)/I;Il" (Zlx" I lin) 

X@[m'J"(X')m><m,,@[m"I"(X")m"m" , 

X@Il'(U)m' 'm" @1'''(U)m"'m"' . (38) 

The product of two representation matrix elements ofSU(n) 
is transformed in a sum of matrix elements by means of a CG 
reduction procedure 
I7J! ' I7J! Il" 
=Il (u)m' 'm" = (u)m"m"' 

I (/-L'/-L"m'>m">I/-Lbm» 
b.J.!,m ',m 

X(/-L'/-L"m'<m"<I/-Lbm< )*.@Il(u)m'm' (39) 

The index b indicates here a summation about the 
equivalent representations. 

A first GL(n,q addition theorem is established by iden

tifying the coefficients of @Il(u)m'm' on both sides ofEq. 
(38), 

Ix' + x" I - IIlI/II/I;1l (zlx' + x" 11111) .@(Il,O)(X' + x")m' m> 

= ILL (jl:/L"m'>m">I/Lbm> ) 
1i',J.!" m" ,m'·> b 

m ,m 

x (/L'/L"m'<m" < I /Lbm< )*lx'I-IIlVlllx"I-IIl"1/1I 

XII;Il' (zlx'llI")II;Il" (zlx" Ill") 

X@(Il',O)(x')m"m' .@(Il".O)(x")m"'m"' . (40) 

A second GL(n,q addition theorem is then deduced 
from the preceding one by expanding the generalized Bessel 
series and identifying the coefficients of identical powers of z. 
For this purpose, we make use of the homogeneity property 
(35) and we put 

n 

[mJ" = (mln,m2n,· .. ,mnn)' Iml = L min' 
i=1 

g = (m I" - m"" ,m2n - mn" , ... ,mn _ In - mil,,)' etc. ,,, 
We have then 

f?!) [ml,,(x' + x")m' m 

= '" {j Iml! 1 4.. Iml,lm'l + Im"1 . 
Im'I",[m"l" Im'lllm"f! 

m''''',m' 

m"',m" > 

X (g'g"11)'<11)"<lgb11)<)* 

Xf?!)[m'L,(X') . @lm"I,,( ") 
fn'<m'~ X m"'m"-" (41) 

These new and striking addition theorems appear as a 
straight generalization of those obtained by Talman (Formu
las 12.40, 12.41, 12.42a, 12.54, and 12.55aofRef. 7)forordi
nary Bessel and spherical harmonics. 

They are also related with certain formulas, established 
by Rua (Formulas 5.3.1 and 5.3.2 of Ref. 8) and by Gazeau et 
al. [Formulas (61) of Ref. 9)]. 

As an illustration the above results, we return to the 
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GL(2,q-SU(2) case for which the formulas can seem more 
familiar to reader. The notations of Talman7 will be used. 

Let xIx iJ) be a complex nonsingular 2 X 2 matrix. 
Let us introduce the homogeneous polynomials 

@i(x)m,m"jintegerorhalfinteger and O<lmll, Im21 <j, 
which constitute an analytic continuation to GL(2,q of the 
matrix elements @ i(uJm,m" uESU(2), of the unitary irreduci
ble representations ofSU(2). The connection with the prece
dent notations is the following. 

Let q be an integer. We associate with the set of indices 
! j,m l,m2,q J the double Gel'fand pattern 

mil 

by putting 

m Z2 = q, m12 = 2j + q, 

m!'I =j-m1+q, mil =j-m2 +q, 
and we define 

.@[ml'(x)m'm> =Ixlq@i(x)m,m,· 
(42) 

It is apparent that this polynomial is a finite irreducible 
analytic representation matrix element of GL(2,q. Its ex
pression is given by 

Ix19@ J(x)m,m, = (0'';'', O' im,) -llxl q 

X(-I)m,-m'L (xll)J-m,-r (X22)J+m,-r 

r (j - mz - t)! (j + m I - t )1 
(x )r (x )' + m, - m, X _2_1 __ -'-'1.::2 ___ _ 

I! (/+m 2 -m1)!' 
for 

x = (XI! X 12)EGL(2,C), 
\x21 X22 

0'';'' = [(j + m)!(j - m)!] -1/2 • 

(43) 

We shall expre!!s the SU(2) CG reduction [Eq. (39)] by using 
preferably the Wigner 3-j symbols. Expressions (40) and (41) 
are now written 

[det(x' + x")] -(j+1/2)/2j+1 [2z(det(x' +X"»1!2] 

X.@j(x' +x")m,m, = (_l)m, -m,/2z 

X j~ mt.; [j'][j"](~; ~';, -jmJ 

mi'm1' 

j" 

m1 
X (det x') - (j' + IIZ)(det x") - v + 1/2) 

X/2/ + I (2z(det x')1/2)I2j" + I (2z(det X")1/2) 

X.@I(x')m'm·.@j"(x") " '" 
I 2 711, m2 

(44) 

where [Jl=2j + 1 and /v(z) is a modified Bessel function 
[Eq. (9)], 

[det(x' +X")]9@j(X'+x") 
rn,m 2 
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_ ( l)m, - m, ~ /j 
- - k j + q,/ + r + q' + q" 

/J" 
q',q" 

X q!(q+2j+l)! 

q'!q"!(q' + 2/ + 1)!(q" + 2j" + I)! 

X L [j'] [j"](~, ~;, } m ) 
mi m2 1 I 

Taking q = 0 yields a surprisingly elegant formula, al
ready used by one of us in another work [Ref, 10, Appendix 
A, formula (A5)], 

u j ffl j(x/ + x") 
mlm~ m]ml 

(46) 

VI. CONCLUDING REMARKS 

We have outlined a generalization of the ordinary Bes
sel functions group theoretically. The latter exhibit remark
able properties in the frame of the special function theory. 
Reciprocally, it would be interesting to investigate the link 
between the (Il;,u) generalized Bessel series and the special 
functions, particularly from the standpoint of the differen
tial equations which they probably satisfy. 
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For instance in a special case already studied for A I' we 
have 

I 

X II (,u +p,Ha>X II r(,u +p,Hai+,,,+a) + 1) 
a>O i= I 

X(/'d; .. ·,(,u +p,Hai+,,,+a) + 1, ... ;z), 
(47) 

where pFq is a generalized hypergeometric function.· 
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Canonical realizations of Lie superalgebras: Ladder representations of the 
Lie superalgebra A (m,n) 

Tchavdar D. Palev 
Institute fU'r Theoretische Physik der Technischen, Universitli't Clausthal, Clausthal-ZellerJeld, West 
Germany 

(Received 15 Dctober 1980; accepted for publication 27 February 1981) 

A simple formula for realizations of Lie superalgebras in terms of Bose and Fermi creation and 
annihilation operators is given. The essential new feature is that Bose and Fermi operators 
mutually anticommute. The Fock representation of these operators is used in order to construct a 
class of irreducible finite-dimensional representations of the simple Lie superalgebraA (m,n). The 
matrix elements of the generators are written down. For m > 0 all representations turn out to be 
nontypical. 

PACS numbers: 02.20.Sv, 03.65.Fd 

1. INTRODUCTION 

The creation and annihilation operators (CAD's) of 
Bose and Fermi type were initially introduced for the pur
poses of the quantum physics and continue at present to play 
an important role in it. For an illustration we mention only 
that the dynamical variables in any second quantized (ele
mentary particles, nuclear, or solid state) theory are ex
pressed in terms of these operators. At the same time the 
creation and annihilation operators turned out to be useful in 
several other branches of physics and mathematics. 1.2 In 
particular, they were often used for construction of represen
tations of Lie algebras via canonical realizations. 

We recall that a Bose (resp., Fermi) canonical realiza
tion of a given Lie algebra d is isomorphic to d Lie-subal
gebra ;,- of the algebra of all polynomials of a certain num
ber n of Bose (resp., Fermi) operators, which we denote as 
E (n,O) [resp., E (O,n)]. In the case ofB~e operators this defi
nition is generalized in several ways: d can be taken to be a 
subalgebra from the quotient algebra D (n,O) of E (n,0)3 or 

from the completion E (n,O) or D (n,O) if, for instance, 
E (n ,0) or D (n ,0) are metric spaces. The elements of D (n,O) are 

rational functions of CAD's, whereas those of E (n,O) are 
analytical with respect to the operators under consideration. 
It can be shown that every (finite-dimensional) Lie algebra 
has canonical realizations.4

•s 

If the canonical realization ;,- is in E (n,O) or E (n,O) , 
then one can construct a representation of d in the way 
usual for quantum mechanics; namely, considering the Fock 
representation of the CAD's (which for finite number of op
erators is also unique). This was the way a lot of physically 
important representations, usually called ladder representa
tions,6 were constructed, 7 and among them some new repre
sentations of the classical noncompact Lie algebras were 
found. H The representations of d obtained in this way de
pend essentially on the choice of the canonical realization 
;,-. It is important to point out, however, that once a canoni
cal realization ;,- is chosen, the further steps for building 
ladder representations do not make any use of the underly
ing algebraical structure of d. Therefore, the same method 
can be applied for constructing representations of any other 
(nonassociative) algebra. The nontrivial part is to embed this 

algebra isomorphically intoE (m,O),E (O,n), or, more general
ly, into a polynomial algebraE (m,n) of both Bose and Fermi 
operators. 

In the present paper we choose the algebraical structure 
to be a Lie superalgebra (LS). First, we show how one can 
build canonical realizations of an arbitrary LS in terms of 
Bose and Fermi operators. The method we use is similar to 
the one repeatedly used in the literature9 for constructing 
canonical realizations of Lie algebras. It is based on the cir
cumstance that if (Ajj ),iJ = l, ... ,n is an exact n X n matrix 
representation of a Lie algebra d and af , ... ,a~ are only Bose 
or only Fermi creation (4" = +) or annihilation (4" = -) 
operators, then one particular realization can be obtained 
from what is sometimes referred to as a trace formula: 

;,- = i a/ Ajja j- • 

j,j= 1 

(1 ) 

In case of a Lie superalgebra the trace realization (1) remains 
formally unaltered. There are, however, two essential differ
ences to be added: (a) for a proper LS one has to use in (1) both 
Bose and Fermi CAD's, and moreover (b) to assume that 
Bose and Fermi operators mutually anticommute. 

In the second part of the paper we apply the trace for
mula to the basic classical Lie subalgebraA (m - l,n - 1) for 
any m and n. 10.11 We find and analyze a class of representa
tions of this LS, which we call ladder representations. The 
trace realization of A (m - l,n - 1) is expressed in termsofm 
pairs of Bose and n pairs of Fermi operators. The corre
sponding Fock space W(m,n) is infinite-dimensional and de
composes into an infinite direct sum of irreducible finite
dimensional A (m - l,n - 1) modules WN(m,n),N = 1,2,. ... 
In the cases 1 <m#n and 1 = m#n,n >N, every WN(m,n) 
carries a nontypical 12 representation of A (m - l,n - 1). 
W(m,n) is a Hilbert space with a metric defined in the way 
usual for the Fock space. The ladder representations are star 
representations l3 if the star-operation is Hermitian 
conjugation. 

We notice that the Fock space W(m,n) can be viewed as 
an infinite-dimensional irreducible B (m,n) module. The lat
ter follows from the observation that any m pairs of Bose 
operators, considered as odd elements, and n pairs of Fermi 
operators, considered as even elements, generate the basic 
classical Lie superalgebra B (m,n). 14 Therefore, the trace re-
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presentations of A (m - 1,n - 1) are realized in the irreduci
ble A (m - 1,n - 1) submodules of the B (m,n) module 
W(m,n). 

2. CANONICAL REALIZATIONS OF LIE 
SUPERALGEBRAS15 

Let a be a function on the set 

1= (1,2, ... ,m,m + 1, ... ,m + n = r), 

with values au ie I, in Z2' 

(2) 

a. = {O for i>m (3) 
I 1 for i<m' 

By E (m,n) we denote the associative algebra of all formal 
polynomials of the indeterminates (r = m + n) 

(4) 

with additional relations 

aj- at + ( - tP'ia t a j- = 13 jj , 

afa5 + (- t,aja5ar = 0, 5 = ±. (5) 

To tum E (m,n) into a Z2-graded algebra, we postulate that 
the indeterminates a l± , ... ,a';; are odd, whereas a';; + I, .•• ,ar± 

are even elements in E (m,n), i.e., 

dega j± = ajt i e I. (6) 

We consider E(m,n)asaLiesubalgebra with a product { , } 
defined in a natural way. 

{a,b} = ab - ( - )dega'degbba, a,b e E (m,n). (7) 

The relations (5) show that al± , ... ,a';; are Bose opera
tors, whereas a';; + I, ••. ,ar± are Fermi operators. The essen
tial new feature is that the Bose operators anticommute with 
the Fermi operators. We call E(m,n) a Bose-Fermi Lie 
superalgebra. 

We now proceed to show that every finite-dimensional 
LS can be considered as a subalgebra of a certain Bose-Fermi 
LS. To this end we essentially use 

Ado's theorem lO
: Every finite-dimensional Lie superal

gebra has a finite-dimensional faithful matrix 
representation. 

Let d be a LS which we identify with one of its finite
dimensional faithful matrix representations. Then 
d = do Ell d I is an algebra 16 of endomorphisms of a cer
tain Z2-grades space V = Vo + VI' with a product defined by 
Eq. (7) for any homogeneous elements a,b e d. By definition 
d preserves the grading in V, 

aa(VP)CVa+p , aaeda, a,{3eZ2• (8) 

Choose an arbitrary homogeneous basis (r = m + n) 

in V, where 

el, ... em is a basis in VI and 

em + I,.·.,er is a basis in Vo. 

(9) 

In this basis every element Med is represented by an r X r 
matrix of the form 

(10) 
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with a, [3, y, and 13 being m Xm, m Xn, n Xm, and n Xn 
matrices, respectively. The element Med is even (resp., odd) 
if [3 = Y = 0 (resp., a = 13 = 0). The algebra I (m,n) of all en
domorphisms of V will be of particular interest for us. In the 
matrix form (10) this is the algebra of all r X r matrices with a 
grading as defined above. 

Denote 

(11 ) 

and for every Med (with matrix elements M jj ) define a 
mapping 8:d --+E (m,n) as follows (T = transposition) 

T r 

8M=A+MA-= L a/Mija j-. (12) 
;.j= I 

Theorem: The mapping 8 is an isomorphism of d into 
E(m,n). 

Proof Since d is a subalgebra of I (m,n), it suffices to 
prove that 8isan isomorphism of I (m,n) inE (m,n). Leteij be 
an r X r matrix with one on the intersection of the ith row and 
jth column and zero elsewhere. As a homogeneous basis in 
I (m,n) we take the matrices e;j,ij = 1, ... ,r. Since 
degeij = a i + a j' 

{ } _ ()(a, + aj)(a, + a,l eij,ekl - e;jekl - - ekle;j' (13) 

Applying 8 to the basis, one obtains 

8e;j = a/ a j- . (14) 

Clearly, 8 is a linear operator. It preserves the grading since 
dege;j = dega;+ a j = a; + a j' Moreover, the elements e;j 
(resp., a;+ a j), i,j e I are linearly independent in V [resp., in 
E (m,n)]. Hence, 8 is injective. To prove that 8 preserves the 
LS product, compute 

{8eij ,8ek/ } = {a/ a j ,ak+ al-) = a/ a j ak+ al-

( )
(a, + a ilia, + a/I + _ + _ - - ak al a; a j 

= a;+a j-at al- + (- tP'a/ ak+ a j al-

( )
(a, + a )(a, + a/I + _ + _ - - ak al a; aj 

( )
(aj + a )(a", + a,l + a/a, + + _ ~ - - ak ai al a j 

= a/ [a J-:- a/ + ( - tP'ak+ a j- ]al-
_ (_ )(a,+a)(a,+a/lak

+ 

Hence, 

(8eij,8ekl} = 8{ eij,ekl } .• ( 15) 

If d is a LS isomorphic to a subalgebra d C E (m,n), we 
shall refer to d as to a canonical realization (realization in 
termsofCAO's)of d inE(m,n). We call (12)a trace formula 
for realizations of LS's and the corresponding realization, a 
trace realization. In the case m = 0 (resp., n = 0), (12) re
duces to the trace formula (1) for realizations of Lie algebras 
with Fermi (resp., Bose) creation and annihilation operators. 

Identifying d with its image ~ = 8d, we have as an 
immediate consequence of the theorem. 

Corollary 1: Every finite-dimensional Lie superalgebra 
is a subalgebra of a certain Bose-Fermi algebra, i.e., has a 
canonical realization. 
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Applying the trace formula to I (m,n), we conclude 
Corollary 2: The linear envelope of all bilinear combina

tions of creation and annihilation operators is a subalgebra 
of E (m,n) isomorphic to I (m,n), i.e., 

lin. env.[aj+ajli,jElj =l(m,n). (16) 

The algebraE (m,n) contains also other LS's. A more detailed 
analysis shows, for instance, that l4 

lin. env.[{af,a)}li,jEI;S,1] = ± j =D(m,n), (17) 

whereas 

lin. env.[a;,{a;.a j }li,jEI;S,1] = ± j =B(m,n). (18) 

Here B (m,n) and D (m,n ) are the classical sim pIe orthogonal
symplectic LS's [See Refs. 10 and 11)]. It turns out that any 
third order polynomial (with respect to the LS operations) of 
the CAO's can be expressed as a linear combination of 
CAO's. This observation together with (18) gives: 

Corollary 3: Any m pairs of Bose operators and n pairs 
of Fermi operators considered as elements of a Bose-Fermi 
Lie superalgebra generate the algebra B (m,n). 

3. LADDER REPRESENTATIONS OF A (m, n) 

In this section we construct and study a class of finite
dimensional representations of the LSA (m,n), which we call 
ladder representations. For this purpose we use a trace real
ization obtained from the defining matrix representation of 
A (m,n). 

A. Preliminaries and notation 

Here we list some of the properties of the LS's I (m,n) 
and A (m - 1,n - 1) which can be found in Refs. 10-12, or 
are a consequence of the results contained therein. When
ever possible, we also follow the notation of these papers. 

We consider the algebra I (m,n) always in its matrix real
ization (10). Let 

gij=-(-tJOij' i,jEI. (19) 

The algebra I (m,n) contains a one-codimensional ideal 

sl(m,n) = lin. env.[gAi -gjjejj,ek1Ik#l; i,j,k,IElj. 
(20) 

Ifm #n,sl (m,n) isa simple LS. Thealgebrasl (n,n) contains a 
one-dimensional ideal A 12" spanned on the unit matrix 12n • 

The basic simple LS A (m - 1,n - 1) is defined as 

A(m-1,n-1)=sl(m,n), m#n,m,n>O, (21) 

A (n - 1,n -1) =sl(n,n)/1 2n , n>O. (22) 

The grading on A (m - l,n - 1) is the one induced from 
I (m,n). In this paper we consider for simplicity only the alge
bras (21). As a Cartan subalgebra of A (m - l,n - 1) we 
choose 

H = lin. env. [gi/ei/ - g jje jj li,j E I}. 

Then 

A (m -1,n - 1) =N- (f;H(f;N+, 

where 
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N + = lin. env.[eij Ii< j E I j, 

N- = lin. env.[eijli>jElj, 
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(23) 

(24) 

(25) 

(26) 

are subalgebras spanned on all positive root vectors 
eij,i < j E I and on all negative root vectors ejj,i > j E I, re
spectively. The Killing form ( , )' of I (m,n), restricted to its 
Cartan subalgebra 

H' = lin. env.[ei/liEI}, 

reads as 

(27) 

(ejj,e jj )' = 2(m - n)gjj - 2( - t,+aj
• (28) 

On H the form ( , )' coincides with the Killing form ( , ) of 
A (m - l,n - 1). Since the second term in (28) vanishes on H, 
we neglect it and write 

(eji,e jj ) = 2(m - n)gjj' (29) 

This equality defines a nondegenerate (n #m) bilinear form 
on H', which restricted to H gives the Killing form of 
A(m-l,n-1). 

Choose as a basis in H ' the vectors 

Ej = ejj , i = 1, ... ,r. (30) 

As an ordered basis in H' we take the dual to the (30) basis of 

linear functionals 

The bilinear form on H I induced from (29) reads 

(Ei,E j ) = giJ2(m - n). 

(31) 

(32) 

The correspondence between the root vectors and their roots 
is 

(33) 

Therefore, a root is positive if its first nonzero coordinate in 
the basis (31) is positive. For the half-sum of the even positive 
roots minus the half-sum of the odd positive roots one 
obtains 

1 r . 
p = - 2: [3m + n - 2a j (m + n) - 2i + 1 ]E'. (34) 

2 i~ 1 

The operators (i = 1,2, ... ,r - 1) 

ei = ei,i+ l' J:. = ei + 1,i' 

h - ()a, + u, + , 
j-eii - - e;+1.i+l (35) 

generate the algebra A (m - 1,n - 1) and satisfy the relations 
([x,y] = xy - yx) 

{e;'!j} = ojjh;. [h;.h j ] = 0, 

[hi,e j ] =ajje j , [hi,fj] = -aij!j' i,j= 1, ... ,r-1,(36) 

where the Cartan matrix A = (aij ) reads as 

a = 0 + ( - )a, + u, , '0 .. _ o. . _ ( _ )a, + a, + '0 
lJ IJ I) I,J+l ;+1,)' 

In particular, 

amm = 0, am,m + I = 1, and aii = 2, i#m. 

Moreover, 

(p,Ei _ Ei+ I) 

= (gii +gi+ I,i+ 1 )/2(m - n). 
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Consider an irreducible A (m - l,n - 1) module VIA ) . 
with a highest weight vector v.-1 ,A E H, 

hv.-1 =A(h)v.-1' hEH, N+v.-1 =0, degv.-1 =0.(40) 

The corresponding representation is finite-dimensional if 
and only ifl2 

ai =A (hi)EZ+ for any i=/=m = I, ... ,r-I, (41) 

i.e., for nonnegative integers ai,i=/=m. The number 
am = A (h m ) can be an arbitrary complex number. A finite
dimensional A (m - I,n - I) module is said to be typical 12 if 

(A + p,aii) =/=0 for any aii = ci - c i E .1 1, 

where 

.11 = [ci 
- cili<,m,}> m I 

is the set of all odd positive roots. 

B. Matrix elements and analysis of the ladder 
representations 

(42) 

(43) 

Since every finite-dimensional irreducible I (m,n) mod
ule is simultaneously A (m - I,n - I )-irreducible, we consid
er in the beginning the representation spaces as I (m,n) mod
ules. The canonical realization we use is the trace realization 
(16). As a representation space W(m,n) we take the ordinary 
quantum-mechanical Fock space, namely the Hilbert space 
generated out of a vacuum vector 10) by means of creation 
and annihilation operators. By definition the vacuum is a 
vector which vanishes under the action of the annihilation 
operators, 

ai 10)=0, iEI. (44) 

The metric in W(m,n) is uniquely defined from the require
ments that the norm of the vacuum be one and the Hermitian 
conjugate of a/ be equal to ai ,i E /. To turn W (m,n) into a 
Z2-graded space we assume in addition, that the vacuum is 
an even element, deglO) = O. 

As an orthonormal basis in W(m,n) we choose the 
vectors 

where 

Pi E Z+ for i<,m E I, 

Pi = 1,2 for i>m EI. 

(45) 

(46) 

For m > 0 the representation space is infinite-dimensional. A 
straightforward computation gives 

+1 ) ( )P'+"'+Pi '(1+ )1/21 +1) ai .. ·,Pi'''· = gii gjj Pi "',Pi , ... , 

- 1 ) ( ) p, + ... + Pi '. / 1 1) (47) ai ""Pi'''' = gii V Pi ""Pi - , .... 

It is understood that the unwritten indices on the left- and on 
the right-hand side in (47) are the same. From these equali
ties one easily calculates the transformation properties of the 
basis (45) under the action of the I (m,n) generators: 
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Cartan generators (Ci = ejj = a/ ai- ,i E I) 

ci I .. ·,pi'''·) = Pi 1""Pi""); 
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(48) 

Positive root vectors (i < ) E I) 

eij 1""Pi"'" Pi'''') 
= (gjj)P,+"'+ Pi '(gii)P,+'''+ Pj , 

x((1 +giiPi)Pj) 1/2 1""Pi + 1,,,,,Pi - I, ... ); 

Negative root vectors (i> ) E I) 

eii I .. ·, Pi'"'' Pi'''') 

= (gii)P,+"'+Pi ,-I(gjj)P'+"'+Pj, 

X((I +gjjPi)Pj)
1/2

1""Pi -1'''',Pi + I, ... ). 

Introducing a e function 

o 
elk) = 1 

one can write (48-50) in an unified form (i,) E I), 

= (gjj) p, + ' .. + p, ,- Ii Ii - il(g jj) p, + ... + Pi' 

(49) 

(50) 

(51) 

X [Pi(1 + gii Pi -gij)] 1/2 1""Pi + I,,,,,pj - I, ... ). 

(52) 
Consider the finite-dimensional subspace 

Wy{m,n) = lin. env.[ 1 PI, .. ·,Pr) 1 PI + ... + Pr = N I· 
(53) 

Clearly, W\,(m,n) is an invariant I (m,n) submodule. Since, 
moreover, any vector 1 PI, ... ,Pr)EW'I(m,n) can be trans
formed by means of the generators of I (m ,n) onto any other 
vector 1 P; , ... ,p;)EW'I(m,n), the subspace Wv(m,n) is irre
ducible. Hence, W(m,n) resolves into an infinite direct sum 
of finite-dimensional irreducible I (m,n) modules WN(m,n), 

W(m,n) = E:ll Wy(m,n). 
.\' - () 

(54) 

Let h = ~; _ IS 'Ci be an arbitrary element from the Car
tan subalgebra H '. From (48), (49), and (25) one has 

h IN,O, ... ,O) = Ns IIN,O, ... ,O), (55) 

N + IN,O, ... ,O) = O. 

Hence, IN,O, ... ,O) is the highest weight vector in Wv(m,n) . . 
The corresponding highest weight A NE H' is 

(56) 

Thus, we have constructed a countable set of irreducible re
presentations of the LS f (m,n), which we call ladder repre
sentations. Every WN(m,n) is also an irreducible sf (m,n) 
module. If m =/= n, sf (m,n) = A (m - I,n - I) and, therefore, 
every WN(m,n) carries an irreducible representation of 
A (m - I,n - I). Since 

ai = AN(hi ) = NOli' i = I, ... ,r - I, (57) 

the signature of the representation (a l,a 2, ... ,ar _ I ) with high
est weight A N is (N,O, ... ,O). 

Assertion: The representation spaces WN(m,n),N E Z+, 
are nontypical if and only if m > I or m = I and N < n. 

Proof Inserting (34) and (56) in (42) and taking a ik to be 
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an odd positive root, i.e., a ik = €i - €\j<.m,k > m, one 
obtains 

(AN + p,€i - €k) = (NDli + 2m + 1 - j - k)/2(m - n). 
(58) 

For m > 1 andj = k - 1 = m, 

(AN + p,€m_€m+l)=O, 

and, therefore, for m > 1 all A (m - l,n - 1) modules 
WN(m,n) are nontypical. If m = j = 1, 

(AN + p,€l - €k) = (N + 2 - k)/2(1- n), 

(59) 

k = 2, ... ,n + 1, n> 1. (60) 

This expression vanishes for k = N + 2. Therefore, only 
those representations are nontypical for which k can take the 
value N + 2, i.e., in the cases N < n .• 

Thus, all ladder representations of the LS 
A (m,n),n > m > 0 are nontypical, whereas for A (O,n) only a 
finite set of them has the same property. 

We have mentioned already that the CAO's 
a l± , ... ,a/ E E (m,n) generate the canonical realization (18) of 
the simple LSB (m,n), m + n = r. The space W(m,n) can be 
viewed as an irreducible B (m,n) module with a highest 
weight vector 10). Therefore, the ladder representations of 
A (m - l,n - 1) appear when this particular representation 
of B (m,n) is restricted to a representation of its subalgebra 
A (m - l,n - 1), and then decomposed into irreducible 
representations. 

4. CONCLUDING REMARKS 
The trace formula for realizations of Lie algebras with 

creation and annihilation operators was generalized in the 
present paper to the case of Lie superalgebras. A crucial role 
for this generalization is played by the assumption that the 
Bose and Fermi operators mutually anticommute. 

Applying the trace formula to the defining matrix re
presentation of the LS, A (m ,n), we have constructed a class of 
irreducible nontypical representations of the algebra. The 
representations obtained in this way depend essentially on 
the canonical realization. In general, different realizations 
will lead to nonequivalent representations. In this respect it 
is interesting to study various realizations for a given LS. 
Likewise for the Lie algebras (see Ref. 5), one can try to 
construct Schur realizations, which lead immediately to ir
reducible representations. On the other hand, it is of physical 
interest to find minimal realizations, i.e., for a given algebra 
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.fit' to determine the minimum number m + n = r of pairs of 
creation and annihilation operators, for which .fit' is a subal
gebra of E (m,n). The automorphisms of the Bose-Fermi al
gebra provide a convenient way for generating new realiza
tions out of a given one and, thus, for constructing new 
representations. In all cases the main difficulty one has to 
overcome in constructing ladder representations of a given 
Lie superalgebra .fit' from a canonical realization 
d CE(m,n) is to decompose the irreducibleB (m,n) module 
W(m,n) into irreducible .fit'modules. 
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We present a method for evaluating a large class of Fredholm determinants that are associated 
with the evaluation of certain Wiener integrals. The infinite-dimensional determinant is shown to 
be equal to a single finite-dimensional determinant. 

PACS numbers: 02.30.Cj 

INTRODUCTION 

A common integral arising in the theory of Wiener inte
grals is that of the exponential of a quadratic combination of 
the integration variables. The evaluation of such integrals is 
reducible to the evaluation of an infinite-dimensional Fred
holm determinant, often of the Volterra type. In this paper 
we show that these infinite-dimensional determinants are 
equal to simple finite-dimensional determinants (not a limit 
of such). Our approach makes use of several important 
mathematical telchniques. First, we use the linear transfor
mations introduced by Cameron and Martin 1 to relate the 
Fredholm determinant to the determinant of a linear trans
formation. Second, we use the variation techniques of 
Schwinger2 to derive a differential equation for the determi
nant. Finally, we take advantage of the Gaussian nature of 
the Wiener measure, as presented in terms of its Fourier 
transform by Cecile DeWitt-Morette,3--6 to integrate the dif
ferential equation. 

WIENER MEASURES AND THEIR FOURIER 
TRANSFORMS (REF. 6) 

We are interested in the space of all paths in R n that 
begin at the origin and are parameterized by the interval 
T= [0,1]. Let Xbe this space and x an element of it. On X 
there is the Wiener measure dr(x), defined to be the Guassian 
measure with covariance inf: 

Ix dr(x) xa(t) xfJ(s) = inf(t,s) oafJ. (1 ) 

The fact that r is Gaussian is enough to allow one to compute 
all of the finite-dimensional distributions, as was Wiener's 
original definition. We prefer to define r in terms of its Four
ier transform, however. The Fourier transform is defined on 
the space X * dual to X. X * is essentially the space ofbounded 
measures: For /-lEX *, the duality is given by 

< /-l,x) - L d/-la (t ) xa(t ) , (2) 

r is then defined by its Fourier transform: 

alPresent address: Department of Physics, University of Utah, Salt Lake 
City, Utah 84112. 

blResearch supported by the National Science Foundation, Grant No. 
PHY77-27084. 

(.7 r)( /-l) = Ix dr (x) exp(i(p,x») 

=exp( - + L d/-la (t) f d/-lfJ(s) OafJ inf(t,s)). (3) 

The important fact about the covariance G afJ (t,s) 
=oafJ inf(t,s) of r is that it is a Green's function of the simple 
differential operator - d 21dt 2 (-,/o(t )): 

_ d 22 GaP(t,s) = oaP o(t - s), (4a) 
dt 

with the boundary conditions 

GaP(t = O,s) = 0, 

dGaP 
--(t= l,s)=O. 

dt 

(4b) 

(4c) 

These boundary conditions guarantee that G is symmetric: 

GaP (t,s) = G Pa(s,t ) . 

Equation (4) can be verified by writing 

inf(t,s) = t8 (s - t) + s8 (t - s) , 

(4d) 

(4e) 

where 8 is the step function. The importance of - d 21 dt 2 

and the boundary conditions on G is that they in some sense 
(see Ref. 6 pp. 271-82 for details) make G the inverse of 
f x2 dt. This agrees with the property that the Fourier trans
form of an infinite-dimensional Gaussian measure defined 
by a matrix A is just the exponential of the inverse matrix 
A - I. Further, it is by viewing r in terms of its Fourier trans
form, or its covariance G, that allows one to define convient
ly a large class of generalized Wiener measures. In particu
lar, consider the second-order operator}' given by 

d d 
/'ap = -oaP dt 2 + Fap(t) dt +Rap(t). (5) 

(Weare interested only in the case where F is skew, in par
ticular where Fap = Aap - Apa for some A. Note in the de
velopment below that the effects of a d I dt term are trivial for 
F symmetric and hence trivial in one dimension. This obser
vation is intimately connected with the fact that in mechan
ics, a linear velocity dependent term in a one-dimensional 
Lagrangian is equivalent to a total time derivative and hence 
irrelevant. Further, we want /' to be self-adjoint; thus RaP 
- Rpa = dApaldt.) We define the Green's function G asso

ciated with /' by 

}' afJ(t) G aY(t,s) = D~ o(t - s) , (6a) 
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with the boundary conditions 

Gf3Y(t = a,s) = 0, 

d 
- Gf3Y(t = I,s) = A ~(t = 1)·GaY(t = 1,s). 
dt 

(6b) 

(6c) 

These boundary conditions are those that define the sym
metric Green's function 

(6d) 

This new Green's function can be used as a covariance to 
define a new Gaussian measure y on X: 

(Yji)(,u) = exp( - ~ 1 d,ua (t) 1 d,uf3 (s) Ga!3(t,s)). (7) 

In the same way that the original Wiener measure cor
responded in some way to exp( - ! f T x2(t ) dt) , this new 
measure corresponds to 

exp( - + L (x
z + x·F·x + x·R·x) dt) . 

The Green's function G can be expressed conveniently 
in terms of B functions and homogeneous solutions of /. 
These expressions are generalizations of Eq. (4e) for the inf. 
Thus, consider the two functions J and K defined by 

and 

/af3(t) Jf3a(t,s) = 0, 

J/3Y(t = s,s) = 0, 

!!...Jf3Y(t = s,s) = fjPY, 
dt 

/ af3(t) K f3Y(t,s) = 0 , 

K{3y(t = s,s) = fjPY, 

!!...Kf3Y(t=s,s) = -AYf3(s). 
dt 

Let N represent the inverse of K : 

Naf3 (t,s) Kf3Y(s,t) = 8~ . 

Then G can be written as 

G(l,s) = B(s - t) J(t,O) N(O,I) K(I,s) 

(8) 

(9) 

(10) 

- B(t - s) K(l,I) N(I,O) J(O,s). (11) 

[Here, indices have been suppressed, juxtaposition of matri
ces implies matrix multiplication, and K"{3(t,s)==Kf3"(s,t ).] 
We point out here that the determinant of the matrix 
K "f3 (0, I) will be equal to the Fredholm determinant we wish 
to calculate. Thus we will have reduced the calculation to 
solving the second order, linear equation (9). Cameron and 
Martin 7 first showed that a Fredholm determinant (for one
dimensional paths) could be written in terms of a Sturm
Liouville equation. The extension to cases of paths in more 
than one dimension was given by Cecile DeWitt-Morette. 5 

Our discussion is the first that we know of that successfully 
treats cases with a first order term in /. 

THE GAUSSIAN INTEGRAL 

We wish now to evaluate the integral 
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1== L dy (x) exp( - ! H (x,x)) , (12) 

where y is the usual Wiener measure and H is a quadratic 
combination of the x's: 

H (x,x)== L (x(t ).F(t) dx(t) + x(t ).R (t )·x(t) dt) 

+ x(I).A (I).x(I). (13) 

We choose to include explicitly the boundary term. If we 
wanted to calculate an integral without it, we would include 
them as above, and then compensate by integrating (with the 
new measure, discussed below) the simple function 
exp(x( I ).A (I ).x( I)). Note that the boundary term is absent if 
F= a (remember F=A -A). 

Because H is quadratic, it is possible to define a new 
measure ythat incorporates the exp( - (1/2) H) term intody 

dy(x)-dy(x) exp( - !H(x,x)). (14) 

I t proves convenient to define the Fourier transforms of both 
yand yas simply the exponential of a quadratic form. As 
such, both y and yare normalized to I. In general, the inte
gral I will not be 1, and the correspondence (14) is only a 
proportionality. Thus 

Ddf(x) = dy/x) exp{ - !H (x,x)) . (15) 

D will be a Fredholm determinant. However, it will be inde
pendent of x. This fact is best argued by showing that y can 
be obtained from y by a linear change of variables, and hence 
the Jacobian is constant. (See Ref. 6 for the details of this 
argument.) 

Viewed in this way as the Jacobian of a linear transfor
mation, there are many ways to compute D. One direct way 
is to approximate the integral in H by a sum. Each term in 
the sum is a cylindrical function, so the Wiener integral can 
be evaluated. Then the limit can be taken in passing from a 
sum to an integral. In some cases, the limit can actually be 
evaluated. This is Feynman's approach to path integration.8 

(More precisely, this is his definition of the integral.). Next, 
one can find the appropriate change of variables, approxi
mate it by discretized versions, evaluate the lacobians of the 
discretized version, and pass to the limit. This is the ap
proach taken originally by Cameron and Martin. I Once one 
has an explicit form of the transformation M that takes y to 
y, one can generalize the finite-dimensional result that 

detM = exp(tr 10M) (16a) 

to the infinite-dimensional case. Mwill in fact be of the Vol
terra type and 10M can be defined. (See Ref 6, p. 280, for a 
discussion of this.) The trouble with this approach is that the 
usual definition of the trace of a continuous matrix neglects 
important contributions due to boundary terms and hence 
gives the wrong answer. Finally, one can generalize the 
relationship 

( 
detG ) 1/2 = detM 
detGo 

(16b) 

from the case of finite-dimensional Gaussian measures to the 
infinite-dimensional case. One has thus reduced the problem 
of defining detM to that defining (detG IdetGo). 
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This ratio can be defined and evaluated in two ways. 
The first is to discretize both Go and G, use their representa
tions in terms of the e functions and the homogeneous solu
tions J and K, evaluate the ratio of the finite-dimensional 
determinants, and then pass to the appropriate limit in the 
discretization.5 The second is to use an eigenfunction expan
sion of Go and G and use the product of the eigenvalues to 
define the determinants.9 (Part of our calculation is similar 
to that in Ref. 9, despite the difference in approaches.) 

We propose to use the variational principle of 
Schwinger to derive a differential equation for I. We will 
then use the expression for G in terms of J and K to integrate 
this equation. We will show that 

I=D= I detKo(0,1) 1
112

, (17) 
detK(0,1) 

where Ko and K are the homogeneous solutions of /'0 and 
/' with the boundary conditions by (9). The det here is the 
simple finite-dimensional determinant. 

For simplicity of discussion, consider first the case 
whenA = F = 0. The modifications needed for F i= ° are pre
sented in the Appendix. Then 

H (x, x) = i x(t )·R (t ).x(t) dt. 

Weare then interested in the integral 

I = Ix dy (x) exp( - ~H(x, x)). 

(18) 

(19) 

ized Wiener measure defined by the Green's function G", of 
the operator 

/'" =/o+(F(dldt)+R): 

dD(A) = ( dtRaf3(t) ( D(A)dy", (x)xf3(t)xa(t) 
dA JT Jx 

= D (A ) i. dt Raf3 (t) G", (t,t ) , (28) 

or 

_1_ dD(A) = ( dttr(R (t) G",(t,t)). 
D(A) dA JT (29) 

Thus we have the desired equation for D: 

d InD(A) = Tr(RG",). 
dA 

(30) 

(Here, "tr AB" denotes multiplying A and B together (or 
letting A operate on B if A is an operator) then taking the 
trace of the resulting matrix. The large trace Tr is a contin
ous trace 

TrG = i. tr G (t,s) It = s dt . (31) 

We would now like to write G in terms of e, J, N, and K 
to suggest a method for evaluating D. In Eq. (11) if we set 
t = s and use the fact that G is continuous at t = s, we have 
that 

G",(t,t) = -K",(t,l)N",(l,O)J",(O,t). (32) 

As argued in Ref. 6, p. 271, this can be written in terms of a Then 
new measure y as 

1= Ix Ddy(x) , (20) 

where the covariance G of y is the Green's function of 

d 2 

/(t)= - dt 2 +R(t). (21) 

Since y is normalized, we know that 

I=D J dy=D; (22) 

thus we want to evaluate D. To do this, we consider a whole 
family of integrals, parameterized by AE[O, 1]: 

D(A) = Ix D(A) dy",(x) (23) 

= Ix dy (x) exp( - ~ i x·R·x dt) . (24) 

Clearly 

D (0) = 1 and D (A = 1) = I. (25) 

We can now derive a differential equation for D: 

dD (A ) d i (A 1 ) --= - dy (x) exp - - x·R·x dt 
dA dA x 2 T 

(26) 

= Ix dy (x) ( - + i x(t )·R (t).x(t) dt) 

xexp( - 0 i x·R·x dt). (27) 

This expression can be written in terms of dy"" the general-
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dlnD i1 

--= - ~tr dt( - R (t) K",(t,l) N",(I,O) J",(O,t)) 
dA 0 

=! tr f J",(O,t)R (t)K",(t,l)N",(l,O). (33) 

We have derived an interesting expression for the Fred
holm determinant. We would like now to show that this ex
pression is equal to the In of the ratio of two determinants of 
two matrices, one assocaited with the operator /' '" = 1 and 
the other with/,,,, =0' We considerln(C) where Cis defined 
to be 

1 _ detK",(0,1) 
C(A)= . 

detKo(O,l) 

We now want to show that 

d InC (A ) 

dA 
-tr f J",(0,t)R(t)K",(t,1)N",(1,0) 

d 
-2-lnD 

dA ' 

with CIa) = 1, so that 

InC= - 2lnD 

or 

i.e., 

D= C- 1J2 , 

1= D = (detK1(O,1)) -1/2 

detKo(O,l) 

(34) 

(35) 

(36) 

(37) 

(38) 

(39) 

as desired. We will thus have evaluated the Wiener integral I, 
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or equivalently the Fredholm determinant D, in terms of 
determinants of finite-dimensional matrices. 

First, then 

dlnC 1 dlK .. 1 --=-----
d)' IK .. I d)' 

= tr(N ... K~) 

(40) 

(41) 

(whereK'=dK Id)' and IK 1== detK). (42) 

To evaluate this, we need an expression for K '. For this, take 
did)' of the equation / .. K .. = ° for K ... We find that 

/ .. (t) K ~ (t,O) = - R (t ).K .. (t,O) . (43) 

Thus K ~ is an inhomogeneous solution of the operator / ... 
As such, it can be solved for by the method of Green's func
tions. Thus 

K~(t,l)= - f G~dV(t,s)R(s)K .. (s,l)ds, (44) 

where G is a Green's function of / .. with boundary condi
tions appropriate to K ' at t = 1. An explicit representation of 
G ~dv in terms of e functions and homogeneous solutions of 
fis 

G ~dV(t,S) = f} (s - t) J .. (t,s) . (45) 

Thus 

K~(O,l)= - fJ .. (O,S)R(S)K .. (S,l)dS. (46) 

Putting this expression for K ~ into Eq. (44) we find that 

dlnC 
d)' 

= tr(N,dO,l) f (- l)J .. (O,s)R (S)K .. (S,l)) ds (47) 

= - tr f J .. (O,s) R (s) K .. (s,l) N .. (l,O) ds. (48) 

Comparison with (33) gives the desired result: 

dlnC(A) = -2~lnD()'). (49) 
d)' d)' 

The values of InC and InD at). = ° are both zero. Thus 

or 
D()') = (C()' ))-1/2 (50) 

1= D(l) = \ detKI(O,l) \ -112. 

detKo(O,l) 
(51) 

As noted earlier, we relegate to the Appendix a discus
sion of the modification of the above proof to include the case 
whenF#O. 

THE CASE OF PATH INTEGRALS (REF. 10) 

The techniques developed here are directly applicable 
to the theory of path integrals and their imaginary Gaussian 
prodistributions. (See Ref. 6, pp. 259-82, for a discussion of 
prodistributions.) The Gaussian integrands arise when one 
does a semiclassical expansion of path integral, say for the 
propagator or for a wave function with a given initial value. 
(It is when doing the case of the wave function that the 
boundary terms in the integrand become important. They 
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are usually neglected because one is interested in the propa
gator.) Note that by defining the new measure ji one is able 
not only to calculate the semiclassical approximation easily, 
but also to have the "semiclassical measure" to compute the 
higher order terms in the semiclassical expansion. For the 
path integral, f will be the Jacobi operator and the fields J 
and K are Jacobi fields. The determinant of K can be inter
preted geometrically in terms of volume expansions and con
tractions of a congruence of classical flows defined in terms 
of a given initial (canonical) momentum. (See Ref. 11 for 
details.) 

CONCLUSION 

We have given a method for evaluating a large class of 
Fredholm determinants that arise when evaluating Wiener 
integrals of Gaussian integrands. Our method offers the sim
plicity of not resorting to any kind of discretization or expan
sion procedures to define the determinant; and it is manifest
ly covariant, making it directly applicable to cases when the 
paths are more than one dimensional. Finally our method is 
able to handle cases when there is a stochastic term of the 
form f x·F·dx in the integrand. These cases are cumbersome, 
and usually not treated, in other approaches to the Wiener 
integral. The power of our method derives from a combina
tion of the linear change of variables introduced by Cameron 
and Martin (and extended by DeWitt-Morette), the powerful 
insight gained by viewing the Wiener measures in terms of 
their Fourier transforms and the associated Green's func
tions, and the idea of Schwinger's oflooking not at one inte
grand but at a parametric family of integrands. 

APPENDIX 

We here show what modifications of the proof relating 
the Fredholm determinant D to the finite-dimensional deter
minant IK 1 are needed for the case when A #0. There are 
now two added complications, the boundary term x·A.x and 
the stochastic term f x·F·x. [The two are not unrelated; in 
fact, the operator 

d 2 d 
/(t)=- dt 2 +F dt +R (AI) 

is not self-adjoint on the space of paths that vanish only at 
t = 0, unless the proper boundary terms are included. Equiv
alently, the quadratic form Q defined by 

Q [x, y] ==x(1)'Y(1) + x(l).A (l).y(l) 

+ L x(t )./(t ).y(t ) dt (A2) 

is not symmetric without the boundary terms. (The first term 
is effectively contained in the usual Wiener measure r that 
we begin with.)] 

So, we want to prove that 

D()') 1 dr(x) exp( - yl,H(x,x)) 

= I detK .. (1,0)1-lf2, 

where now H is given by 

B. Nelson and B. Sheeks 
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H(x,x) = x(I).A (I).x(l) 

+ fX(/)'(F(/)~ +R(t))'X(/)dt, (A4) 

and K is defined to be the solution to 

/.d/ ) K.dt,O) = ° (A5a) 

[where /A = - (d Idl 2) + A (F(d Idt) + R )] with the 
boundary condition (A6) 

KA (0,0) = g-I (A5b) 

(where g is the metric tensor, just 8 in Cartesian coordinates) 
and 

dKA -
-(t=O,O)= -AA(/). 

dl 
(A5c) 

Again we are considering a parametric family of integrals. 
Note that A enters into the definition of / A and into the 
boundary conditions of K A • Following the same analysis that 
led to Eq. (28) it is obvious that the differential equation for D 
is now 

~ InD(A) = - !trA (1) G,d1,1) 
dA 

1 11 ( d -- dttr F(t)-G.dt,s)ls~1 
2 0 dt 

+ R (t) GA(t,t)), (A6) 

where we have used the fact that 

f dt L dy(x)x(t)i(t) = f dt ~ G(/,s)ls~1 . (A7) 

We now again replace G (/,1 ) by the - K·N·J term. We 
also replace 

dG(t,s) I 
dt t~s 

by 

(A8) 

and note that because Fis skew, the g-I does not contribute 
to tr(FG). Thus the desired equation for D (A ) is 

~(lnD(A)) 
dA 

= !trA (1) K,d1,1) NA (1,0) JA (0,1) 

+ - dt tr(F(t) KA(t,l) + R (t) KA (t,l)) 1 11 
2 0 

xN,d1,0) J,dO,t). (A9) 

We next consider C(A) as defined by (34). Again 

d InC (A ) = tr(NA (l,O).K ~(0,1)). (AlO) 
dA 

The expression for K ' is now 

K~ = - L B(S-t)J.dt,s{ F(s) ~ +R(S))K,ds,l)dS 
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-J.dt,I)A(I). (All) 

[The boundary term is needed because the boundary value of 

(d Idt) K ~ (t,l) att = 1 is no longer zero.] 
Putting this expression for K ~ (0, 1) into the equation for 

C(A.) (AW) gives that 

dlnC(A) 

dA 

= - Ldttr[(F(t):t +R(t)) 

XK;. (t,l) N;. (1,0) J;.(O,I)] 

- trIA (1) K;. (1,1) NA (1,0) J;. (0, 1)) 
d 

-2-lnD(A) 
dA ' 

(AI2) 

where use has been made of the cyclic property of the trace 
and the fact that N is the inverse of K. Thus, once again we 
have the relationship between the Fredholm determinant D 
and that of K: 

D(A) = jdetK;. (0,1)1- 1/2 . 

(We have used the fact that in Cartesian coordinates 

KgP(t,l) = 8aP . 

So detKo = 1.) 
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Modified singular perturbation method for a stiff system of linear evolution 
equations 
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A stiff system of linear evolution equations in Banach space is investigated. It is shown that the 
standard singular perturbation algorithm can be considerably simplified. In this modified 
algorithm the asymptotic solutions can be obtained in each order independently. The initial 
conditions are given explicitly so there is no need to solve the so-called "inner" equations. Two 
examples of application are considered. 

PACS numbers: 02.30.Jr 

A small parameter multiplying the time derivative term 
may appear in a system of evolution equations when the time 
constants characterizing the system differ from each other 
by orders of magnitude. Such a system of evolution equa
tions may be called stiff by analogy to the case of ordinary 
differential equations. I For stiff systems the standard pertur
bation approach breaks down for t close to the origin (the 
initial moment). Thus the standard expansion should be for 
small t supplemented by an inner solution. That procedure 
leads to the singular perturbation method.2

-
5 

The aim of this paper is to present a new algorithm 
based on the singular perturbation method developed by 
Mika5 for the following system of linear equations: 

~~x(t) = A (t )x(t) + P(t )y(t) + q(t), 
dt 

~ y(t) = Q(t )x(t) + B (t)y(t) + r(t), 
dt 

with the initial conditions 

x(O) = p, y(O) = 'Y/. 

(la) 

(lb) 

As in Ref. 5 the above equation will be considered as evolu
tion equations in a Banach space f? with the norm II II: 

For tE[O,tO] , q(t ),r(t )Ef?, P(t), Q (t), andB (t) are bound
ed linear operators in f? The linear operator A (t) with the 
domain D A dense in gP is of the form 

ZEDA' A (t)z = Aoz + AI(t)z, 

where A l(t) is bounded and the closed operator Ao is a gener
ator of a strongly continuous semi group of bounded evolu
tion operators G (t)6 such that 

II G (t )11 <exp(yt), for some real y, 

where II II denotes the operator norm in f?; moreover for 
each rE[D,to] the resolvent operator 
R (,.1,,A (1')) = (AI - A (1')) - I satisfies the inequality 

IIR (,.1,,A (1'))11«,.1, - YT) - I'YT <A, (2) 

and sUPrE[O.f. I y T = r < 0, pED A' 'Y/Ef? The positive number 
~ plays the role of the small parameter. 

1. THE SINGULAR PERTURBATION METHOD 

We sketch briefly the results of Ref. 5, where the singu
lar perturbation method is applied to the system (la), (lb). 

It is assumed that for tE[D,to] the operator functions 

A I (t ), P (t ), Q (t ), and B (t ) are n + I times continuously 
differentiable in the operator norm and the functions q(t ) and 
r(t) are (n + 1) times strongly continuously differentiable. 

Then the unique, strongly differentiable solutions x(t ), 
y(t) to the system (la), (Ib) have asymptotic expansions 
x(n)(t), y<n)(t) such that for each tE[O,to] 

IIx(t) - x(n)(t )11 = 0 (~ + I), 
(3) 

IIY(t) - y<n)(t)1I = 0 (~ + I). 

The asymptotic solutions of the nth order xn(t), yn(t) 
are given by the sums 

x(n)(t) = x(n)(t I~) + x<n)(t), 

(4) 
y<n)(t) = ;n)(t I~) + y<n)(t ), 

of the inner asymptotic solutions x(n)(t IE),;n)(t IE) and the 
outer asymptotic solutions x<n)(t), y<n)(t). 

The outer solution is obtained from the standard per
turbation approach applied to (I) 

(5) 

y<n)(t) = i E'Yk (t ), 
k=O 

where xk(t )'Yk(t), k = 0, I, ... ,n, are solutions to the outer 
equations 

A (t)Xk(t) + P(t)Yk(t) + qk(t) = 0, (6a) 

:rYk(t) = Q(t)Xk(t) + B(t)Yk(t) + 80k r(t), (6b) 

with 

{ 

q(t), k = 0, 

qk(t) = d - () k 
- dt X k _ 1 t , #0. 

The outer asymptotic solutions approximate the exact solu
tions to (1) for t large in comparison with E. 

The inner asymptotic solutions x(n)( 1') and ;n)(1') are 
given by the series of 

x(n)(r) = i Ekxk(r), 
k=O 

(7) 
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ytn)(r) = i E"Yk(r) 
k~O 

which satisfy the equations 

d _ k ~-m 

-xk(r)= L 
dr m~O (k - m)! 

X(A (k-m)xm(r) +p(k-m)Ym(r», (8a) 
d _ k-I ~-m-I 

-Yk(r)= L 
dr m ~ 0 (k - m - I)! 

X(Q(k-m-llxm(r) +B(k-m-Ilym(r», (8b) 

where the notation 

v,m)= d
m 

V(t)IT~o,m = O,I, ... ,n 
drm 

is used. Since the reason for introducing them is to match the 
exact solutions in the region where t is of the order of E it is 
demanded that 

lim Yk(r) = 0; k = O,I,oo.,n. (9) 
T~oo 

The above requirement and the structure of (6) and (8) are 
sufficient to specify the initial conditions for the inner and 
outer solutions. Let us assume,u = 0(1), 1] = 0 (I). Taking 
into account (I) and (4) we have 

xo(O) + xo(O) = /-L, 

Yo(O) + Yo(O) = 1], 

Xk(O) + xdO) = 0, k = l,oo.,n, 

ydO) + ydO) = O. 

From (8) and (9) it follows that 

Yo(r) = 0, Yo(O) = 1]. 

(10) 

(11) 

Now with the above initial condition Eqs. (6) can be solved 
for k = 0 yielding xo(O) and, according to (10), xo(O). For 
k > 0 the procedure is similar: Eq. (8b) yields Yk (0) in terms 
ofYm(O) and xm(O), m = O,I, ... ,k -1, and from (9) gives 
Yk (0). This allows us to solve (6) and, finally, to find x k (0) 
and solve (8a). 

The analysis of the system (1) given in Ref. 5 was based 
upon the theory of evolution equations in Banach spaces.2

•
6

.
7 

For completeness and clarity we present here also the formu
lation, close to the original one, of the main results of Ref. 5 
in the form of Assumption 1, resulting in Lemmas 2-4 and 
Theorem 5. 

Let f¥' be a complex Banach space with the norm It II 
and 9J be the Banach space of bounded operators in f¥' with 
the norm defined by the same symbol. 

Assumption 1: The operator Ao with domain DAis an 
infinitesimal generator of a strongly continuous semigroup. 
The operator functions A I(t), B (t), P (t), and Q (t) with 
values from f!l) are (n + 1) times continuously differentiable 
on [O,tol where to > 0, in the sense of norm in f!jJ . The quasise
migroups generated by the function A (t) defined for zED A 

with the equation 

A (t)z = AoZ + A1(t)z, 

and by the function B (t) are, respectively, UA (t,s) satisfying 
on the triangle 
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n = {(t,s):O..;s..;t..;to I, 
the inequality 

II UA (t,s)II..;exp(YA (t - s», 

and UB(t,s) satisfying on n the inequality 

II UB(t,s)II..;exp(YB(t - s». 

The constant Y A is negative. 
The function (l/E)A (t) generates the quasisemigroup 

U~El(t,s) satisfying on n the inequality 

IIU~l(t,s)Il..;exp (YA (t ~ s») . 

The functions q(t) and r(t) with values from zr are 
(n + 1) times strongly continuously differentiable on [O,to]. 

Lemma 2: A singularly perturbed system of evolution 
equations (1) with the initial conditions x(O) = /-LED A' 
y(O) = 1]Ef¥' and all the functions satisfying Assumption 1, 
has for any E> ° unique strongly differentiable solutions 
{x(t ),y(t)). 

Lemma 3: The system of outer asymptotic equations (6) 
with all the functions satisfying Assumption I has unique 
strongly differentiable solutions I xo(t ),,,,,xn (t ),Yo(t ), .. ·,Yn (t) I 
for any initial conditions such that 

ydO) = iikEf¥', k = O,I, ... ,n. 

Lemma 4: Let the operator functions A (t ), B (t), P (t ), 
and Q (t ) satisfy Assumption 1. The system of inner asymp
totic equations (8) has unique strongly differentiable 
solutions 

[xo(t IE), ... ,Xn(t IE),yo(t IE),oo.,Yn(t IE») 

for any initial conditions put on xk (t) such that 

xk(O) = fikEDA' k = O,I,oo.,n, 

and with the requirement (9). 
The functions x k (t ) and Y k (t ) satisfy the inequalities 

2k 

Ilxk(t IE)II..;exp(yot IE) L Myl(t IE»), 
)~O 

2(k -I) 

\!Yk(t IE)II..;exp(yot IE) L Nyl(t IE»), 
)~O 

k = O,l,oo.,n, 

where My) and N?) are some positive constants. A negative 
parameter Yo is defined by the semigroup Go(t IE) generated 
by A ,0, and satisfying for tE[O,tol the inequality 

IIGo(t IE)II..;exp(yot IE). 

Theorem 5: The asymptotic solutions of order n, 
I xlnl(t ),yln)(t) I defined in (4), (5), and (7), tend in the norm to 
the exact solutions [x(t ),y(t )) of the singularly perturbed sys
tem of equations (I) uniformly on [O,to] faster than En. In 
other words, for each 8 > ° there exists E> ° such that for all 
tE[O,to]: 

E-nIlX(t) _x(n)(t)11 <8, 

E - nlly(t) - y<nl(t )11 < 8. 

The described singular perturbation approach to ( 1) has 
two features inconvenient from the practical point of view. 
First, both the outer and inner equations are to be solved 
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successively since they contain the lower order solutions in 
the source terms. Second, due to the coupling through the 
initial conditions (10) in each order the inner equation (8b) 
should be solved before the system of the outer equations (6). 

These properties usually limit the practical applications 
of the singular perturbation approach to (1) to cases when e is 
small enough to ensure the sufficient accuracy of the low 
order approximations. Then, since the inner solutions are 
negligible except when t = 0 (e) their role reduces in practice 
to providing the initial conditions for the outer equations. 
Thus it would be desirable to get the initial conditions for the 
outer solutions without solving the inner equations. We 
show how it is possible and give explicit formula for the low 
order approximations in the following section. 

Further we propose how to avoid the successive solving 
of the outer equations. The presented algorithm can, in prin
ciple, be applied to any order. However, as we shall see in the 
example of the lengthy terms in the second order, the com
plexity grows rapidly with the order of approximation. For 
this reason the second order is the last included in this paper. 

The modified outer equations obtained here together 
with the initial conditions can be solved in zero, first, or 
second order independently and yield the approximate solu
tions correct in the desired order of e for asymptotic (I> e) 
times. 

2. THE INITIAL CONDITIONS FOR THE OUTER 
EQUATIONS IN THE LOW ORDER APPROXIMATION 

Let us try to calculate the first three initial conditions 
Yk(O), k = 0,1,2, needed for the outer equations (6). Fortu
nately, as we shall see, one can obtain the explicit expressions 
for Yk (0) although in the general case it is not possible to get 
such expressions for the inner solutions for an arbitrary 
tE[O,to]· 

.io(O) = - (A (o')~ I(P(O'1J + q(O». 

It follows from the inequality (2) that (A (0,) ~I exists and is 
bounded, and moreover6 Eq. (8a) for k = 0: 

e!!..... xo(t IE) = A (O'Xo(t IE), 
dt 

(where the substitution t = ET is made), with 

xo(O) = f.J - .io(O), 

has the solution 

xo(t IE) = Go{t IE)Xo(O), 

where the semigroup Go(r) fulfills the inequality 

II Go(r) 1\ <;exp(yor), Yo < O. 

In the first order (8b) gives for YI(t IE) 

E!!..... YI(t Ie) = Q (O'xo(t IE). 
dt 

The requirement (9) immediately gives 

YI(t IE) = - (lIE) f'" dt'Q (o'xo{t 'IE), 

which yields after inserting (12) 
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(12) 

YI(t Ie) = Q (O'(A (O')~ IGo(t IE}Xo(O), 

and from (10) 

.viO) = - Q (O'(A (O')~ I xo(O). 

(13) 

(14) 

To obtainY2(0) = - yz{O) one needs xl(t Ie). Equation (8a) 
for k = 1, 

E!!.....xl(tl£) = A (O'xI(tl£) + ~A(\'xo(tl£) 
dt e 

+P(\'YI(tIE), 

has the solution 
XI(t Ie) = Go{t !c)X1(0) 

+ - dt' t 'Go((t - t ')/E)A (I)Go(t '/c) xo(O) 1 l' 
c2 

0 

+ ~ I'dt' Go{{t - t ')Ic)p(l)Q(O) (A (0)) ~ I 

e Jo 
XGo(t'!c)xo(O). (15) 

Equation (8b) for k = 2 and (9) gives 

Y2{t!c)= - J.- r"'dt'((t'/c)Q(I)Xo(t'/c) 
c ), 

+ Q (0) xl(t' Ic) + B (0) YI(t '/c)), 

and after inserting (12), (13), and (15) 

Y2(t Ic) = - ~ [ ~ Q(O + n(O)Q(O) (A (0)) ~ I] 

X Ie< dt' Go(t '/c)xo(O) 

_ ~Q(O)f"" dl' Go{t'/c)XdOj _ ~ Q(O) 

X f'" dt' .Cdt " t" Go{{t' - t ")lc)A (I) 

X Go(t "/c) xo(O) 

_ ~ Q (0) roo dt' (dt" Go((t' - t ")lc) 
c J, Jo 

XP{\)Q(O) (A (0») ~ 1G
O
{t" !cJXo(O). (16) 

For t = 0 the integrations in the double integrals can be per
formed analytically. To see this let us put t = 0 and change 
the order of integration in the last two terms in (16), which 
yields 

- ~ Q(O) roo dt" t" roo dt' Go((t' - t ")/e)A (I)GO{t" Ic) 
€ Jo J," 

X xo{O) - ~ Q (0) roo dl" roo dt' Go((!' - t ")lc) 
c Jo J," 

Xp(l)Q(O) (A (0») - I Go(f "/c)X()(O). 

Now using the simple formulas 

l"" dt' Go(t '/c) = - c (A (0») - \ 

l"" dt' t 'Go(l '/c) = £2(A (0)) ~ 2, 

we obtain from (16): 

Y2(0) = [B (O)Q (0) _ Q (1) + Q (0) (A (0») - I 

X{A (I) _ p(I)Q(O») ] 

X (A (0)) - 2XO(0) + Q (0) (A (0)) ~ IX I{O). 
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We get the initial valuexdO) = - xl(O) from (6a) for k = 1 
using the expression (14) for YI (0) and calculating (d I dt ).io(O) 
from (6a) for k = 0. 

In such a way the initial conditions for Yo(t ), YI (t), and 
Y2(t) are expressed explicitly with f.l and 17 and with the 
known functions and their derivatives taken at t = 0. 

3. THE OUTER ASYMPTOTIC EQUATIONS FORj/(k)(t) 

Let us eliminatexk (t) in (6b) using (6a). To calculate the 
derivatives (d I dt )Xm (t ), m = 0, 1 in the source we differenti
ate the same expression for Xm (t) from (6a) substituting for 
(d Idt lYm (t) the right-hand side of(6a) with xm (t ) in terms of 
Y m (t). Then we multiply the resulting equations for Yk (t ) by 
€k and sum up getting the following equations for yk I(t ) as 
defined in (5), k = 0, 1,2: 

~ yOI(t) = C(OI (t lYOI(t) + s(O)(t), 
dt 

~ yll(t) = C(O)(t)yll(t) + €OC(1I(t)yOI(t) +S(II, 

~ y2)(t) = C(OV )yZI(t) + €8C(1I(t )Y1I(t) 
dt 

+ €20C (21(t )yOI(t) + S(21(t ), 

where 

C(OI(t) = - Q (t)A (t) - Ip(t) + B (t), 

SIOl(t) = - Q (t)A (t) - Iq(t) + r(t), 
8C m(t ) = - Q (t)A (t) - IH (t), 

H(t) = ~ (A (t) - Ip(t)) + A (t) -Ip(t )C(OI(t), 
dt 

s(1)(t) = SIOl(t) - €Q (t)A (t) - IVIOI(t), 

(18a) 

(18b) 

(18c) 

OC(ZI(t) = - Q(t)A (t)-I [~(A (t)-IH(t)) +A (t)-I 
dt 

X P(t)OC(1)(t)+A(t)-IH(t)C(OI(t)] , 

pl(t) = S(OI(t) + €Q (t)A (t) - I [ v(1I(t) + €A (t) - I 

XH (t )SIOI(t) + € ~ (A (t) - lul°l(t) I], 
dt 

v(il(t) = ~ (A (t) - Iq(t)) + A (t) - IP(t )sUI(t), 
dt 

i = 0,1. 

The corresponding expressions for ~k I(t), k = 0,1,2, are 

XO)(t) = - A (t) - I(P(t )yOI(t) + q(t) ), (19a) 

xll(t) = - A (t) -1(P(t )Y1I(t) + €H(t)yOI(t) + q(t) 

+€V(OI(t)), (19b) 

X 21(t) = -A (t) -I { P(t )Y2)(t) + €H(t )y1l(t) 

+ €2 [ ~ (A (t) - IH (t)) + A (t) - I 
dt 

X (P (t )oC (lI(t) + H (t)C (OI(t)) ]yOI(t) 

+ q(t) + €v(1)(t) + €2 
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X [ :t (A (t) - lul°l(t)) + H (t )SIOI(t) ]} , 

Applying the similar procedure of multiplying by €k 
and summing up to (11), (14), and (17) we get the initial condi
tions to supplement Eqs. (18). 

yOl(O) = 17, 

Y 11(0) = 17 - €Q (01 (A (01) - I [f.l + (A (01) - I(P (0117 + q(O) )], 

y21(0) = 17 - €Q (O)(A (01) - I [f.l + (A (01) - I 

X (p(01 y1l(0) + €H(O)17] 
+ q(O) + €ul°I(O)] + €z [B (OIQ (01 _ Q (1 I (20) 
+ Q (01 {A (01) - I(A (1) _ P (lIQ (01) J(A (01) - 2 

X [f.l + (A (01) - I(p (0117 + q(O) )]. 

4. THE MODIFIED OUTER EQUATIONS 

We now show that ifin the right-hand side oft 18b)yOI(t ) 
is substituted by y1l(t) then the additional error introduced 
by such modification is of the order of 0 (€2). 

Let us introduce the modified outer equation for 
~ld(t), k = 0,1,2, 

~~ld(t) = C(kl(t~ld(t) + S(kl(t), 

where 

C(I)(t) = C(OI(t) + €OC(lI(t), 

C(Z)(t) = C(I)(t) + €20C(21(t). 

(21) 

Let the modified solutions to (21) fulfill the same initial con
ditions as 

~~d (0) = yk 1(0), k = 0,1,2. (22) 

Since C (Ol(t ) is a bounded operator function strongly 
continuously differentiable on [O,to] it generates for t, t / such 
that to;;' t;;. t ';;'0 a strongly continuous evolution operator 
V (o1(t,t /) such that2 

IIV(O)(t,t')II<exp(y(t-t')), YERI. (23) 

The solution to the outer equation (18b) is 

yll(t) = V(OI(t,O)y1)(O) 

+ fdt / V(O)(t,t /) (€8C (I)(t /) y{Ol(t /) 

+Slll(t')). (24) 

On the other hand y;:,~d (t) satisfies the Volterra equation 

y;:,~d (t) = V(OI(t,OlYl)(O) 

+ fdt' V(OI(t,t /) (€OC (1)(t /) y;:,~d (t /) 

+ Sll)(t ')). (25) 

Subtracting (24) from (25) we get the Volterra equation for 
oyl)(t) y;:,~)d (t) - yll(t): 

oyl)(t) = fdt / VIOI(t,t ')€8C(lI(t /)8 yl)(t /) + m(t), 

where 

m(t) = fdt / V{oI(t,t ')€8C(1I(t /) \y1)(t /) - yO)(t /) ). 

We have 

Tomasz Blenski 

(26) 

2140 



                                                                                                                                    

Il.ym(t) - yO)(t )11 = 0 (e), tE[O,to], 

and since oC(\)(t) and V(O)(t,t') are bounded for to)t)t ';;;.0: 

Ilm(t )11 = 0 (e2
); tE[O,to]' 

Solving (26) by iteration immediately gives the 
estimation 

Iloy!)(t )11 = 0 (e2
), tE[O,to]' 

The similar consideration gives for k = 2 

11~~d (t) - y21(t )11 = 0 (e3
), tE[O,tol. 

We may now substitute~~d (t) in (19b) and (19c) for the 
lower order yml(t), m = O, ... ,k - 1; and define ~~d (t): 

~~d (t) = X<0l(t) = - A (t) - I(P(t )~~d(t) + q(t)), 

~~d(t) = - A (t) -I [(P(t) + eH(t ))~~d(t) 
+ q(t )eV(O)(t ) l, 

~~d (t) = - A (t) - I { [ P (t) + eH (t) 

+ e2 ~ (A (t) - IH(t)) + e2A (t) - I(P(t )oC(I)(t) 
dt 

+ H (t)C (O)(t) ) l~~d (t) + q(t) + eV(l)(t) 

+ e2 
[ :t (A (t) - IdO)(t) ) + H (t )s(O)(t)] } . (27) 

It follows immediately that 

11~~d(t)-X<k)(t)11 = O(ek+ I), k= 1,2. 

The above results can be formulated in the form of the fol
lowing theorem: 

Theorem 6: Let Assumption 1 be fulfilled. The modified 
outer solutions ! ~~d (t )'~~d (t) I, n = 0,1,2, being the solu
tions to (21) and (27) with the initial conditions (20), tend in 
the norm to the outer asymptotic solutions! x<nl(t ),ynl(t) I, 
given in (5) and (6), uniformly on [O,to] faster than en. 

It immediately follows that the modified outer solu
tions of the nth order approximate the exact solutions to (1) 
[ x( t ),y( t ) I with the error of the order of 0 (en + I) if only t,>e. 
The last condition follows from neglecting the inner solu
tions for t = 0 (e), and has nothing to do with the modifica
tion of the outer equations. To achieve the 0 (en + I) accuracy 

also in the initial layer one could take X~~d (t) = ~~d (t) 
+ xlnl(t ),y~~d (t) = ~~d (t) + ynl(t) but usually this region is 

of little practical importance. 
The advantage of the modified outer equations is that 

they do not contain the lower order solutions in the source 
terms and hence can be solved in each order (k = 0,1,2) 
independently. 

Such systems of equations as (1) are usually encoun
tered in kinetic problems where fast, rapidly decaying tran
sients appear. Then the method permits separation of these 
transients from the processes which are dominant for long 
times. 

In the next section two examples of application are 
briefly sketched. The first is connected with the Boltzmann 
equation in the kinetic theory of gases; the second with the 
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reactor kinetics equations in the neutron transport theory. 

5. EXAMPLES OF APPLICATIONS 
A. Application for linearized Boltzmann equation for 
gases. Connection with the Champman-Enskog 
method 

Let us first note that forq(t ) = r(t) = Othesystem(l)can 
be written in the form H 

d 
e -z(t) = d'(t )z(t) + eJJ(t )z(t), 

dt 

where we denote formally z(t) = (;II:!l, 
,ef(t) = (A (t ),P (t)) , 

o , 0 

(0 , 0) 
3il(t) = Q(t),B(t) . 

(28) 

The characteristic feature of (28) is that for each tE[O,to] the 
operator .cI(t) generates a subspace corresponding to its zero 
eigenvalue since there exists 

such that8 

,ef(t )zo(t) = O. 

The form of (28) is similar to that of the linearized Boltz
mann equation in the kinetic theory of gases<}'IO: 

a a 1 
-f+v-f+ -Lf=O, at as e 

(29) 

wheref( s,V,t) is introduced as the small perturbation from 
the equilibrium solution, and the distribution function takes 
the form 

F( s,v,t) = Fo(lvl)(1 +f( s,v,t)), 
(30) 

Fo(lvl) = (21T)- 3/2exp( - Ivl"), 

with s,v,t being dimensionless position, velocity, and time, 
respectively, L denotes the collision operator and the small 
parameter E in (29) indicates that the collision time, as mea
sured on. the scale of the characteristic time of the macro
scopic (fluid) changes in the distribution function, is a small 
quantity. 

The operator va / a s is unbounded in realistic functional 
spaces and it is not possible to apply our theory directly to 
(29). To avoid this difficulty let us, following Ref. 11, assume 
for the moment that the operator va / a s is approximated by a 
bounded operator D, for instance by the discretization in the 
[ variable. Then we have instead of (29) 

~f+Df+ ~Lf=O. (31) at E 

It is known \0 that N, the space of the solution to the 
equation 

Lfo = 0, (32) 

is spanned by the summational invariants 

In = an + al·mv + adm Iv1 2
, (33) 
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where aa, a~l, i = 1,2,3; a 2 do not depend on v. Following 
Ref. 11, one can define 9 as the projection operator which 
projects on N, and the operator Yl as I - 9. Defining 

9/=h, 

8f /=g, 

one gets from (31) the following systems of singularly per
turbed equations: 

a 
at h = - 9D9h - 9DYlg, (34) 

a 
c-g = - (YlLYl + cYlDYl)h - cYlD9g. 

at 

Comparing (1) and (34) we observe that now the opera
tors are codependent, the first order-cYl D9 plays the role of 
P (t ) in (1) and A (t ) is to be substituted by the sum 
- (YlLYl + cYlDYl). 

However this additional regular dependence on c is 
such that it does not change significantly the procedure of 
the asymptotic expansion in the singular perturbation meth
od. This expansion was obtained in Ref. 11, where the above 
described procedure, corresponding to the Hilbert expan
sion method, was introduced and investigated. 

The regularly perturbed terms on the right-hand side of 
(34) can be immediately included in the formalism of the 
modified singular perturbation method of Sec. 4. This obser
vation is based on the fact that to derive (20), (21), and (27) we 
may allow the operators A (t), B (t), P (t), and Q (t) to depend 
regularly on c. 

We should have only zero order terms in A (t ) different 
from zero and such that there exists the inverse operator, 
which holds in the present situation. So we can put formally 
in(20),(21),and(27)g(t ),h (t )insteadofx(t )andy(t );theopera
tors - ,9tLy,' - cYlDYl, - 9 D9, - cYlD[J}J, - 9 DYl 
instead of A (t ), B (t ), P (t ), and Q (t ), respectively (there are no 
sources soq(t) = r(t) = 0). The effect of the regular perturba
tion is that several terms are of higher order and may be 
omitted which, together with the fact that the operators are 
time-independent, simplifies the equations. For instance, in 
the first order we obtain from (21) and (27) 

:t h~~d(t) = - (9D9 - c9DYl(YlLYl)-IYlD9) 

X h~~d (t), (35a) 

~~d(t) = - c(YlLYl)-IYlD9h~~d(t). (35b) 

These equations were obtained in the first order pertur
bation by Mika, 12 who considered the Chapman-Enskog 
procedure of a general order applied to the evolution equa
tions of the type (31). In the second order the same agreement 
holds. In fact, ifthe operators in (I) are time-independent 
and there are no sources, then we see that (27) gives the rela
tion sufficient for the applicability of the Chapman-Enskog 
method: 

X;;:~d (t) = C~~d (t), n = 0,1,2, 

where C is a time-independent bounded operator. It means 
that with the accuracy of the order 0 (cn + I), X;;:~d (t) depends 
on time only via~~d (t). 

From the above results it follows that the modified sin-
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gular perturbation method of solving the system (1) may be 
viewed as an application of a procedure of the Chapman
Enskog type to the evolution equations with time-dependent 
operators. 

B. Applications in the neutron transport theory 

The transport of neutrons in material media is de
scribed by the linear Boltzmann equation. First, let us sup
pose that the dominant physical effect in the interaction of 
the neutrons with the medium is the scattering, while the 
absorption and free streaming are of smaller importance, In 
this situation the analysis would be similar to that of part A 
(see Refs. 11 and 12). 

Now let us consider another situation in the neutron 
transport theory when the singularly perturbed term ap
pears. It is in the nuclear reactor kinetics where the equa
tions describing the neutron angular flux IJI (r, v ,t ) an the pre
cursor densities Clj)(r,t) i = 1, ... ,J may be written in the 
form I3

•
14

: 

1 a 
c - - IJI (r v t ) 

v at ' , 

- (nV + ~ )1JI(r,v,t) 

+ f dv' I(r,n'--+v)lJI(r,v,t) 

+ _1_ fdV' (1 - f3 )2f'(v)vI(r,v ',t )1JI(r,v ',t) 
4ff J 

+ _1_ IAj!dPj(v)Clil(r,t)+s(r,v,t), (36) 
4ff j= I 

! CUI(r,t) 

= - AjC(j)(r,t) + f3i f dv 'v~(r;v,t )1JI(r,v,t). 

The parameter c, which at the end of our procedure will be 
put equal to 1, is introduced to indicate that the average 
lifetime of prompt neutrons (roughly speaking of the order of 
the time period needed for neutrons to travel the distance 
between two fission reactions) is a small quantity as com
pared with the precursors lifetime (of the order of 1/ Ai)' Usu
ally the ratio of these two times is about 10 - 2 for thermal 
reactors and reaches 10 5 for fast reactors, where the neu
tron velocity is much larger. Hendri 3 and Hendry and 
Bell 14 were the first who applied the technique of singular 
perturbation to (36). Their approach, however, was based on 
the matched asymptotic expansion and was different from 
the method developed in Ref. 5 and presented in this paper in 
Sec. 1. The analysis of the applications of the latter method 
in the reactor kinetics can be found in Ref. 15. 

The simplest model in reactor kinetics-the so called 
one-point model-shows explicitly the presence of the two 
time scales mentioned. The equations of this model are the 
following: 15-17 

A d J (0) (°1 A 
E --= -N(t) = (p(t) - I)N(t) + I f'y'(t) + c --= q(t), 

{3 dt i ~ I (3 
(37a) 

I d II °1 --Y'(t)=N(t)-yl'(t), i= 1, ... ,J, 
Ai dt 

(37b) 
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where N (t ) is the relative neutron density ,pI t ) is the reacti vi ty 
insertion, ylil(t ) are proportional to the delayed neutron pre
cursors densities,Jlil = iJ;liJ, with iJi the fraction of the ith 

- J -group of delayed neutrons, (3 = ~i _ l(3i; and A is called the 
prompt neutrons lifetime. For details of the one point ap
proximation and the relation between (36) and (37) we refer 
the reader to [Ref. 18, Chap. 9]. 

We immediately observe that the modified singular per
turbation method may be applied to the system (37). The 
only difference with (1) is that in (37) the source term is of 
first order which, according to the remark of the part A, 
shifts only some terms to the higher order. The details of the 
derivation of the modified asymptotic equations and initial 
conditions can be found in Refs. 16 and 17. 

In the zero order the procedure gives the known 
prompt-jump approximation and the higher orders yield the 
corresponding corrections. 

The modified kinetics equations for the nth order 
Y,;~Od (t) and Nnmod (t) are the following: 

J.. ~ Y,;~Od (t ) = - _1_ ( ± f~l(t )Y,;~od (t) + k n (t )) 
Ai dt a(t) i~1 

- Y,;~od (t), (38a) 

_(1 ) ( ± f~l(t )Y,;~Od (t ) + k n (t)) , 
a t ,~ 1 

n = 0,1,2, (38b) 

where 

a(t) =p(t) -1, 

f~)(t) = J<'\ 

J<0(t) =J<0(t) + € ~ [~(_1 __ X + a(t}A.i ) ]/(')' 
1 0 (3 dt a(t) a(t)2 

J<0(t) = I(O(t) + C (~)2 [! ~ (_1_) 
2 1 /3 dt l a(t)l 

1( X )d(l) 1 
- a(t) 5 a(t) + 3Ai dt a(t) + a(t)l 

X (2 X2 +2 XA j + Xl + A~) ]/(0, 
a(tf a(t) a(t) 

_ J 

A 1 = L I(OA~, 
i= 1 
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A 
kl(t)=€ iJq(t), 

k (t) = k (t) + C (~)l [.!!... (q(t») _ Xq(t) ] . 
2 1 P dt a(t) a(t )2 

The advantage of(38) over (37) is that (38a) are not stiff 
and may be solved by standard finite difference methods 
with time steps ofthe order of 1/,.1,;. The smaller the 
(A liJ)/(1/Amax ), the better the accuracy given by the ap
proximated equations (38), while at the same time serious 
numerical difficulties appear in solving the original system 
(37). The results of numerical tests and the expressions for 
the initial conditions for (38a) are given in Refs. 16, 17. 
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We consider the limiting case ,1---+0 of the Cauchy problem, 

agA (X,I) V(x) 
-a-I- = 0,d xgA (x,1 ) + -,1- g) (X,I ), 

withgA (x,O) = expl - S()(x)/A I To(x); V,Sobeing real-valued functionsonN; Toacomplex-valued 
function on N; V, So, Tu being independent of A; ,d x being the Laplace-Beltrami operator on N, 
some complete Riemannian manifold. We prove some new results relating the limiting behavior 
of the solution to the above Cauchy problem to the solution of the corresponding classical 
mechanical problem 

D'Z(s) 
--,-= -V7V[Z(S)]. SE[O,I], as-

with Z (I) = x and i (0) = VSo(Z (O)).One of our results is equivalent to the fact that for short times 
SchrCidinger quantum mechanics on the Riemannian manifold N tends to classical Newtonian 
mechanics on N as Ii tends to zero. 

PACS numbers: 02.50.Ey, 02.40.Ky, 03.65.Sq 

INTRODUCTION 

In this paper we consider the limiting case ;\.-0 of 
the Cauchy problem 

ag~(x,t) =lc;\'A g (x t) + V(x)g (x t) 
at 2 x ~, A ~, , 

with g~(x, 0) = exp{-So(x)/A}To(x), Ax being the Laplace
Beltrami operator for some complete Riemannian 
manifold N, V being a real- valued potential on N; To, So 
being functions on N independent of A, So being real 
valued and To complex-valued, for both real and pure 
imaginary values of A. 

When A =ili is pure imaginary, the above equation is 
a Schrodinger equation and the initial data corresponds 
to an initial particle density p(x) = I To(X) 12 and to a 
limiting value of the probability current j~=o(x) 
=p(x)vSo(x). Here we present some new relationships 
between the limiting cases of the above Cauchy problems 
and the solution of the Newton equation on N 

D2Z(S) _ _ 
-"-2---Y'Z V[Z(S)] , SE.[a,t], 

uS 

with Z(t) =x and Z(O) = Y'So(Z(O)', These relationships 
include as a special case the result that, for small 
times, in the curved space background of the Rieman
nian manifold N, quantum mechanics tends to classical 
mechanics as n tends to zero. 

To be specific, when A = J.l2(J.l >0), let N be a complete 
n-dimensional Riemannian manifold with Laplace-Bel
traml operator A and with a smooth map V: N -lR 
bounded above. Assume that N is stochastically com
plete i.e., its Brownian motion is defined for all time. 
This is true, for example, if the Ricci curvature of N 
is bounded below, in particular if N is compact. For 
smooth maps To:N-C, So:N-JI{, set 

(1) 

and let giL : N x lO, 00 ]-lR be the minimal solution of the 
diffusion equation on N, giL = i.{iL (x, t): 

ai.{iL(x, t) = J.l2 A oiL (x t) + V(~ fTiL(X t) (2) 
at 2 x'" ~, J.l2 b , , 

withg"'(x,a)=g~(x), XE.N. 
For the case when N is the n-dimensional Euclidean 

space lR", under suitable conditions on So, To, and V, 
Truman1 has obtained an expansion of the Wiener path 
integral expression for g'" in powers of J.l and has given 
a correspondmg expansion, the quasiclassical expan
sion, for the Feynman path integral representation of 
the solution to the Schrodinger equation obtained by 
replacing J.l2 by (iii) ill Eqs. (1) and (2). Using this ex
pansion he was able to relate the limiting behavior as 
J.l- a of both the diffusion equation and the Schrodinger 
equation to the behavior of the corresponding classical 
mechanical system. 

Here we follow the same method and using some of 
the ideas of Eells and Elworthy2 ,3 we obtain a "quasi
classical expansion" for the solution g'" of the above 
Cauchy problem. This result is summarized in Theo
rem IE. An important application of this expansion is 
that it suggests corresponding expansions for the solu
tions of the corresponding Schrodinger equation in terms 
of Feynman path integrals which could be computable. 
This expansion is given in Sec. 5, Eqs. (75), (77), and (78). 

Thus, for instance, if we consider a mechanical 
system with a classical Lagrangian, .Y rJ. (q, q) 
= 2-1i.:"u.BolgaB(Q)q"qB - V(q), with gaR' for [t,(3 
= 1,2, ... , n, being the metric tensor of the Riemannian 
manifold I\T, we obtain a formal Feynman integral ex
pression for the corresponding quantum mechanical 
propagator as a power series in If. Most previous 
functional integral expressions for this curved space 
propagator have been afflicted with infinities or ambig
uities which for the quasiclassical expansion do not 
seem to be a problem. 
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biguities which for the quasiclassical expansion do not 
seem to be a problem. 

The program of computing the terms in this quasi
classical expansion has already been carried out (heu
ristically) up to the Wentzel-Kramers-Brillouin (WKB) 
approximation by De Witt-Morette, Maheshwari and 
Nelson.4 Their argument is based on analogy with the 
diffusion equation theory which we present in Secs. 1 
and 2. This mathematical background is also a neces
sary preliminary to carrying out the calculations to 
higher order. In these sections we have freely used 
results about the stochastic development from Eells 
and Elworthy. 2.3 

In the DeWitt, Maheshwari, and Nelson paper4 the 
Feynman integrals are defined by "prodistributions", 
whereas in the present work we examine Feynman's 
original definition of the integral-the Feynman map 
Y. This is defined for the Schrodinger equatlOn on a 
Riemannian manifold by exploiting known results for 
the corresponding diffusion (heat) equation. This is 
done in Sec. 4. There we give a formula, Eq. (71), for 
the finite-dimensional integrals involved. It is in terms 
of the Van- Vleck determinant and we compare it with 
the Pauli, Van-Vleck, De Witt propagator. Our result 
for the short-time propagator is different from that usu
ally employed by phYSicists. It is, however, consistent 
with the earlier results of DeWitt in Ref. 5 when one 
takes into consideration the fact that our SchrOdinger 
equation does not involve any curvature terms. We also 
make the obvious conjecture, Sec. 4D, concerning the 
convergence of the finite-dimensional integrals. In Sec. 
5 we use a Cameron-Martin type theorem, which is 
proved in Ref. 6, for the Feynman map to glve a math
ematical justification for the computation in Ref. 4 of 
the first term of the quasiclasslcal expansion. 

The conditions under which this quasiclassical appro
ximation is valid are discussed for the diffusion equa
tion and the Schrodinger equation in Secs. 3 and 6. For 
the diffusion equation we examine the approach of 
Schilder, Donsker, and Varadhan [see Ref. 7] to give 
some information, Theorem 3C, about the quasiclas
sical expansion. For the SchrOdinger equation using a 
theorem of Gaffney we gi ve a simple proof of the valid
ity of the WKB approximation for short time: Theorem 
6F. This theorem establishes the result that for short 
times in the curved space background of a Riemannian 
manifold Schrodinger's quantum mechanics tends to 
classical Newtonian mechanics as Ii tends to zero. Si
milar results for the diffusion equation and for arbitrary 
times are discussed in Refs. 8 and 9. 

I. THE QUASICLASSICAL REPRESENTATION FOR 
THE DIFFUSION (HEAT) EQUATION ON A 
RIEMANNIAN MANIFOLD 

A. The Feynman-Kac formula for a Riemannian manifold 

We shall use the description of Brownian motion on N 
via the "stochastic development". Let 7f: O(N) -N de
note the orthonormal frame bundle of N. An element 
U o E 7f- l (xo) can be considered as an isometry U o : R" 

- TxoN onto the tangent space TxoN to Nat xo' Here for 
e = (e l

, ... ,e") in R", uo(e) E TxoN is the vector with com-
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ponents (el
, ••• ,en) relative to the frame uoE 7f-l (XO)' 

The Levi-ClVita connection of N determines a map 

X: O(N) x R" - TO(N) , 

which trivializes the horizontal tangent bundle to O(N) : 
if (u, e) E O(N) x R", then X(u, e) is the unique horizontal 
vector in T peN) with 

for the derivative map 7fl of the projection 7fl: TO(N) 

-TN. 

(3) 

Now choose a fixed time t >D and consider Brownian 
motion W on R" defined up to the time t. We can take 
this to be defined by Wiener measure y on the space 
n =Co(R") of continuous paths w: [D, t] -R", weD) =D. 

For a fixed XoE Nand UoE 7f- l (xo), let u": [D,l] x n 

- O(N), Jl >D, be the solution of the stochastic differen
tial equation (in the Stratanovich sense) 

du" =X(u", Jldw) , (4) 

withu"(D,w)=uo, WEn. Define x": [D,t]xn-}J, Jl>D, 
by x"=7fU". Then for Jl=l the process x" would repre
sent Brownian motion on Nand u" its "horizontal lift". 
Stretching notation we have III some sense 

(5) 

withx"(D,w)=xo, WEn, Jl>D. 
The mapping Co(R") -Cxo(N), w _x l

(. ,w) defined al
most everywhere and with values in the space of con
tinuous paths a : [D, t] - N with a(D) = Xo is the "stochas
tic development". For a smooth path w, Eq. (5) can be 
interpreted as an ordinary differential equation and 
x l

(., w) is exactly the Cartan development of (uo 0 w): 

[D,tJ-TxoN. 
The solution g" to Eqs. (1) and (2) is given by the 

Feynman-Kac formula 

g"(xo' t) = ~ exp {Jl -2.t V[x"(s, W)]dS} gr\'[x"(t, w)] 

x dy(w) . 

Now suppose Z: [D,tJ -N satisfies the classical equa
tion 

(6) 

D2Z(S) =-V'V[Z(s)] (7) 
8s 2 , 

with ZeD) =xo and t(t) = - V'So[Z(t)]. Then there is a 
unique smooth path a(') in R" which has Z as the devel
opment of (uo 0 a). 

For this path a, letv":[D,t]xn-O(N), Jl>O, satisfy 
the time-dependent stochastic differential equation 

(8) 

with v"(O, w) =uo' WEn. In particular V
O
(', w) can be 

taken to be the horizontal lift of Z, all WEn. Define 
y": [0, t] x n -N by y" = 7fv'". Then yO(., w) is independent 
of wand identical to Z(·). Again, in some sense we 
have 

(9) 

withy(D,w)=xo, WEn, Jl>O. 
(Later we shall be differentiating y'" with respect to 

Jl at Jl =0. This is some sense differentiating the sto
chastic development at a.) 
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By the Girsanov-Cameron-Martin formula the mea
sures yl'(y) and xl'(y) induced on C (N) by yl' and xl' 

%0 

are equivalent with the Radon-Nikodym derivative at 
yl'(', w): 

dxjl.(y) { It. It} dyl'(y)=exp -11-1
0 

(a(s),dw(s»-ill-2 ° 16-(s)1 2 ds . 

(10) 

Thus, for 11 >0, 

gl'(xo,t) = L eXP{Il-2 f V[y"(s,w)]ds 

-11- 1 [f(6-(S), dw(s»-2-11l-2 {[a(S)]2 dS} 

xg~[yl'(t, w)]dy(w). (11) 

Now, following the quasiclassical representation meth
od, set 

(12) 

Substituting the expression for g~ into Eq. (11) and using 
I Z(s ) I = I a(s ) I , 

exp {1l-2S}gI'(xo, t) = I To[Y "(t, w)] exp{A(Il, w)}dy(w) , 
Il 

where 

A(Il, w) = 11-2 it {V[y"(s, w)]- V[Z(s)]}ds 

- 1l-2{So[y I' (t ,w)]- So[Z(t)]} 

- 11-1 {(a(S),dW(S». 

B. Expansion in powers of J1. 

(13) 

(14) 

Now yl' is infinitely differentiable with respect to 11 in 
probability. In fact by results of Baxendale and Mallia
vin for a class of manifolds N, including compact N, 
there exists a version which is almost surely C~ in 11. 
Let Oy": [0, t] x n - TN be the first derivative with re
spect to J1 and let ely" be the covariant derivative 

0"" = oy" ci" _ DOy " 
.Y all' y -~' (15) 

02y ":[0,t]xn-TN. Inductively set 

D 
OPev"=oll0t>-1ev ", p",2, (16) 

OPy ": [O,t] x n- TN. 
The Taylor expansions in 11 about 11=0 of V[yl'(s, w)] 

and S[yl'(t, w)] give 

A(Il, w) = 11-2 {{lldV[Z(S)]OY(S)+2-11l2V'dV[Z(S)] 

x (oy (s), 6y (s» + 2-11l2dV[Z(S) jo2y (s) }ds 

- 1l-2{1l-1dSo[Z(t)]oy(t) +2-11l2V'dSo[Z(t)] 

x(oy(t), oy(t» + 2- 1 1l2dSo[Z(t»)02y(t)} 

- 11-1 [(6-(S),dW(S» +R1(1l, w) +R2(1l, w), 
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(17) 

and 

x (oyB,,(S), 6yB,,(S), oyB"(S» 

+ V'dV[yB"(S)](02y B,,(S), oyB"(S)) 

+2V'dV[yB"(S)](oyB"(S),02y B"(S» 

+dV[yBI'(S )]03y B"(S )}ds de 

R2(Il,w)=-2- 11l I' (1-W{V'2dSoly8"(t)] 

° 
X(oyB"(t), oyB"(t) , oyB"(t» 

_ V'dSo [yB"(t)]( 02y O"(t), oye"(t» 

_ 2V'dSo[yO"(t)](oyO"(t), 02y 0I'(t) 

+dSo[yO"(t)]OY"(t)}de. 

Since a is C2
, partial integration yields 

It (6-(s), dW(s» =(6-(t), w(t» - r (a(s), w(s»ds 
o 0 

(18) 

(19) 

=(Z(t), VO(t)w(t» - f (2 (S), vats )w(s» ds 

= -dSo [Z(t)]VO(t)w(t)+ f~v[z(s )]VO(s )w(s) ds 

(20) 

by Eq. (7), giving 

A(Il, w) = J.L-1 It dV [Z(s)]{OY(S) - vO(shu(s)}ds 

° 
- 11-1 dSo[Z (t)]{oy (t) - VO(t)w(t)} 

+2-1 It V'dV[Z(s)](oy(s), oy(s» ds 

° 
- 2-1V'dSo[Z(t)](oy(t), oy(t» 

+2- 1 It dV[Z(S)]02y(s)ds - 2-1 dSolZ(t)] o2y (t) 

° 

C. Formulas for by 

The formulas IOvolving Oy and o2y which we will ob
tain next, will be proved again later while obtaining ad
ditional information. However, some readers may find 
the following deri vation more pleasant. 

Consider a smooth a E Co(Rn). By solving Eq. (8) with 
w = a as an ordinary differential equation we get a 
smooth path v "(', a) in 0 (N) proj ecting to a smooth path 
Y"(', a) in N. With this convention 

~y"(s, a) = IlV"(s, a)a(s) + v"(s, O')&(s) , 
ds 

whence 

~ dd y"(s, a) =v"(s, O')a(s) + /J. QD [v"(s, ~)a(s)l 
all s ull 

(22) 

D [ • J' +o/J. v"(s,CI!)a(s) , (23) 

David Elworthy and Aubrey Truman 2146 



                                                                                                                                    

giving 

.Q.Oy(s, O')=VO(S, O')d(s)+R[v"(s,O')a(s)] 1"=0' (24) 
~ 8~ 

Now, if R denotes the curvature tensor (with the sign 
conventions of Kobayashi and Nomlzu10

), for 0", So '" t, 

~ B~ [v"(s, O')o-(so)] 1"=0 = B~ fs [v"(s, a)o-(so)] 111-=0 

+R[i(s), oy(s, Q')]VO(s, a)a(so) 

=R[t (s), oy (s, 0' ))VO(s, O')o-(so) , 

(25) 

since vll-(·, O')O-(so) is just a parallel translation of o-(so) 
along y 11-(.,0'). Denoting VO(s, 0') by VO(s) and working in 
the parallel translated orthonormal frame VO(s), the 
above equation is equi valent to 

d
d {VO(S)"1 BD [v"(S,O')U(So)]} 1 
s ~ ,,~ 

or 

!!:.. {VO(S)"1~ [v"(s, O')U(S))} 1 
ds B~ ,,=0 

= vats )"1R[i (s), oy (s, a) ]VO(s )o-(s) 

+ VO(s )"1R[i (s), oy (s, Q') )VO(s )~(s) 

= d~ f vO(r)"1R[i(r), oy(r, O')JvO(r)&(s) dr. 

Combining this with Eq. (24) finally yields 

d~ {VO(S)"1 oy(s, a) - 0' (s)} 

= [S vO(r)"lR[i(r), oy (r, O!)]vO(r)a(s) dr. 

(26) 

(27) 

(28) 

This equation is true for all smooth paths 0' and even 
for piecewise C1 paths 0'. We can approximate our 
Brownian motion paths w by such 0' so that as the given 
approximations converge to w the solutions y "(r, 0') 
converge almost surely, uniformly for rE [0, t] and 
uniformly together with all derivatives in ~ E [0, 1], to 
a version of y"(r, w). (For compact N Malliavin's re
gularization, or piecewise linear approximations, will 
do. For noncompact N we can use an additional limit 
over compact domains of N. Essentially this is Mal
havin's transfer principle. ll However, if we are pre
pared to work in more detail as below there is no need 
for these deep theorems.) In any case we have: 

Proposition lC: The process [w(s) - VO(st1oy(s)] has 
almost surely C2 sample paths with 

~[VO(S)"lOY(S) - w(s)) 
ds 

= [S vO(r)"1R[i (r), oy (r) )vO(r)a(s) dr. (29) 

Since vO(rr1R[i(r), oy(r))vO(r): Tyo(r)N- Tyo(r)N is 
Skew-symmetric for each r, so is its integral with re-
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spect to r. Consequently, applying both sides of above 
equation to &(s), we arrive at 

(~[OY(S)-VO(S)w(s)),i(s))"'o, o~s~t. (30) 

This enables us to prove the following lemma. 

Lemma lC: A(~, w) 

=2-1 it ~dV[Z(s))(oy(s),oy(s))ds 
- 2-1~dSo[Z(t>Xoy(t), oy(t)) 

+2-1 It dV[Z(s)] o2y(s)ds 

° 
- 2- 1 dSo[Z(t)] o2y(t) +R1(~' w) +R2(j.l, w). 

Proof: The coefficient of ~-1 in A(~. w) is just 

(31) 

-It (.2(s), oy(s) - VO(s)w(s) ds +(i(t), oy(t) - VO(t)w(t) 

° 
(32) 

which vanishes on integration by parts. 

D. Formulas for {)2 y 

We must now examine the terms in 62y. To do this 
we return to the case of our smooth path 0'. Using Eq. 
(22) we obtain 

~ I-~ y"(s 0') 12 =~ I ~d(s) +a(s)j2 
B~ Bs ' B~ 

=2(a(s), ~a(s)+&(s). (33) 

Consequently 

8~21 "Is" (S,O')12 =2Ia(sW· (34) 

On the other hand 

8
2 

1 By" 12 8~2 Ts(s,a) 

=2- -oy"(s 0') L (s 0') 8 (D 8 " ) 
B~ Bs " Bs ' 

::: 21 ~ oy "(s , ad 2 

(
D a " ) +2 as 02y "(S, 0'), ~s (s, 0') 

(35) 

Setting ~=o, Eqs. (34) and (35) give 
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d • .. 
"d-; (62y (s, a), Z (s) - (6 2y (s , a), Z (s) 

~ _I !2 6V (s a ) 12 
IJs' , 

+ ] a(s W - (R[ 6y(s, LI'), i(s)J oy(s, a), i(s) 

~-ld~ la(s)- VO(s, ar 1 5y(s, a)]r 

+ 2 (~ [a (s) - VO(s, ar 16y (s, a)l, a(s)) 

- (R[6y(s, a),i(s)]6Y(s, a), irs)~ . (36) 

We can integrate both sides of the last equation with 
respect to s to give an equation valid for all sufficiently 
smooth a. As before we can deduce 

Lemma D: Almost surely 

I
t • 

- (R[6y(s),Z(S)]6y(s),Z(s) ds. 
a 

(37) 

Consequently we obtain: 

A(J.L, w) ~ [t(i~ lw(s) _/,O(S)"loy(S)], dW(S)} 

1 It . . - 2" (Rl6y(s), Z(s)]6y(s), Z(8) 
a 

1 It +2 'Vdvlz(s)](oy(s), oy(s) ds 
o 

1 , - 2 'Vdsolz(t)]( oy(t), 6y (t) + R1 (J.L, w) + R2 (J.L, w) . 

(38) 

E. The quasiclassical expansion for the heat equation 

Now PropositIOn 1C show s that 6y is a linear function 
of w. We would like to convert our basic formula, Eq. 
(13), to an integral over the space of vector fields along 
Z furnished with the Gaussian measure liy(y). However, 
it is simpler and comes to essentially the same thing to 
make the change of variables on Co(R"), 

e : Co(R") - Ca(Rn) , 

(39) 

Setting eo ~ e - I, where I is the identity map, Proposi
tion lC gives an explicit expression for e~l as an iter
ated Volterra operator. Restricted to the reproducing 
kernel Hilbert space L~·l(R") of y, it follows that eo de
termines a trace-class operator with no nonzero eigen
values. Consequently the Fredholm determinant, dete, 
on L~·l(Rn) is such that dete ~1. Consequently by the 
Cameron-Martin formula, e- 1 (y)zy, with 
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de-
1 

{ It( d \ dy (y)(w)~exp - ° dSle(w)(s)-W(S)],dW(s)/ 

tid 12 } - 2- 1 i ds le(w)(s) - w(s)J ds . (40) 

(Alternatively we could use the Cameron-Martin-Gir
sanov formula, in which case we would not have to 
bother about the Fredholm determinant.) Applying this 
change of variable to the right-hand side of Eq. (13), 
using Eq. (38), we obtain: 

Theorem lE: Let Z satisfy the classical equations of 
motion 

D2 Z 
-- (s) ~ -'VV[Z(s)] ° "" S "" t OS2 " 

(41) 

with Z(O) ~xo and i(t) ~ - 'VSo[Z(tl]. Let glL(XO' t) be the 
solution of the equation 

O(}"" [J.L
2 V] 

t> - Ll. +- ,." at - 2 '0 J.L2 or; , 

withi,'''(·,0)~exp{J.L-2So(·)}To(·)' for smooth To,So, Vwith 
V bounded above. Then if 

I t • It 
S~SolZ(t)]+2-1 0 ]Z(sWds- a V[Z(s)]ds, 

we have 

exp{J.L-2S}g"<XO,/) ~ L To[z"(t, w)] exp{B(j.(, w)}dy(w) , 

(42) 

wherez"(s,w)~y"(s,e-1w), O""s""t, J.L;·O, and 

B(J.L, w) ~2-1 It 'Vdvlz(s)](vO (s)w(s), VO(s)w(s) ds 
o 

- 2-1'VdSolZ(t)](v°(t)w(t), 1"°(t)W(t)) 

+2- 1 [(R[VO(S)W(S), i(s)]rO(s )w(s), irs)~ ds 

+ p(j.(, w) , (43) 

with p(j.(, w) ~R1(J.L, e-1w) +R2(j.(, e-1w), as given by Eqs. 
(18) and (19). In particular p(j.(, w) - ° and ZM (t, w) - Z(t), 
almost surely, as J.L - O. 

Theorem 1E gives the quasiclassical representation 
for the diffusion (heat) equation on a Riemannian mani
fold N. The analogous (but now formal) expression for 
the Schrodinger equation on the Riemannian manifold 
N can be written down almost immediately and is given 
in a subsequent section. The above quasiclassical re
presentations are formal power series in j.(2 ~ ill with 
coefficients which are either Feynman or Wiener inte
grals. We shall evaluate the leading terms in these 
series. 

F. The expansion rewritten 

When we attempt to use Feynman path integrals it 
will be useful to have a record of what we have done to 
the integrand of our original path integral (1). We will 
also need to introduc e a (positive) varianc e parameter 
(3. For this let YB denote Wiener measure with variance 
parameter f3 on CO(R n

). Also let A be the translation of 
CO(Rn), 
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A(w) = w - J.1.-1a 

and set 

0=8·A. 

Then our work shows that 0(w) - w is always C2 and 

( 
-2S) {-2 It -2} exp ~ exp J.1.{3 0 V(x"(s, w») ds - J.1.~ So(x"(t, w» 

= expi -{31 t (d~ (0(w)(s) - w(s», dW(s) ) t 

- 2~ [I d~ (6(w)(s) - w(s» rdS } 

XeXPUB(Il,0(W»}, 1l>0 (44) 

for y-almost all WE Co (R71) , and for Ya-almost aU w if 
x" is interpreted usmg Ya' It also holds for aU 
wEL~,l(R71), when x" is interpreted via the classical 
solution to (4). 

2. STOCHASTIC DIFFERENTIAL GEOMETRY 

A. The derivative process of a stochastic dynamical system 

In this section we review some general methods of 
stochastic differential geometry making applications 
to the quasic1assical expansion. 

In order to examine oy" and o2y" in more detail, first 
consider a general stochastic differential equation 

dz =Xdw + Wds (45) 

on a manifold M. Here X: M xR"-TM and the (pos
sibly time dependent) vector field Ware suitably smo
oth. For e ERn let S(s,m)e be the solution of the ordi
nary differential equation on M 

dy 
ds =X(y(s), e), y(O) =m. 

For the standard basis e l , ••• ,en of R n let Xi denote 
the vector field X( -, eJ and set Si(S, m) =S(s, m)ei . 
Then for a C2 map f:M - R the Ito formula for a solution 
x of (45), assumed nonexplosive, can be written 

f(x(t)) =f(x(O» + t; It d~jOSl(r, x(s» I r=O dw l (s) , 

where wi(s)=(w(s),el> is the ith component of w(s). 
From (X, W) we can form a stochastic dynamical sys

tem (oX, oW) on TM by taking 

oX:TM x JRn_ TTM 

to be defined by OXI = oX( ,ell =SoTXi:TM-TTM, 
i=l, ... ,n, where 

is the symmetry map given over an open set U of JRm as 

S:U XR m x JR'" X R'" - U x R m x R'" x R m , 

S (x, u, v, w) = (x, v, u, w) . 
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The vector field oW on TM is defined the same way: 

oW=SoTW. 

If we let liS(s, vole be the solution of the O.D.E. (ordi
nary differentiation) on TM 

dv/ds = oX(v(s), e), v(O) =vo , 

we see 

oS(s, vole =T[S(s, -)e ]vo (47) 

considering S (s , -)e as a diffeomorphism of M. 
In essentially the same way, using the analysis in 

Gikman and Skorohod,I2 Chapter 1, the solutions of 
(oX, oW) on TM can be considered as derivatives in 
probability with respect to the initial conditions of so
lutions of (X, W) on Ai. 

B. Brownian motion, geodesics, and the Laplace
Beltram i operator 

Now we return to the situation and notation of Chapter 
1, so M = 0 (N) and X is given by the Levi -C ivita con
nection. We shall first identify the deterministic flows 
Si, liSi on O(N), TO(N) together with their projections 
onto Nand TO(N). For aEO(N) set yi(S ,a) =7rOSi(S ,a). 
Then, immediately from the fact that 7r oX(a, ei ) =aei : 

Lemma 2B: The curves yi(_,a) are geodesics in N 
with 

dyi 
d;"(O,a) =aei · 

The following theorem identifies the infinitesimal gen
erators of the processes x" and y", in particular show
ing that Xl is a "Brownian motion" on N. It is needed 
to verify the expression (6) for the solution g" of our 
basic partial differential equation. 

Proposition 2B: Letf:N -R be C2
, then almost surely 

I
t t 

f(x" (t)) = f(xo) + df(x" (s »u" (s ) dw (s ) +i J.1. 2 f ~f(x" (s » ds 
o 0 

and 

I
t t 

f(y"(t)) =f(xo) + df(y"(s»v"(s) dW(s) +i1l 2 f ~f(y"(s»ds 
o 0 

+i f df(Y"(s»v"(s)~(s)ds. 
o 

Proof: We have to apply Ito's formula (46) to 
f 0 11" : O(N) - R acting on u JJ and v JJ • 

By the Lemma 

and, at r =0, 

~ . ) ~It . 
drio7roS'(r,a = dr oy'(r,a)] 

d . • 
= dr [df(y'(r,a»y(r, a)} 

Since 

Af(m) = 2: Vdf(m)(aej,ae j ) , m =7ra, 
i=l 

the result follows. 
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C. Brownian motion and Jacobi fields 

Recall that a vector field J along along a geodesic y 
in N is a Jacobi field if it satisfies the differential equa
tion 

D2J / dt2 + R [J, Y JY = 0 . 

For a E O(N) and 1 E TaO(N) we have the field I5S i( -,1) 
alongSi(-,Z), i=l, ... ,no Set 

Ji (s , Z) = Trrol5S i (s, 1) 

so Ji (-, l) is a field along yi( -, a). 

Let w denote the connection form of N; it is a smooth 
I-form on O(N) with values in the Lie algebra o(N) of 
O(N), considered as the space of skew adjoint linear 
endomorphisms of R". 

Lemma 2C: Ji(_, l) is a Jacobi field along yi(_,a) 
with Ji(e,l) =Trr(l) and 

~ Ji(S, Z) 1 .=0 =aw(Z)ei . 

Proof: Let hl denote the horizontal component of 1 
and consider the path g in O(n) given by 

g(s) =expsw(l). 

Let ¢ be a horizontal path in O(N) with ¢(o) =a and ¢'(o) 
=hl. Then uSing the right action of O(n) on O(N) 

d 
dr [¢(r)' g(r) II T=O =1. 

Consequently, using (47), 

Ji(S, Z) = ThooSi(S, 1) 

B . 1 =&r"Y'(s, cp (r)' g(r» ,,=0' 

The standard computation shows now that Ji (-,1) is a 
Jacobi field (see for example /3 Lemma 14.3, but re
member the different sign convention of the curvature 
tensor). For the initial conditions, it is clear that 
.F(O,Z)=Trr(Z), while at s =O,r=O 

DiD B . 
Bs J (s, 1) = Bs Br y'(s, cp(r)' g(s» 

=~~yi(S cp(r)·g(s» 
Br Bs ' 

D 
= Br [cp(r)og(r)ei 1 

d 
= </>(0) drg(r) ei 

=aw(Z)ei , 

as required. 

D. Formulas for oy 
We can now obtain equations for oy". Recall that oy" 

is the projection by Trr:TO(N)-TN of the TO(N)-valued 
process ov" obtained from v" by differentiating with 
respect to fl. We see ov" is given by the time -de pen -
dent equation 

dl=flOXdw+oX~(t)dt+Xdw(s), (48) 

where forlET.o(N) andeER",X(Z)e is the vertical vector 
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in TrTO(N) corresponding to X(a, e),a E o(N). 
We will use the parallelization of TO(N): 

TO(N) - O(N) x lR" x O(n), 

l-(a,e(l),w(l»,IET.o(N), 

where e is the fundamental I-form 

e :TO(N) - R' , 

e (Z) =a -lTrr(l) . 

Let n denote the curvature form of the connection: so 
~ is the e(n) -valued 2 -form on 0 (N) defined by 

~(lt> 12) =dw(hlt> hl2) , 

where h is the orthogonal projection. Consider the 
"principal part" 

[OXi r :O(N) x lR" x o(n) - TO(N) x lR" x o(n), i =1,2, ... 

of the vector field induced from I5Xi by our parallelizing 
diffeomorphism. We have 

Proposition 2D: For (a,~,A)EO(N)XR"Xo(n)and 
i=I, ... ,n 

[OXir(a, ~,A) =(Xi(a),Aei , 2~(Xi(a),X(a)m. 

Proof: Set F =R" x o(n) and for bE Oun define 
1jJ(b) :TbO(N)-F by 

l/J(b)(k) =(e(k),w(k». 

Set 

so 

~ =e(Z) and A =w(l). 

We will work over a chart (U, 1jJ) for O(N) about Q', 

considering U as an open subset of F. In this repre
sentation 1jJ is a map: 

1jJ : U -L(F; lR" x o(n» 

and 

OXi : U x F - U x F x F x F 

is given by 

oXi(a, 1) =(a, 1,X~(a),DX~(a)l) , 

where 

X~ :U-F 

is the principal part of Xi. Consequently 

[OXi na, ~,A) = (Xi (a), D1jJ(a)(X~(a»l + 1jJ(a)DX~(a)l) . 
N ow in terms of the exterior derivative dlj! of 1jJ 

D1jJ(a)(X~(a)l =2d1jJ(Xi(a), l) +D1jJ(a)(l)X~(a); 

also 

D1jJ(a)(l)X~(a) = -1jJ(a)DX~(a)l , 

because 

1jJ(b)X~(b) =(ei,o),bEU. 

Therefore 

(49) 
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Next we apply the structure equations of the connec
tion: for lv l2 E T .0(N) 

d6(l" l2) =t(W(l2)6(l,) - W(l,)e(l2» ' 

giving 

2dw(Xi (a), l) = 2g(Xi (a), l) = 2g(Xi (a), Xi (a) 1;) 

[since hl =X(a)~J and 

2d6(Xi (a), l) =A ei 

which we can substitute in (49) to complete the proof. 
Now let [Xir :O(N)xR"xo(n)-TO(N)xR"xo(n) be 

the "principal part" of the vector field corresponding 
to X(-)e i • 

Lemma 2D(i): For (a, LA)cO(N) xR" x O(n) and 
i = 1, ... ,n, 

[Xir(a, ~,A) =(0., e;,O), 

where 0. E TaO(N) is the zero vector. 
Proof: By the defining property of j(i we have 

[Xi r(a, ~,A) =(0., 6Xi(a), wXj(a). 

But 

6Xi(a) =ei and wXi(a) =0, a E O(N) , II. 

Lemma 2D(ii): If f:M - N is a C2 -map and for some 
a, (3 E TmM, y E TBTM is the vertical vector corresponding 
to 0', then TTf(y) is the vertical vector in TTN corre
sponding to Tf(a) 

Proof: Immediate by taking charts. !! 
Let K: TN II! TN - R denote the Ricci curvature tensor 

of N: 

K(v" v2) =tr[v -R(v, V1)V2]. 

Theorem 2D: For u ~ 0 set 

~"(s) = 606v"(s) :12 - R" 
and 

A"(s)=w06v"(s):n-o(n), O~s~t. 

Then the processes ~" and A" satisfy the following 
equations: 

~"(s)=w(s)+f-.L [,SA"(r)dw(r) + ISA"(r)a(r)dr 

- 2-1f-.L2jS V"(r)"10K(6y"(r), -)# dr, 
o 

A "(s) =f-.L IS v"(r)"loR [v"(r)dw(r), 6y"(r) ]ov"(r) dr 

+ IS v" (r)"10R [v"(r)a(r), 6y" (r) ]ov" (r) dr 
a 

+ 2-1 f-.L 2 is v"(r)"1 0L(6y"(r»ov"(r) dr, 

where, if 6 E T N some YoEN 
Yo ' 

K(6 -)#E T N , Yo 

and 
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(50) 

(51) 

L(6) : TyoN-TYON 

are defined by 

(K(6, -)#, VI) =K(6, VI) 

and 

(L(6)Vl> v2) = Y'K(V2)(VI , 6) - Y'K(V I )(V2 , 6), VI' V2 E TyoN . 

Proof: In order to apply the Ita formula as gi ven above 
(46) let S"i(_,a) and liS"i(_, l) be the solution curves 
starting from a E O(N) and l E T.O(N) respectively of the 
vector fields f-.LXi and f-.LoX i +X(-)ei . By Lemma 2D(i) 
and PropOSition 2D 

d~ [801iS"i(s,l)]=f-.Lw(6S"i(s,Z))e j +e j 

and 

= f-.LS"i (s, a)"loR(S"i(s, a)e;, 

TrroS"i(s, Z))os"j(s ,a) 

[recall that R corresponds to 212]. Thus at s = 0 

a:-
ds 2 [80 liS " j (s , l)] = f-.L 2a -loR rae/> Trr(l)] ae j 

and 

:;2 [woliS"j(s, l)] = f-.La-10 ~ R [S"i(S, a)ei , TrroliS"j(s, Z)] I s.ooa 

= f-.La-IoY'R(f-.Laej)(a e j , Trr(Z))oa 

+f-.La-IoR[aej,aw(l)(f-.Lei)]oa, 

since (Dlds)S"j(s ,a)ei =0 because S"i(S ,a)e j is horizon
tal and since (Dies )TrroliS"i(s, Z) I s.o =aw(Z)(f-.L ej ) +aei 
which can be seen using Lemma 2D(ii) to obtain the 
term ae i from X and Lemma 2C for the other term. 
The Ito formula therefore gives 

and 

606v"(s) =j' dw (r) +f-.L IS w(6v"(r»dw(r) 
a a 

+ is w(6v"(r»a(r) dr 

+2-1 f-.L2 tIs v"(r)-l 

oR [v"(r)e i , 6y"(r) ]ov"(r)ej dr 

w06v"(s) = f-.L is v"(r)"loR [v" (r)dw(r), 6y" (r) ]ov"(r) dr 

+2-1 f-.L2 IS v"(r)"lo ~ Y'R(v" (r)e j) 

x(v" (r)ei! 6y"(r»ov"(r) dr 

+2-1f-.L2 IS v"(r) 

o t.R [v"(r)e j ,v"(r)w(6v"(r)ej ) ]ov"(r) dr 
i=l 

+ is v"(r)"loR[v"(r)a(r), 6y"(r) ]ov"(r) dr. 
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Finally, writing Ii =v'"(r)ei ,i=1, ... ,n,o=oy'"(r), and 
taking VI' V2 E Ty j.J.(r) , the second Bianchi identity gives 

VK(V1 )(V2, 0) = L: (VR(v1)(f/, v2)0,1/) 
/ 

= - L: (VR (v2 )(V1>/1)0 '//) 
/ 

-L: (VR(f/)(v2,v1 )0,li) 
I 

=VK(v2)(vU 0) + L: (VR(fi)(/ i , Oh, VI)' 
/ 

Thus L~=1 VR(ft)(fi, 0) =L(o)'/ I 
Equations (50) and (51) for ~'" ,A'" can be differentiated 

in j.J. to give equations for the derivatives in probability 
with respect to jJ., 0 ~'" and M. '", of ~'" and A"'. In fact 
the process can be iterated to obtain arbitrarily high 
derivatives; although the resulting lengthy equations 
do not seem very illuminating, at least for a general 
manifold N. However the following formula will be 
useful: 

o~O(s) = ISA O(r) dw(r) + IS M. O(r)o-(r) dr. (52) 

E. Fonnulas for cS 2 y 

To relate 02y to o~o we need another lemma: 
Lemma 2E: If a: (a, b) - 0 (N) is differentiable and 

I; ERn then 

~a(t)1; =a(t)w(d!(t))1;. 

Proof: Write a(t) ={3(t)· cp(t) for 

cp :(a,b)-o(n) 

and {3 horizontal 

{3 : (a, b) - O(N) . 

Then 

a(t) =~(t), cp(t) +{3(t) , cP(t) 

and so, as in Kobayashi and Nomizu (10) page 69 

w(&(t)) =0 +cp(tt1<1>(t). 

But 

~ a (t)1; ={3(t) :t ({3(t)-la (t)1;) 

={3(t) :t cp (fl.// 

=({3(t) , cp(t))cp(t)-l<1> (t). / / 

In particular this gives, for I; ERn, differentiating for 
j.J. rather than t: 

D 
-v'"(s)1; =v'"(s)A'"(s)1;. 
aj.J. 

From this and (52) we have immediately: 
Propos ition 2E: 

02y(S) =VO(s M O(s )~O(s) + [SA O(r) dw(r) 

+ [S M. O(r)o-(r) dr} ,II 
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(53) 

(54) 

F. The formulas of section 1 

We can now confirm the formulas of Sec. 1. First by 
(50) and (51) we have 

d -
ds (~O(s) - w(s» =A O(s )a(s) 

= [S lP(rtloR [Z(r), oyO(r)lvO(r)a(s) dr, (55) 

giving (29). 
Next, to obtain (21), note that by (54) and the skew

adjointness of M. O(r): 

f: (02y(r) -vO(r)AO(rHO(r),Z'(r»dr 

= (02y(s) -vO(s)AO(sW(s),Z(s» 

- IS (A O(r) dw(r), 6(r» 

° 
- [S (M. O(r)6(r), 6(r» dr 

=(02y(s),i(s» -(A°(s)~O(s),a(s» 

+ l' (dw(r),A O(r)a(r» dr, 

hence 

(02y(t),Z(t) + t (02y(S), VV(Z(s»)ds 

=- It (AO(sH"(s),a(s»ds +(A°(t)~°(t),a(t» 
o 

_ It (dw(s),AO(s)a(s»ds , 
n 

however r (AO(sHn(s),a'(s»ds 
o 

= It (AO(s)UO(s) -w(s»,(i(s»ds 
() 

+ [(A O(s)w(s),a(s»ds. 

" 
Therefore 

[t (Ao(s)~O(s),a\s»ds =(AO(t)(~()(t) -w(t)),a(t)) 

- [(AO(s)UO(s) -w(s)),&(s))ds 
II 

I
t d 

+ (l (ds(~O(s) -w(s»,AO(s)o-(s»ds +(A°(t)w(t),a(t» 

_ It (AO(s)w(s),a(s»ds _ It (AO(s)dw(s),a(s»ds. 
o 0 

Formula (37) follows using (55) and (51). 

3. CLASSICAL PATHS AND FLOWS;THEIR 
RELEVANCE FOR THE DIFFUSION (HEAT) 
EQUATION 

In this section we discuss a theorem due to Varadhan7 

and its applications to the quasiclassical expansiono 
This leads naturally to a discussion of when the classi-
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cal flow induces a diffeomorphism of the configuration
space manifold, a question which we partly answer in 
Theorem 3J. These results will be used in the last sec
tion of the paper. 

A. Varadhan's theorems 

We now give the argument used by Varadhano His 
argument dovetails very nicely with the results already 
obtained from the quasiclassical expansion. For the 
Schrodinger equation this "Laplace method" would have 
to be replaced by some method of "stationary phase". 
Varadhan's method is based on his more abstract re
sults, particularly on Theorem 3.1 of Ref. 70 We first 
quote a special case of this: 

Theorem 3A: Let r be a regular topological space 
with a sequence {p ,J "'1,2, ... of Borel probability mea
sures on r, {IlJn~1.2, ... a positive real sequence and I : r 
- R + 0 {+oo} a map satisfying 

(i) an - OX) as n - 00 , 

(ii) for all dosed subsets C of r 

lima~lln[Pn(C)l"" -infI(z) , 
n----oo eEC 

(iii) for all open subsets U of r 

lim 11-
1 lnlP (U)]? -infl(z) , 

n-.o n n - zE U 

together with 
I(i) 1 is lower semicontinuous on r i.e. if Zo E r 

lim 1(2) ~ [(2
0

) , 

I(ii) for each In E R, {z E r /1(z) "" m} is compact in r 0 

Suppose now F : r - R LJ {-oo} is bounded above and upper 
semicontinuouso Then 

For our situation we take roo C x (N), the space of con-
a 

tinuous paths z : [0, t], 0 -N, xo' Define {p" }",o to be the 
measures on r determined by {x"L,o, p" =x"(y); and 
define I: r-lR+u{oo} by 

I 
1(2) = 2-1 [ /2(8) /2 ds, Z E L 2•

1([0, t];N) n r, 
·0 

=00, otherwise. 

The sequence {a,j,,>o is then taken to be a" ==fl-2
, fl>O. 

Conditions I(i) and I(ii) are well known to hold. 
For our application of the theorem we need to verify 

(ii) and (iii) in the form: 

(ii)' lim fl2 In[P" (C)] "" -infI(z). 
u-~O rEC 

(iii)' lim fl2ln[P"(U)l? -infI(z), 
;L=:"o zE U 

for all open subsets U and closed subsets C of r. For 
N complete these can be found in the Appendix to Mol
chanov's paper.8 Then we deduce: 

Corollary JA: If F : C" (N) - IR U {-oo} is bounded above 
° and upper semicontinuous, then 

lim fl2ln{ i eXP[fl- 2 F(X")JdY} "" sup [F(z)-I(z)]. 
,,-0 f.l stEC"o(N) 
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Definition: For So:N -lR and V:N -R, for the mo
ment assumed only to be measurable, define the 
"action" functionalY: Cx (N) -IRU {oo} by 

o 

Y(z) =So[z(t)]+I(z) _ [t V[z(s)]ds. 

B. A result from the calculus of variations 

We now need a standard sort of result from the calcu
lus of variations: 

Lemma 3B: Assume So, V are lower and upper semi
continuous respectivelyo Then Yis lower semicontinu
ous on C x (N). Moreover, if V is bounded above, and 
{Z;}i'1,2 ... oiS a sequence in C"o(N) such that 

(i) {Sol z i(t)J};,1.2 .... is bounded below, 

(ii) {j"(z ;)};4.2, ... is bounded above, 

then {Z;};,1.2 ... has a convergent subsequence in C"o(N)o 
Proof: The lower semicontinuity of Ycomes immedi

ately from that of I. Also, if So, V and {Zi}i'1.2 ... behave 
as above then {I(z;)Ll.2,. .. is bounded above and the sub
subconvergence of {z i};'1.2, ... follows from I(ii)./ / 

C. Convergence to the classical paths 

We now give the main result of this section: 
Theorem 3C: Suppose So, V, To are measurable real

valued functions on N and Z : [0, t1, 0 - N, X o is continu
ous. Assume 

(i) Z is an absolute minimum for Yon Cx (N) , 
o 

(ii) if Z is an absolute minimum for Y then either 

Z(t) Esupp To or Z(t) ==Z(t) , 

(iii) V is upper semicontinuous and bounded above 
onN, 

(iv) ~o is lower semicontinuous on N and bounded 
below on supp To. 

For 15 > 0, let r(Z,I5)= {z ECxo(N)lsuPo",s"'td(z(s),Z(s» 
>- 15J, where rl is a metric on N. Then, for the measure 
P'"=x"(y),onC xo(lV), 

lim i eXP{fl-
2f

Y(Z)_So[z(t)]+!t V[Z(S)]dSJ} 
"'0 ,(Z,O) L 0 

proof: Let J(fl) denote the integral in question and set 

ro =1Z E r(Z, l5)tz(t) E suppTo} . 

Following Varadhan' s proof of Theorem 3.5 in Ref. 7, 
define F : r -iR ui- oc} by 

F(z)=Y(Z)-So[z(t)] + /V[Z(S)]dS, ZEro, 
o 

= - 00 otherwise. 

By the hypotheses F is bounded above and upper semi
continuous on C xo(N) since ro is closed. Applying 
Corollary SA 
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lim 11 2 InJ(Il) -'S sup 
,,'0 zEC

xO 
(N) 

[F(z) -I(z)] = sup[Y(Z) -Y(z)) =k, 
zEro 

for some k <s 0, by hypothesis (i). 
Suppose k=O. Then there exists {ziL=t.2 .... in ro with 

Y(z;) - Y(Z). By the Lemma we can assume {Z;}i=I.2 .... 
converges in C xo(N) to some path z and then by lower 
sem icontinuity 

Y(z) <s lim Y(z;) = Y(Z). 

But zEro, so that z(t)EsuppTo and we have a contradic
tion to hypothesis (ii). Hence, k < 0 and 

lim lnJ( 11 ) = - co , 

proving the theorem. !! 
l For an introduction to Donsker-Varadhan theory see 
Ref. 14.] 

D. The minimum of the action functional Y 

We reimpose the assumption that 50 and V are C 2
• Let 

9' denote the Hilbe rt manifold of L 2,j paths on N starting 
at Xo 

9'=L;~I([O, t);N). 

This is a Hilbert manifold. The tangent space T z 9'at a 
point z of 9 can be identified with the space of L 2.1 vec
tor fields ~ along z vanishing at 0: that is those 
!; :l 0, t] - TN such that I;(s) E T2(s)N and 1;(0) = 0. 

There is a natural inner product on T .9': 

(1;1,1;2).= It (~t(S), kz(s»dS . 
o 

We shall consider Y restricted to 9, Y: 9'-iR, 

Y(z) =Solz(t)) + 2-1 it 12(S) 12 ds - It vlz(s)] ds . 
o 0 

Proposition 3D: A path Z in 9 is a critical point for 
Y iff Z is C 2 and satisfies 

~=-VV(Z(s)], s E[O,t), as 
with 

2:(t)=-VS olZ(t)]. 

The path is a nondegenerate minimum iff also the bi
linear form :Jf' on T.9' is positive definite, where 

:Jf'(!;,1])=(L1])z+ j(R[2:(S),I;(s)1Z(S),1](S»d S 

-f VdV[2(s)](!;(S),11(S»ds 
o 

+ VdSo[Z(t)] (W),11(t» . (56) 

Remark: The form ;Jt' is the Hessian of Y at 2. 
?roof: If Z E 9' and 11 E T z9, then 
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dY(TI) =( V5o[ Z(t)L 1](t) + f (.2(s), i}(s »ds 
o 

_ (t (VV [2(s)], 1](s»ds . 
)0 (57) 
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Partial integration yields 

dY(TI)=(VSo[Z(t)] - f VVlZ(s)]ds,TI(t»+ [(i(s) 
o 0 

For Z to be a critical point of Y it foHows that 
(z (-) + J~ vv I Z(s)] ds) is orthogonal in T z9' to 
{TI E T z9'ITI(t) =O}. 

This means that it is a ray i.e., differentiable with 
parallel covariant derivative. Consequently Z is C 2 and 
a different integration by parts of (57) gives: 

dY(1]) = (V5olz(t) J + Z(I), 1](t» 

- [(2(s) + VV [2:(s)], 1](s»ds 
o (58) 

From this we see (2(-) + VV[Z(-)]) vanishes in L?' and 
the characterization of critical points follows. 

For the nondegenerate minimum condition we must 
examine the next de rivative of Y, the He ssian, at the 
critical point z. For ~,1] E T z 9 set, for O~ 0 z 1, 

Z",(s) = expz (sll a !;(s)] 

and 

TlcJs) = V2 {expz(s,lo!;(s)l}(1](s» , 

where v2 refers to differentiations with respect to the 
second variable l in this case a !;(s)] so that 
V?(exPZ(S)(a!;(s»): Tz(s)N-T Z (S)N. In fact, though not 
strictly relevant, for each s th~ map a--1]a(s) is a 
Jacobi field along Z a(s) with 

1]a(s)=1](s), ~ 1],,(S)/ =0. 
ua "=0 

See for example Eliasson, Ref. 15, Theorem 3.3, or 
our discussion in Lemma 2C. Note also that. 
(a/ aCt:)Z ,,(s) = Vzl exp(a !;(s »( !;(s »1. 

What we are doing is equivalent to taking an exponen
tial chart, as in Ref. 15, for 9' about the path Z. We 
now compute the second derivative of Y in that chart. 
Assuming temporarily that 1;,11 are C 2 and using Eq. 
(58) , 

;Jt'( !;, 1] ) = ! [d Y ( 1] " )] I" =0 

=R..{(V50(Z",(t» +Za(t),1]a(t)-
00 

I t (.2a(S) + vvlz,,(s)] ,1],,(S»ds} I 
o ,,~ 

=( V2S0(z(t»)W) + ku), 1](1» -

t < ~(s) -R [2:(s), 1;(8)12(8) 

+ v2V[Z(s)H(s),1](s»dS 

= VdSo(Z(t))( w), 1](t») + (L 1]) z 

+ t (R[Z(s),~(s)]Z(S),1J(S»ds
it vdV lZ(s) U;(s), 1](S)) ds . 
o 
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Approximating general elements of T z9 by C2 ele
ments we get the required result. 

E. Nondegenerate minimum of .!f 

From now on we let Z be a critical point of yo with fft' 
the Hessian at Z. There is a self-adjoint A :Tz9-Tz9 
with dY(L1)=(AL1)z, all ~,1) in Tz9, and fft' is called 
nondegenerafrJ if A is an isomorphism. However A is 
easily seen to be a compact perturbation of the identity: 
so applying the Fredholm theory fft' is nondegenerate 
iff dYe L 1) = 0 for all 1) E T z 9 implies 1) = O. 

Lemma 3E: Nondegeneracy of K is equivalent to the 
vanishing identically of ~ whenever ~ is C 2 and satisfies 

D2a~~S) -R [Z(s), ~(s)]Z(s) + V'2V[Z(S)H(s) =0, 

SE[O,f], (59) 

with 

~(O)=Oand ~(t)=_",2S0(Z(t»~(t) 

Proof: On integrating by parts Eq. (56), for ~,1) 
E T z 9, we have 

fft'(~, 1) = ({V'2S0(Z(t))W), 1)(t» + ([' {R[Z(s), HS)JZ(s) 

+ V'2V[Z(S )]Hs)}ds, 1)(t) 

+ [t (~(s) _ [S {R[Z(s'), ~(S')]Z(s') 

+ V'2V[ Z(s ')g(S')}ds', r,(s») ds • 

(60) 

The lemma is then proved by using the argument of 
the previous proof to observe that if fft'(~,1)=0, for all 
1) E T z9 then ~ is C2 and satisfies the given boundary 
value problem./ / 

We can apply the Morse index theory to characterize 
the nondegenerate minima of Y. 

Proposition 3E: Assume also that V is C3
• The Hes

sian fft'is positive definite on T z9 iff whenever ~ is a 
C2 vector field along Z satisfying, for some 0", So '" t, 

so'" s '" t , 

then 

Hs) == 0, so'" s '" t. 

Proof: Let V(O, t] denote the Banach space of C2 vec
tor fields along Z with C2 norm. In the terminology of 
Ref. 16 the family of forms O(s) on V(O, I] given by 

O(s)(~, 1) = (Hs), 1](s»+ (R[Z(s), ~(s)]Z(s), 1)(s» 

- V'dV[Z(s)]( Hs), 1)(s)), s E [0, t], 

is a Sturm form on V[ 0, t] of order 1. (The assumption 
that V is C3 is needed here.) Set YolO, t] ={~ E V[O, tJ 
I~ (0) = OJ. It follows from Theorem 3.1 of Ref. 16 and 
the previous lemma that K has zero index on YolO, t] 
iff the vanishing of 1) occurs as described. 

Now suppose that these two eqUivalent conditions hold. 

2155 J. Math. Phys., Vol. 22, No. 10, Oct. 1981 

If there existed ~ E T z9 with dY(~, ~)< 0, since Vol 0, t] 
is dense in T z9 we could find ~ E V o[ ° , t] with fft'( ~, ~) 
<0, which is impossible. Therefore, fft'has zero index 
on T z 9. But by the lemma it is nondegenerate. Con
sequently it is positive definite on T z9 as required./ / 

F. Classical flows and diffeomorphisms 

Let x[ a ,A, s] denote the solution of the classical equa
tions of motion 

D2x(s) ---asr = - V'V[x(s)] 

with x[ a,A, OJ = a EN, x[ a,A, OJ =A E T /'I. We assume 
x[a,A,sJ exists for SE[O,t]. Define ~s:N-N by 

<ps(a)=x[a, V'So(a),s]. 

First we shall investigate the derivative of <I> s' For A 
ET.N and q:(-1,1)-N with q(O)=a, q(O)=A, 

D2 fl D D2 
flS2 a;;4s(q(S'))=a;, ()Sz4>s(q(s'») , 

Taking S =0, gives 

D2 ., 
8s2 T. 4> s (A) + V'2 V(T.<I> s(A)) - R[ 4> .(a),T.4> alA)] 4> sea) = 0 • 

There are also the initial conditions 

Proposition 3F: The map <Pso is a diffeomorphism in 
a neighborhood of a E N iff the following condition C'o 
holds: 

Cs : The solution Ks with Ks E L(T.N, T e (a )N) of 
o • 

D2 . • 
8s2 K.(-) - R[ <P .(a), K.(-)J cl> .(a) + V'2 V(Ks(-)) = 0 (61) 

with 

Ko(A) =A and Ko(A) =V'2So(A) , all A E TaN, (62) 

is nonsingular at time so' 
Consequently cl>s is a diffeomorphism, for 0", S '" t, of 

some neighborhood of a (independent of s) iff Cs holds 
for s E [0, t] i.e. iff K. is nonsingular for s E [0, t]. 

Proof: The first assertion follows from the inverse 
function theorem from our equations for T.<p s' 

Suppose now that C s holds for s E [0 , t]. For a given 
t, let U be a precompact neighborhood of a such that cl>'o 
is a diffeomorphism of a neighborhood of D. Since s 
- q, s I Ii is continuous in the C1 topology it follows by 
openness of diffeomorphisms in the C1 topology that cl> s 
is a diffeomorphism of U for s in some neighborhood of 
so' By the compactness of [0 , t] there is therefore a 
neighborhood of a independent of s as required. 

G. Nondegenerate minimality and the local 
diffeomorphism property 

We now have the main geometrical result of this sec
tion. 
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Theorem 3G: Suppose So is C2 and V is C3
• Then the 

map q, &' S E [0, t], is a diffeomorphism of a certain 
neighborhood of a point aEN with q,,(a)=xo iff 

Z(s)=q,t_.(a) , O""s~t 

is a nondegenerate minimum of the functional 

Y:L;~l([O,t],N)-R • 

Proof: Assume Z is a nondegenerate minimum of the 
functional Y. Then, in the notation of Proposition 3D, 
Jr'is positive definite. If condition C s of the previous 
proposition does not hold, for some s c: [0, t], there ex
ists a solution K of (61) (62) with 

K.(A) =0, some A*-O. 

Setting ~(s) =Kt_.(A), sc: [0, t], we get a contradiction to 
Proposition 3E. 

Conversely suppose C. holds for s c: [0, t]. Take a 
basis AUA2' •.• ,An for TaN and set ~/s) =K(t - s)Ai 
with K as before. Then 

i;;{t)=A i , 

€ i(t) '" - V'2So(A i), i = 1,2, ... ,n , 

and Hi(S)}i,1.2 .•... n are linearly independent for each s 
E [0, t], However, the solutions ~ of Eq. (59) are deter
mined by the values of Ht) and k(t) and so there are at 
most n linearly independent solutions of Eq. (59) with 
€(t) = - V'2 SJ, W)). Consequently any such solution must 
have the form 

n 

Hs)= 2: ri~i(s), riE R, 
i=l 

and these vanish identically or not at all. Thus:Jf' is 
positive definite by Proposition 3E. 

H. A global inverse function theorem 

We go on to find conditions on s which will ensure that 
q,. is a diffeomorphism; first we give a standard global 
inverse function theorem. 

Lemma 3H: Let lvI and N be connected Riemannian 
manifolds with dim lvI = dim N 0 Suppose q, : M - N is 
smooth and, for some K> 0, for all v E l'M 

ITq,(1!)I~Klvl· 

Then if lvI is complete q, is a covering map and N is 
complete. If also q, is homotopic to a homeomorphism 
then q, is a diffeomorphism. 

Proof: Define (, >.11 on M by (u, v> M = (T mq,(u) , T m q,(l J»N' 
where ( , >N is the Riemannian scalar product on TN 0 

Then, using an obvious notation, by hypothesis 

I v 1- ~ K I v !, V E 1'/\11 • 

Let d and d be the distance functions on lvI associated 
with ( , >u and ( , >'M respectively. We.. first show that 
the above inequality implies that (M, d) is complete. 
For, if x, Y c: lvI, 
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d(X,Y)=inf{~lla(s)l-dSIO'(O)=x, O'(l)=y, O'aC1 path} 

~ inf{K £1 la(s)ldslO'(O)=x, O'(l)=y, O'aC1 path} 

=Kd(x,y). 
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Hence, for the complete manifold (M ,d), if {x n} is 
Cauchy in (lvI, d) then {x n} is C auc hy in (M, d) and con
sequently is convergent in (M ,d), hence convergent in 
the topology of M and so convergent in (M ,d). 

Secondly by definition of < ,r, the map q, : (lvI, < , r) 
-N is an isometry in the sense that T mq, : l' mM - T IP(m/V 

is an isometry. This implies by the completeness of 
lvI that N is complete and q, is surjective. To see this 
set U = q,(lvI). Since, by the local inverse function 
theorem, U is open in N, we can treat U as a submani
fold in its own right. For mE lvI, vET m lvI, let 11 

= l' m q,(v). If, for the exponential map of < )-, y (I) 
= expm(tv), then r(t)= q,(y(t» is a geodesic in N with 
rIO) = 11. Hence, 

r(t)= expo!> (m)(tv) . 

Consequently geodesics go on for all time in U i.e., U 
is geodesically complete. Therefore, U is metrically 
complete. It follows that U is closed in N and, by con
nectedness, U = N, so N is complete and q, is surjec
tive. 

By using a standard result (see e.g., M. Berger Ref. 
17, p. 239 Prop. VII 5.1) since q, is a surjective iso
metry and M is complete if follows that q, is a covering 
map. 

Suppose now that q, is homotopic to a homeomorphism 
and q,(rn)=n. Then q,*:1T1(M,m)~1T1(N,n). Let m,nz' 
E q,-l(n) with m,m' distinct. Take a inM with 0'(0)=111 
and O'(1)=m'. Then nzt-m' implies q,(O') does not lie in 
q, *[0'], which is a contradiction. Hence q, is injective. 

I. A lemma on second order linear ordinary 
differential equations 

Next consider a matrix equation 

R:(s)+P(s)K(s)= 0, 

with 

K(O)= I, K( 0) = ~ 

(63) 

(64) 

for K(s) in the space L(R"; R") of n x n-matrices, where 
P : [O,t) - LORn ,R") is continuous and ~ E L(R"; R"). Let 
IIP(s lil denote the operator norm of P(s) and let A(Q), 
A(Q) denote respectively the maximum and minimum 
eigenvalues of ~. 

Lemma 31: Let K satisfy (63) and (64) where Q is 
symmetric. For real numbers A,A,p,p* 0, set 

lvi(A ,1\, p)(s) = 2+ AS + 1\(s - p-1 sinh(ps)) - coshps . 

Suppose A(Q) ~ A and A(Q) ~ A while IIP(s)1I ~ p2 for 0 
~ s ~ t. Let s = T be the least positive solution of the 
equation 

(1+ As)M(A,A ,p)(s)= o. (65) 

Then K(s )-1 exists on the interval [0, min(!, T) and sat
isfies IIK(s)-lll~Al(A,A,p)(s)-I. 

Proof: We can assume t < T. 

First consider AE GL(n) and BE L(R";R"). If IIBII 
< IIA-1 11-1 the inverse of (A+B) exists and 
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II (A + B)-Ill = II (1 +A -IB)"IA -111 = II (t (-1 )"(A -IB)n)A -11\ 

<S 2: IIA -IBllnIlA -111 = (1 -IIA -IBIl )-IIlA -III 

<S (IIA -111-1 -IIBII)"I . 

Take A=A(s)= 1 + sQ and B=B(s)= J~ ds' Jrp(r)K(r)dr, 
sothatK(s):A(s)+B(s). Now I+As> ° for O<SS~t<T; 
consequentlyA(s)EGL(n), O<ss~t. Also 

liB(s)// <S p2 fS ds' IS' IIK(r)11 dr 
a a 

where 

k(s)= IIK(s)ll, k(D)=k(D)= 0. 

To estimate k(s) consider c(s) defined by 

c(s)= IIA(s)ll+ p 2c(s), c(O)=c(O)= 1. 

We have 

d2 

ds 2 (c(s) - k(s))~ p2(C(S) - k(s». 

It follows [e.g. from Caplygin's methodl8 ] that 

k(s)<sc(s), s~ O. 

Consequently, provided 

p2c(s)< IIA(s )"111"1 = 1 + SA(Q) 

then K(S)"I exists and 

IIK(s)"lI1 <S (IIA(snl-1 -IIBII}"I 

<S(I+sA-p2c(slrl. 

However since 

c(s)-p2c(s)=1+As, 

with 

c(O)=c(O)= 0, 

we have 

c(s) = p-2 coshps + Ap-3 sinhps - p-2(1 + As) 

giving 

Al(A,A,p)(s)=1+sA-p2c(s). 

(66) 

(67) 

Inequality (66) is therefore true wheneverM(A,A,p)(s) 
> 0, which holds by assumption if O<s s ~ t. Since (67) 
reduces to IIK(s)lI"l<SM(A,A,p)(srl the lemma is 
proved. / / In some sense the last theorem is a best 
possible as the following example illustrates. It will 
correspond to the case V'" 0, M = JR. 

Example (One-dimensional): Suppose P'" ° and Q < D. 
Taking I p I arbitrarily small in the lemma yields that 
K(S)-I exists on (0, _Q-l) and satisfies K(S)"l<S (l+Qs)"l 
there. Since K(s) = 1 + Q s this is exact. 

J. A criterion for <Po to be a diffeomorphism 

Theorem 3J: Let p2 be an upper bound over (s, a) 
~ [0, tJ x lvI of the operator norm of V' 2V( • ) -R(4) s(a),' ) 
<l>s(a) :T~s(a)]'vI-T~s(a)M. Let A,A be lower and upper 
bounds of the set of the eigenvalues of the operators 
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V'2Sa(a):TaM-T.M,aEM. Assume A,A and p to be 

finite, p"* D. 
Let s = T be the least positive solution of the equation 

(1 + AS )(2 + AS + 1\(s - p-I sinhps) - coshps)= 0. (68) 

Then <l> s:M -M is a diffeomorphism for o~ s <S min(T, t). 
proof: The proof is immediate from Propositon 3F 

and Lemmas 3H and 31. / / 
Corollary 3J: If M is compact, or more generally if 

V'V, V' 2V, V'Sa, V'2Sa and R are all uniformly bounded on 
M, then there exists T> ° so that <l>s:M -M is a diffeo
morphism for 0 ~ s <S T. 

4. FEYNMAN MAPS AND THE SCHRODINGER 
EQUATION ON A RIEMANNIAN MANIFOLD 

A. Time reversed paths 

When dealing with Feynman integrals it is convention
al and more convenient to consider paths ending at a 
given point. However for Wiener integrals and sto
chastic calculus the paths are usually taken to start at 
that point. We shall abide by these conventions in order 
to facilitate comparison with previous work. For a 
fixed "ending time" it is easy to go from one convention 
to the other by the transformation J where 

J(O')(s)=O'(t-s), D<ss~t 

for a path a defined on [0, t]. 
Set H=aL 2 '1(R"), the Sobolev space of paths O'[O,t]-R" 

of the form O'(s) = J/ (3(r)dr for some L2 path (3:[O,t] 
- R", (so a is continuous on [0, t] and differentiable al
most everywhere with (3 as derivative). The space is a 
Hilbert space for the inner product (a l' 0'2) 

= J; (Cil(s), a2(s»ds. Thus J gives an isometry 

L~'l(R") - aL2'l(R ") • 

B. Definition of the Feynman maps 

Let II be a partition of [0, t] with n = {to, ••• ,tm} ,0 = to 
<t1 < .. · <tm=t. 

Set D.jt=tj-trl'D.jct=O'(tJ)-a(tj_l) for aEH. 

Define the orthogonal projection Prr:H - H by 

Pn(O'){s)=ct{tj_l)+(S-tj_l)(D.jtrlD.p, tj_l~S<StJ' 

Give PnHits Euclidean structure as a subspace of H. 
This determines an mn-dimensional Lebesque measure 
Am on it. The projection Pn{a) of the generic path a can 
be gi ven coordinates (D.lO', ... , D.mO') E R" x ... x R" and 
then this measure corresponds to 1(l:>lt) .. . /(D.",t)d(D.la) 
... d(D.",a). 

We now introduce the complex Gaussian ez:H-C de
fined by 

ez(a)=exp{;z 110'112}, ZEC, z*D. 

Let f:H - E be a functional with values in a real linear 
space E. We shall take E to be a separable Banach 
space. The Feynman map ;}"Z will be defined as follows: 

Definition: For a partition II and for Imz <:, 0, Z"* 0, 
define F;( f) by 
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where I denotes restriction (we will usually omit it in 
future). The value of (27Tiz)-1/2 is taken so that it is con
tinuous on Imz ~ 0, zf. 0, and positive for z = -ib, b >0. 
When Imz <0 the integral is given its usual meaning: 
we require (je.)PrrHto be Lebesgue integrable over PrrH. 
For Imz = ° we will take the "oscillatory integral" def
inition and say it exists provided 

exists for all rp:R" x ..• xR"-C in the Schwarz space 
Y(R m") of rapidly decreasing functions with rp(O) = 1, and 
provided the limit (the "oscillatory integral") is inde
pendent of the choice of rp. 

The definition of the finite-dimensional integral is 
very close to that of Tarski19

; essentially he replaces 
i/J(EX) by i/J,(x) with i/J.(x)=exp{-tkEllx-xoW} forRek>O 
and Xo E PuH. Tarski's definitions for both the finite
and the infinite-dimensional case would do equally well 
for our purposes. Our definitions are discussed in de
tail in Ref. 6. 

We can now define ffK(f) by 

.'7'(f) = lim FIT(f) , 
n 

whenever the YM f) exists for all II and the limit exists. 
Strictly speaking by the limit we will mean: for all p 

> 0, given E >0 there exists 0 >0 with 

IF Z( f) - F M f) I E < E 

for all II with mesh II '" max j A jt < 0 and ~ j t > p mesh 7T all 
j. However for what we do here we could simply take 
the limit as mesh IT - O. 

Let :T"(p'[', H; E) denote the space of functionsf:H - E 
for which yzU) exists. Set y. (p' I· , H) = P( p. I· ,H; C). 
When z = 1, the above definition can be seen to be es
sentially equivalent to Feynman's original definition of 
the path integral. 

C. Relationship with Wiener integration 

When b >0, y-ib coincides with the Wiener integral in 
the sense that if f:oC(R") - C is bounded and continuous 
then y-i b(f) = Eb(f). Here oC(R ,,) denotes J[Co(R")] and 
Eb is the integral with respect to the measure bY in
duced on oC(R") by J from Wiener measure Yo on Co(R "), 
variance parameter b. 

In fact, for iJ.? 0, define 

and 

by 

"u(s, w) = J(u~(-, Jw))(s) 

and 

~x(s, w) = J(x~(-, Jw))(s). 

Then results of McShane20
, (see also Refs. 2,3,21) 
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imply that {~x(s,Prrw)}m converges in by-measure to 
"x(s,w) uniformly in s E [0, t] for each b >0, /.L ~ O. Here, 
for b '" 1, we have to define ~x(s, w) in terms of Brown
ian motion variance parameter b. For N compact the 
convergence is even uniform in iJ. E lO, iJ. o] any iJ. o> 0, 
(3), but we will not use this. It follows by the dominated 
convergence theorem that if gu is the solution to 

(69) 

with g ~(x, 0) = exp{ - iJ. -2IbSo(x)} To(x) bounded on Nand 
V bounded above then 

where, as usual we consider ~x(s, -):H-N defined by 
the classical differential equations corresponding to (4). 
In fact, given some regularity conditions, e.g. if N is 
compact, this result can be proved directly, without 
using stochastic differential equations. We would like 
to have a corresponding result for complex b; however 
it seems to be too much to hope to get a pOintwise so
lution, so we must work in L2 • 

D. A basic conjecture 

Let dv be the Riemannian volume element on the com
plete manifold N. Denote by U(N, dV) the corresponding 
complex Hilbert space. Then Gaffney22 has shown that 
~, the Laplace-Beltrami operator for N, is essentially 
self-adjoint on some domain fiJ(A) c U(N, dv) with self
adjoint closure "b. defined on a domainf1J("b.). Assume 
that the potential V is (- tff2"b.)-bounded with rel2.tive 
bound less than unity and.@(V):::;.@("b.). This will be true, 
for example, if V is bounded. 

The Kato-Rellich Theorem (Ref. 23, page 162) im
plies that H = (- j-n 2"b. + V) is self-adjoint on fiJ("b.). Also 
"b. '" ° and V is bounded above. Consequently for Imz 
,~o, we can define the semigroup, 

Q::L 2(N,dv)-L 2 (N,dl') , f:CO, 

by 

where 

H(z)= - tzn2~+ viz. 

For ljJu E U(N; d') and a E H we can consider the map 
Xo - </;oe x(t, a)). Strictly speaking this depends on a 
choice of frame Ito for each xo: but this can certainly 
be done in a mf'asurable way, and the actual choice will 
be irrelevant. 

Let jj,l"be a class of Riemmanian ma:1 ifolds, e.g. fi 
= Comp, the class of compact manifolds, fi= Flat, the 
flat manifolds. Consider the following statement C(z,jV) 

C(z ,fi): "If fl = n l /
2

, ilVL"(N; (b,), and N ~~ JV' then 

exp_{i~-'2 .( V("x(s, -)dS} 
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and 

YZ(ljJo(Ux(t, -))=Q~ ljJo"· 

We make the following obvious conjecture: 
Conjecture: Statement C(z, Comp) is true for Imz '" 0, 

z *" O. We would also expect it to be true for a wide 
class of noncompact manifolds. 

The truth of C(-ib, Comp) for b >0, follows from (70): 
the dominated convergence theorem shows that g ~(xo' t) 
is the L2-solution. We can also consider the statement 
C(z ,.;1,r) obtained by restricting the potentials V to lie 
in some class r. When/ consists of Euclidean spaces, 
C (z ,;Y,r) is true for z real, and r the class of Fourier 
transforms of complex measure of bounded total varia
tion (in fact for the sum of such V and a harmonic os
cillator potential) as is shown in (6). See also TarskiI9 

for the case of more general bounded V. 
Despite the need to work in L2 we shall nevertheless 

continue working pointwise for simplicity of exposition. 

E. The polygonal approximations to the stochastic 
development 

In order to relate to previous schemes for path in
tegration on curved space we must examine 

~[exp{ t -i~ , V("«S»dSlg;("X(O)l 

It will be notationally more convenient to switch back to 
the L~·I picture and so consider paths starting at 0 and 
xO' Take J..L = 1, set g:; = g, and write k = (27Tiz) -(1/2) mn 

ITj~l C:~ It) -(1/ 2)n; in fact t.jt = t.t == tim for our purposes. 
Then our approximation is 

I -=k I exp{~ f:~ 
• T NX ... X T N 2z 1=1 t.lt 

Xo :x: 0 

x g(p(t. 1 , ••• ,t.m)(t»dt.1 ••• dt. m , 

where p "" p(t.l' . , . , t. m )(· ) is the path on N given by 
x1

(. ,uo(a» for a'" a(t.1"'" !J.m) the polygonal path in 
T, iVj with a(O) = 0 and t.. a = t. j • As before u is the 

o ' 0 
frame at Xo used to define Xl. Thus p(t.u "" t.m) is the 
classical development of a. 

Now P can be expressed as follows: First 

pes) = exp,o (st.Jt1) , 0'" s '" t i • 

Let U(t.1" •• , t. I) denote parallel translation along P 
from 0 to ti' so 

U(t.1' ••• , t. j): T xoN - Tp(t j)N 

is orthogonal. Then if PI = pet j) 

We will assume that exp,o: T xoN - N is a diffeomor
phism and that there is a unique geodesic joining any 
two points of N. This will be true if N has nonpositive 
sectional curvatures and is simply connected. Let 
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y(tj+I ,a; tj+llb) denote the geodesic (not parametrized by 
arc length!) which has y(t)=a,y(tj+1)=b, for a,bEN. 

Let A(t I' a; t 1+1> b) denote its action 

1 II. I I t
l+l A(t l ,a;tj+l,b)=2' ,. ly(s)1 2 ds- V(y(s»ds. 

I j t j 

Define ljJ: N xN -R by 

1/J(x,a)= IdetD(exp;l)(a)I ' 

where the inner products of T,N and T t!V are used in 
computing the determinants of D(exp;l)(a): T t!V - TxN 

i.e. 

for 

g(x) = det[g ,jx)] ",8 • 

In the notation of A. Besse (Ref. 24 Sec. 6.2) 

ljJ(x, a) = ex (exp;Iarl 
• 

Consider the transformation 

?: T Xo N x ... x T xoN - N x •.. x N 

2 (t.1" .• ,t.m) = (PI'" • ,Pm) 

for P j defined as above. 
For j < k we see D k P J = 0 where D k denotes the partial 

derivative in the kth factor. Consequently the Jacobian 
determinant IdetD2 (t.1"'" t. n) I is the product of the 
Jacobian determinants ITJ IdeW jPit.I ,··· ,t.m ) I· 

Now D j p(t.1' ... , t.m) 

== D exPPj_1{U(t.1"'" t.j-rlt.J}o U(t. l , ••• , t. rI ) , 

so 

IdetD 2 (t.I , ... , t.ml I 

= II IDeW eXPPj_I {U(t.1"'" t.;-I)t. j } I 
J 

In particular =: is a local diffeomorphism, and hence a 
diffeomorphism since it is bijective by the assumptions 
on N. Therefore 

I.=k i exp{i I>Uj-1,Pj-l;tl,Pj) 
TxoNX"XT'ON Z 1 

x g(Pm) dt.1· . dt.m 

=k 1 exp{i L:>(tr1'prI;tj,P/l} 
NX .. XI> z I 

x g(Pm)IIl/J(PJ-U Pi) dV(PI)'" dV(Pm) ' 
j 

where v is the measure coming from the Riemmanian 
volume element on N. 

Let !iJ denote the invariant Van-Vleck determinant: 

IiJ(tj_Ux;tj,y)= IdetDyDx [i t ly(t j _u x;t j ,y)(s)1 2 ds I 
t j-I 

so 

David Elworthy and Aubrey Truman 2159 



                                                                                                                                    

~ = g-1/2(X) Dg-1/2 (y ) 

in a standard notation. Then 

~=2-"(AftrnldetDyD.d(x,y)21· 

However, for hET.N 

Dr d(x,y)2(h) = -2 (exp;l(y),h) 

so 

D yD.(x,y)2(l,h)= -2(Dy(exp~1)(s)(l),h), l E T~,N 

giving the known result 

~(tf-1O Pf-l; t f , Pf)= (Ajtr">Jt(Prl , Pj)' 

Thus we have finally 

I.: (211iZr(l/2)ni 
NX· .. XN 

[lIm e(l/z)A(trl,P}-l; tj,PJ>(A .t)(l/2)na,(t fl • t ,...) 
1 ;:P j-l'" ;-10 f' I"' j 

;=1 

(71) 

The integral differs from that obtained using the 
Pauli, Van-Vleck, De-Witt propagatorS (which is the 
principal term in the WKB expansion: cf. equation (78) 
below) by a factor ofII/l)!(Pj-1OP j) i.e. we have 
(A

j
t)(1/2)n£p instead of fJl/2. However note that we have 

no terms involving the scalar curvatures appearing in our 
differential equations. For the case z = -ib, b >0, we 
have now proved that I. converges to a solution of the 
corresponding diffusion equation (45). For more dis
cussion, and historical remarks, about the formula 
when z is real see Ref. 25. 

5. THE QUASICLASSICAL REPRESENTATION FOR 
THE SCHRODINGER EQUATION 

A. The quasiclassical expansion in the Feynman map 
notation 

Applying the time reversing transformation J to Eq. 
(44) we see that 

=ST:[exp{; .f C~ (~(o')(s) - o'(s», O'(s)ds) 

i It / d /2 } +2z ° ds("0(O')(s)-O'(s)) ds 

provided either side exists. Here the 0' in.5'~ is used to 
show that the "integration" is over 0'. Also we have set 
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"0=J0J 

("0-1 is given explicitly in (75) below) and 

VB(p., a)=B(p.,J ",) 

lIt : 2' VdV(VZ(s)(Dv(s)a (s), °v(s )a(s» ds 

° 

+p(IJ.,Ja) 

for P as described after Eq. (44)0 

B. Transformation of the Feynman map 

(73) 

Now let w: H - H be a continuous affine transformation. 
Set >Jt(a): 0' + l)!(a) , so l)! is affine. Define 

e;:H-C, 

e:(a)=exp{;z (l)!(a),l)!(a)H+';'(l)!(a),a)H} 

: exp{2iz ( IW(a) 12 - 10' 12)}. 

First we take w=~. The right-hand side of (72) is then 
just 

.5': [e~El(a) exp{- ;VB(IJ., "0(O'»}To("X(O, 0')) • 

Just as in Chapter 1, and as in previous works, we are 
therefore led to consider 

ff~ [exp{ -.;. VB(IJ., 0') } To("x(O, V0-1(a))) , 

although we must emphasize that we have no reason to 
believe that the integrand lies in yz(p. I . ,H). In partic
ular we cannot justify this change of variables when Z 

*- -ib, b>O, (see Refs. 6 and 26 for a discussion of 
Cameron-Martin formulas for Feynman integrals). 
However, by analogy with previous works we shall call 
the resulting expression 

x (Ov(O)a(O), °v(O)a(O)) 

+ It (R(Ov(s}Q'(S), "Z(s)]OV(S)Q'(S}, VZ(s» ds 
o 

+ p(1f 11
2

, Ja)]}To("Z(O, a) ] 

the quasiclassical expansion of the solution 
Q:( go) to 
f) . 
JL = iznAg _ 2- Vg 
'ilt zfi 

g(O, x): exp{zi/iSo(X)} To(x) 
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In (74), "z(', a) is the classical development (in the re
verse time direction) of the path Va-lea): 

"E> -1( a)(s) = If l/2a(s) + Va(s) 

_Ifl/2 [Sf" °v(~r1R[VZ(~), °vWaW]V ZWd~ d17 
o 0 

(75) 

for °v parallel translation along the classical path vz 
which itself is the development of va. Note that we can 
write 

(76) 

where r(lf 1/2, a) is continuous in If E [0,00) for each a. 
Using the notation of Chapter 3 observe that VZ(s) 

= <ps(a) for a = VZ(O) = Z(t), and that S =5"(VZ). In terms of 
the Hessian 7ft' for our functional S we obtain from Sec. 
3D the following expression for the quasiclassical ex
pansion: 

exp(+ zilf S(VZ)) 

x .'1~ [exp{ 2
i
z f(a, a) - [t I a(s) 12 ds -Ifr(t£l/2, a)]} 

x To("z(O, a) ]. (77) 

C. Evaluation of the leading term 

At If = 0 the integrand in the quasiclassical expansion 
(77) takes on a well-known form, (see for example 
Refs. 1,4, 6), it can be evaluated for suitable t: for 
real z we require thatJi'be nondegenerate on Ti' and 
otherwise we require that 7ft'be positive definite. Under 
these conditions we have from Ref. 6 

y~ [exp{2iz rea, a) - [t la(s) 12ds J}J 
= exp{ - i

2
7T Ind7ft'} I detK t 1-1/2 , 

where K, E L(TaN; T vz(S)N) 

satisfies Eqs. (61) and (62) viz., 

with 

(62) 

Here IndJY' is the index of the bilinear form JY'i.e., the 
dimension of a maximal subspace of H on which JY' is 
negative definite (see Ref. 16 for a Morse index theorem 
in this situation). We will set I(xo,t)= IndJY. 

The results of Sec. 3 F and Corollary 3J can now be 
applied (for V and So of class C3 and C2 respectively) 
and we can sum up with 

Theorem 5C: Suppose vz is a nondegenerate critical 
point of the action functional 
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Assume either that z is real, or that Imz "" 0 and vz is 
a local minimum for Y. Then the leading term in the 
quasiclassical expansion of the solution to 

ag . i at'= tzlf'Vg - zlf Vg, 

g(O,x)= exp{z~ So(X)}To(X) ' 

is 

exp(+ z~ Y(VZ~ 

y~ [exp;z (JY'(a,a)- f I a(SWdS)} To(VZ (0»] , 
where JY'is the Hessian of Y given by 

JY(L 17) 

= f <~(s),i)(s))ds+ f (R[vi(s),~(s)]vi(s),17(s)ds 
o 0 

- [t 'V dV(VZ (s)( ~(s), 17(s )ds + 'V dSo (VZ (t»( ~(t), 17(t)). 
o 

The Feynman integral exists and on evaluation the 
leading term becomes 

exp{+ zilf Y(VZ) - i; I(Xo,t)}1 detTa CPt 1-1/2 To(a) 

for a= VZ(O) and I(xo,t) the Morse index of vz. / / 
N .B. The leading term is only a useful approximation to 
the solution when vz is a unique minimum of Y , for z 
=ib, b> 0, or when vz is uniquely determined by vZ(t) 
for real z. In other cases we can expect to have to 
take a sum, or integral, over the relevant classical 
paths vz. Useful conditions on So, V, R and t are given 
in Theorem 3J and its Corollary. In fact it is rather 
misleading to call (74) the quasiclassical expansion ex
cept in these circumstances. There is a precise ap
proximation theorem for the Schrodinger equation in 
the next chapter. For the diffusion equation see Ref. 9, 
and for general discussions see Refs. 27 or 28 and 29. 

D. Special case of a nondegenerate minimum 

Suppose now that vz a nondegenerate minimum of Y . 
Then JY' is positive definite on T z 9 and so has the 
formJY (L 17)= (BL B 17)H where B : T z9 - T z9 is posi
tive definite. In fact B is described explicitly in Sec. 6 
of Ref. 26 (for R = 0). Our putative solution (72) can 
then be written as 

x exp{ - ;z lfr(lfl1 2, Va (a »}T o(ux(O, a))] , 

where 'It = va • B. Suppose for simplicity that To;; 1. 
Then a formal change of variable, valid for z = ib, b 
> 0 reduces this to 

exp (+ z~ s) I Ta<p t I-II 2 y~ [exp {- ;z Ifr(lfl/2, B-1a)} ]. 

(78) 
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6. THE RELEVANCE OF THE CLASSICAL PATHS FOR 
THE SCHRODINGER EQUATION 

In this final section we discuss the relevance of the 
classical paths for the Schrodinger equation on a finite 
dimensional Riemannian manifold N. In the first sub
section we prove some elementary results on the Ham
ilton-Jacobi and continuity equations in curved space. 
These are required for our subsequent results. In the 
second subsection we discuss in what sense the WKB 
approximation is valid when the relevant classical paths 
induce a diffeomorphism of the manifold N. We present 
in this section a simple theorem summarizing our main 
result for the Schrodinger equation on a Riemannian 
manifold N. This theorem shows that when the classi
cal paths induce a diffeomorphism of N the first term 
of the quasiclassical representation is, for smalln, 
close (in the L2 norm) to the actual solution. Most of 
the results here are well known and can be found in 
much greater generality in Refs. (27)-(30). However it 
seemed worth proving them here for our special case, 
and without having to introduce all the extra notation of 
those references. 

A. The Hamilton-Jacobi equation 

We begin with an elementary lemma. We use the no
tation of the preceding sections and assume that V and 
So are real valued and C 2

• We also assume that cI>t:N 
- N is a diffeomorphism for ° ~ t ~ T. Recall that "Z (s) 
= cI>s("Z(O»= cI>scI>?(xo) and that 

~ .(a) = - V'V( cI> s(a) with cI>o(a) = a, 4>o(a) '" V'So(a). (79) 

Lemma 6A: Define 

5 :N x [O,tj-lIt 

by 

- It V(cI>s ° cI>?(x»ds . 
o 

Then 5 satisfies the Hamilton-Jacobi equation 

t 1 V'S(x ,t)12+ V(x)+ °o~ (x ,t)= 0, o~ t~ T 

with initial conditionS(x,O)=So(x). 

(80) 

The flow {cI>t}OEtE1 is the flow of the time dependent vec
tor field V'S on N, Le. it satisfies 

(By V' we will always mean the gradient in the space 
variables. ) 

(81) 

Proof: Let A*: TyN - TxN denote the adjoint of any 
given linear A: TxN - TyN. Then taking the gradients: 

V'S(x ,t)= (TcI>;t)*V'So(<pl"l(X) 

+Jt .Q..[T(cI>s ° cI>;t)*j(4)s ° cI>;t(x)ds 
oOs 

t -i T(cI>s ° cI>;t)V'V(cI>. ° cI>?(x)ds. 

2162 J. Math. Phys., Vol. 22, No. 10, Oct. 1981 

Integrating the second integral by parts gives 

V'S(x ,t)= cI>t ° cI>?(x) , 

whence 

4> t(a) = V'S( cI> t(a), t) 

proving (81). On the other hand, differentiating for t: 

°o~ (x, t)= dSo( cI>?(x)ht l4>t ° cI>?(x) 12 

I
t • 

- V(x) - 0 dV ° TcI> s(cI>;t(x)ds • 

Integrate the second integral by parts: 

f (~ TcI>s(.i.?(x),<i>so cI>;t(X))dS 

= ( T<l> t ( 4>? (x», .j, t 0 cI>;t (x) 

-(cI>?(x) , V'So(cI>;t(x)) 

+ [t (TcI>s(.j,;l(X), V'V(cI>;t(x»)ds 

to obtain (80) on using (81) and observing that cI>t ° cI>? 
=id yields 

(82) 

B. The continuity equation 

Our next lemma follows from (81) by a well-known 
result about flows of vector fields. Define 

1> :Nx [O,T)-lIt 

by 

1>(x,t)=ldetTx<I>?I, 

where the Riemannian metric is used to give orthonor
mal bases in TxN and T ilii1(x)N so as to compute the 
determi.nant of Tx<I>;t: TxN - T iIi-1(x)N up to sign. 

t 
Lemma 6B: The map 1> satisfies the continuity equa-

tion 

01> . at (x ,t)+ dlV [1> (x ,t)V'S(x ,t)J= 0. 

Proof: Since Tx<I>;!s= TycI>? ° Tx(<I>t ° cI>;!.l for y 
= <I>t ° <I>;!s(x) we have 

1> (x ,t+ s)= 1>(y ,t)ldetT,(<I>t ° <I>;!s) I 
Consequently, at s = 0, 

(83) 

where we have taken a coordinate system near x in or
der to make sense of the logarithm. 

Now, using (82) 

(V'1>(x ,t), T<I>t(cI>;l(X») = - (V'1>(x ,t), cI>t(cI>?(x») 

= - (V'1>(x ,t), V'S(x ,t). 
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by Lemma 6A. 
Also, at s = 0, 

~eXPtrlnTx(<I>tO <I>;!s) as 

Since 

= tr V(T<I>t ° 4>;t)(x) 

=-trV(<I>t O <I>;l)(X) by (82) 

= - tr V2S (x ,t) . 

div ¢S = tr V2¢S 

= (V¢, VS)+ ¢ tr v2S 

the result follow s. 

C. Some technical formulas 

Our next lemma is a ragbag; we are staying with the 
same notation. 

Lemma 6C: 
(i) For C 2 functionsf,g:N - C we have 

V(fg)=fVg+ 2 (Vf, Vg)+gVf (84) 

(ii) (i: ~ + i~) exp (1£ 5 ) 

=(1£ ~~ -~~ exp 1£5) (85) 

(iii) for a C1 map e :N-C 

a~ I ¢ 1/2e 0 <I>;tl = _~¢-1/2div(¢VS) - ¢ I12de ° T<I>;t(VS). 

(86) 

Proof: Part (i) is elementary. For (ii), because the 
divergence is the trace of the covariant derivative 

( 
i _ _ as) (i) = if ~ + 21f 2V (x ) + 2If 2 at exp Ii 5 

by the Hamilton-Jacobi equation (80). This proves 
(ii). For (iii) we use the continuity equation (83) to ob
tain 

~ ¢ 1 I 2 = l. ¢ -1 I 2 a ¢ 
at 2 at 

= _~¢-1/2div (¢~). 

Also by (81) and (82) 

a 
at <I>;l(X)= -T<I>?"(VS(x ,t) 

giving 

a at e(<I>;t(x) = -de ° T<I>;t(VS(x ,t) 

and we have (86). 
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D. Basic assumptions 

We now discuss in a simple case the validity of the 
WKB approximation arising as the first term in our 
(q uasiclassical representation) for the Schrodinger 
equations on the n-dimensional Riemannian manifold N. 
To prove the main result of this section, Theorem 6F, 
we need to make some simplifying assumptions. These 
are principally the assumptions of the last section; we 
recapitulate them here: 

Gaffney's results show that when the finite dimen
sional Riemannian manifold N is complete then Ho= 
_1f2~/2 with some natural domain of definition in 
L2(N, dv), the space of functions square integrable with 
respect to the natural Riemannian volume element dv, 
is essentially self-adjoint. Hence lio' the closure of 
H o' is self-adjoint on some domain '.D(lio). When the 
real-valued potential V with.@ (V)::J.@ (lio) islio-bounded 
with relative bound less than unity the Kato-Rellich 
theorem implies that H= (llo+ V) is self-adjoint on f!J(iio) 
and according to Stone's theorem, generates a con
tinuous unitary one parameter group 

U(t)=exp(-itH/If), U(t) :U(N,dv)-.U(N,dv). 

Then putting i}!t = i}!( • ,t) E U(N ,dv) we have 

i}!t=U(t)i}!o 

gives a (weak) solution of the Schrodinger equation in 
the sense that 

In what follows we shall assume V is at least this well
behaved. Such a V is called a Kato potential in Eucli
dean space. 

We now come to our most restrictive assumption. 
Let <I> t : N - N be defined as before. We assume that, 
for each 0<:; t< 7, <P t is a C3 diffeomorphism. 

Observe that when N is a complete finite dimensional 
Riemannian manifold Theorem 3J effectively gives us 
a minimum positive value for 7 in this assumption. 

E. An auxiliary semigroup 

Define the family of unitary operators 

by 

Wo(t )(e)(x) = exp(1£ S(x ,t))¢1/ 2(X ,t)e( <I> ;t(x). (87) 

Then 

Wo(t )"l(e)(x) = exp(;i S(<I>t(x), t) )¢-1/2( <I>t(x), t)e( <I>t(x» . 

(88) 

Also define 

W(t,s) :U(N)-U(N) 

by 

W(t,s)= WO(S)"lU(S -t)Wo(t). 

We c an think of this as defined for ° <:; s <:; t < 7 although 
it is defined for all s,tE [0,7). 

David Elworthy and Aubrey Truman 2163 



                                                                                                                                    

Proposition 6E: The family {W(t, s)} is a (time in
homogeneous) semigroup of unitary operators: 

W(t ,s ) W(u ,t) = W(u , s) . 

For e:N -C a CC function of compact support 

1
. W(t+ S ,t)e - e 
1m 

s-o+ s 

(89) 

with convergence in L2(N), for each tre. [0,7). (Geo
metrically: if e is considered as a scalar density of 
order i then the infinitesimal generator of {W(t ,s)} is 
the transport of -tina by the classical flow.) 

Proof: It is clear that we have a unitary semigroup. 
Part (iii) of Lemma 6C shows that, pointwise on N, 

- exp(~ S)<p1/2d<P 0 Tx<l>?("v'S) 

= (~ ~~ -iAS _i<P-l("'7<P, "'7S») wo(t)e 

-exp(~ s) <pl/ 2 de 0 Tx<l>;l("'7S) . 

However 

.!(W (t+s)-W (t»=j1aWO(t+As) dA 
s 0 0 0 a (t + AS) 

(90) 

pointwise on Nand e has compact support. Consequent
ly the joint continuity of <l>t(x) on [0,7)XN together with 
the dominated convergence theorem allows us to inter
pret the derivative (a lat)[ wo(t)e 1 as a derivative in 
U(N). 

Continuing in L2(N) now, and using Eqs. (84), and 
(87) 

a: U (-s )Wo(t)e 18=0 = - (ima+ i~) wo(t)e 

= - <pl/2(e 0 <l>?)(tina+ i~ v)exp(i~) 

-in("'7exp(~), "'7(<p 1/ 2e 0 <l>;l») 

-exp(~ s)'hna(<p1I2e 0 <l>?). 
(91) 

Also 

-m("'7 exp(~ S ), "'7 ( <p 1
/ 2e 0 <l>;t») 

= t ("'7S, <p-1"'7<p )Wo(t)e + <p 1/ 2 exp(~ S )de 0 T<l>;l("'7S) . 

(92) 

Now 

1 
lim -( W(t+ s ,t)e - e) 
s-o+ S 
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and if (90) and (91) are substituted into this the result 
follows on using (92) and (85). II 

F. The validity of the WKB approximation when the 
classical flow induces a diffeomorphism of configuration 
space 

Theorem 6F: Let i/!~(x, t) be the solution of the Schro
dinger equation on the manifold N, 

with Cauchy data 

i/!n(x, 0)= exp(~So(X»)To(X)' 
where So is real valued and To independent of n. Then 
given the above assumptions on So, V,N: in particular 
assuming <l> t is a diffeomorphism for ° ~ t ~ 7 we have, 
for To infinitely differentiable and with compact sup
port 

exp (-~S(x, t~ i/!~(x, t)- I det Tx<l>;lli/ 2T 0(<1> ;lX) 

in L2(N) with respect to x, as n - 0, uniformly in t 
re. [0,70 ) any 0<70 <7. 

Proof: The proof is a minor modification of the 
proof of the corresponding result in (1). Let A(t) be 
the infinitesimal generator of the semigroup {W(t ,s)} 
defined above; so 

A(t)To= -~ n<p1I2(<l> , (. ),t)(a(<p1/2To 0 <l>;t» 0 <1>t. 

Set 

Tt=W(t,O)To' 

Then 

1 
W(t, O)A(t)To= lim -[ W(t, O)W(t+ s, t)To - T tJ 

s-o+ s 

In particular the latter limit exists in U(N). It follows 
that the right derivative in t of (To, T t)L 2 exists and is 
continuous. Consequently, by general principles (e.g., 
Ref. 31, Chapter IX Sec. 3) the derivative exists and 

1 (To, T t )L 2 - (To, TO)L 21 

= I t (To, W(s,O)A(s)To)ds 

~ II ToIIL~ tll~ A(s )ToIL2dS 

by the Cauchy-Schwarz inequality and the isometric 
property of W(s, 0). Since (1 In)A(s) To is independent of 
n and bounded uniformly in s on [0,7 oj we see 

lim (To,T t )= (To,TO)L2 
1\-0+ 

uniformly in 

0~t~70' 

From this, since 
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(T p T t )L2= (To, TO)L 2, 

we have 

IITt - Tolli2 = 2(To, To) - 2Re(To, T t )L2 

-0 

asli-O, uniformly in O<St<STo' 

Using the definition of T t this gives 

lim IIWo(t)To -U(t)Wo(0)ToIIL2= 0 
n-o+ 

and the theorem is proved. II 
A brief discussion of the fact that this result gives 

the correct classical limit of quantum mechanics for 
small times is given in Ref. 36. 
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when there is a unique classical path Z, the Theorems 
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No.1, 17-28 (1980), together with inequalities (ii)' and 
(iii)' of Sec. 3A, combine to give equality in Corollary 
3A even with lim replaced by lim. This strengthens the 
results of Sec. 3C to a complete proof of convergence to 
the WKB term in this case. 
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It is shown that in a general pseudo-Euclidean space E ~, 2-fiats (planes) passing through the 
origin of the coordinate system may be classified into six invariant types and explicit formulas for 
"planar rotations" in these fiats are obtained. In the physically important case of the Minkowski 
World E !, planar rotations are characterized as rotation like , boostlike and Singular 
transformations and an invariant classification of proper Lorentz transformations into these 
types is given. It is shown that a general nonsingular proper Lorentz transformation may be 
resolved as a commuting product of two transformations one of which is rotation like and the other 
boostlike while a singular transformation may be written as a product of two rotation like 
transformations, each with a rotation angle 1T. Such a rotationlike transformation with angle 1T is 
called "exceptional" following Weyl's terminology for similar transformations ofSO(3). In all 
cases, explicit formulas for the angles and planes of rotations in terms of the elements of a given 
Lorentz matrix are obtained and the procedure yields in a natural manner an explicit formula for 
the image of L in the D IO(D 01) representation of SO(3, I) which in turn leads to two more 

classification schemes in terms of the character X of L in the D IO(D 01) and the D lO(D Dl) 
represen tations. 

PACS numbers: 03.30. + P 

1. INTRODUCTION 

We consider here a general pseudo-Euclidean space E ~ 
spanned by the orthonormal basis Ik with 

Ik = (0,0, ... 0,1,0, ... ,0); p>k> 1, 

Ik = (O,O, ... O,i,O, ... O); p + l<k<n, 
(1.1) 

where only the k th-component Oflk is nonzero and is either 
1 or i as indicated and the tilde denotes matrix transposition. 
An arbitrary vector of E ~ is given by 

(1.2) 

where x k are all real. The scalar product of any two vectors X 
and Y is defined as 

(1.3) 
iJ 

where the diagonal matrix 

(gij)=(I,Ij ) = diag(I,I, ... I, - 1, - 1, ... - 1), (1.4) 

withp "plus-ones" and (n - p) "minus-ones," is the metric 
inducedonE~ by the scalar product given in Eq. (1.3). Xand 
Yare said to be orthogonal if XY = O. Following a familiar 
nomenclature used in relativity theory, we define a vector X 
to be timelike, null or space/ike according as 

X2=XX~O. (1.5) 

A non-null vector X is said to be a unit vector if X2 = ± 1. 
Evidently the signature of gij is p - (n - p) = (2p - n). Here 
we may observe that the space E ~ - P is completely equiv
alent to E ~ except that E ~ - P has a metric with the opposite 

"Formerly C.S.I.R. Senior Research Fellow. 

signature (n - 2p) and the vector nomenclatures "timelike" 
and "spacelike" get interchanged. 

In what follows, we adopt the following notation. As 
seen above, boldface capitals such as Ik , X, Y, P, Q etc., 
denote n-dimensional column-vectors of E ~ and Ik etc., the 
corresponding row vectors. Ordinary lightface capitals such 
as L,S,A,I,S"Sb etc., denote n X n matrices. E is the n X n 
unit matrix. Elements of a matrix A are denoted by Aij' In 
particular, these symbols denote, respectively, 4-vectors and 
4 X 4 matrices in the case of the Minkowski world E ! . Lower 
case boldface letters such as e, h, m, n, a, f3 and the two 
boldface script letters If and J¥" denote 3-vectors. 

2. TWO-FLATS PASSING THROUGH THE ORIGIN AND 
THEIR CLASSIFICATION 

Any two-dimensional subspace of E ~ defined by the 
parametric equations 1 

(2.1) 

may be called a 2-flat of E ~. Here R, as usual, is the radius 
vector of a general point on the 2-fiat defined by the fixed, 
linearly independent, vectors P, Q and C of E~ and (fJ,p,) are 
two real parameters taken from the range 
- 00 < fJ,p, < 00 • A 2-fiat passing through the coordinate 

origin is given by Eq. (2.1) with C = 0, and such a 2-ftat is 
completely determined by the linearly independent vector 
pair (P,Q) which however is not unique. Any other vector 
pair (X,Y) related to (P,Q) by 

X = aP + b Q, Y = cP + d Q, (2.2) 

where a,b,c and d are any four real numbers satisfying 

ad - bc=/=O, (2.3) 
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serves equally well to define a 2-flat passing through the ori
gin. This situation permits us to choose (X,Y) to be an or
thogonal pair of vectors. To see this, let us suppose that (P,Q) 
is nonorthogonal. Then Schmidt's orthogonalization proce
dure adapted to E ~ yields the fOllowing prescriptions for 
orthogonalization: 

(i) IfP and Q are both null, then X = P + Q and 
Y = P - Q are orthogonal and as X2 = - y2 = 2PQ # 0, X 
is timelike if Y is space like and vice versa. 

(ii) If at least one of the two vectors (P,Q), say P, is 
nonnull, then X = P and Y = Q - (PQ/pz)P are orthogo
nal. Further y2 = QZ _ (PQ)2 /pz, and this shows that when 
Q is null, X is timelike ifY is spacelike and vice versa. How
ever, when Q is not null, Y may be timelike, spacelike or null 
depending on (P,Q). 

Thus, the generating vector pair (X,Y), of a 2-flat 
through the origin, can always be chosen to be an orthogonal 
pair and we shall assume that it is so in the rest of this paper. 
In terms of an orthogonal pair (X, V), the equation to a 2-flat 
through the origin becomes 

(2.4) 

It is easy to see that a general E ~ admits orthogonal 
vector pairs of the following six types: spacelike-spacelike 
(ss), spacelike-null (sn), spacelike-timelike (st), null-null (nn) 
null-timelike (nt) and timelike-timelike (tt). For example in 
E~, we have [(O,O,i,O), (O,O,O,i)], [(O,O,i,O), (l,O,O,i)], [(0,0,i,0), 
(1,0,0,0)], [(0,1 ,i,O), (l,O,O,i)], [( 1 ,0,0,i), (0,1,0,0)], [( 1 ,0,0,0), 
(0,1,0,0)] which are orthogonal vector pairs belonging to the 
types tt, nt, st, nn, sn, and ss respectively. However, we may 
observe that all these six types of orthogonal vector pairs 
exist only when gij has at least two positive terms and two 
negative terms, i.e., when n>2 + p>4. In particular, in 
E ~ - 1; n > 3, of which the Minkowski world E i is a special 
case, only the three types ss, sn and st, of orthogonal vector 
pairs, are possible. This result can be seen easily as follows: 
Since p = n - 1, there is only one timelike member in every 
orthonormal basis of the type described in Eq. (1.1) and it is 
evident that given any timelike vector T, one can always 
choose an orthonormal basis in which the components of T 
are given by T = (O,O, ... O,it). This form ofT immediately 
shows that orthogonal vector pairs of the type tt and nt are 
impossible in E ~ - 1. Further, if X and Yare a pair of orthog
onal vectors of which, say, X is null, then in a suitable orth
onormal basis in which X has components given by 
X = (O,O, ... O,x,ix) and Y has components given by 
y = (Y1>Yz,'" Yn _ l>iYn), XY = ° implies Yn _ I = Yn and 
hence YY = Y~ + Y; + .. + Y~ _ 2 >0. Therefore Y can only 
be spacelike, or ifit is null, it is a constant multiple of X and 
this proves that orthogonal vector pairs of the type nn (and 
nt) are impossible in E ~ - 1. Thus, we see that in E ~ - 1, only 
three types of orthogonal vector pairs namely ss, st and sn, 
are possible. 

We now prove that a 2-flat defined by Eq. (2.4) admits 
only one type of an orthogonal vector pair (X, V). Let (X', V') 
be a new pair of orthogonal vectors in the 2-flat defined by 
Eq. (2.4). Then they are related to (X,Y) by 

X' = 1JX + ILY, Y' = 1J'X + IL'Y, 1JIL' -1J'IL#O. (2.5) 
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Evidently we have 

{X')2 = 1JzXz + IL2yZ, (y')2 = (1J,)zX2 + (IL,)2y2, (2.6) 

and 

(2.7) 

From these formulas it is evident that when (X,Y) belongs to 
the types ss, nn or tt, (X',Y') is also of the types ss, nn or tt 
respectively. When (X,Y) is of the type st, in the nontrivial 
case in which 1J,IL,1J' and IL' are all nonzero, Eqs. (2.6) and 
(2.7) yield 

(X')2 = (1J/IL')(1JIL' -1J'IL)X2
, 

(Y')Z = _ (1J'/IL)(1JIL' -1J'IL)X2
, (2.8) 

which clearly show that X' and Y' are both non-nulL Fur
ther, from Eq. (2.7) we also have 

(1J1J'/ILIL') = (- Y2/X2»0, (2.9) 

as (X,Y) is an st-pair of orthogonal vectors. Therefore (1f/IL') 
and (1f'/IL) are of the same sign and from Eq. (2.8) it now 
follows that (X',Y') is also an orthogonal vector pair of the 
type st. In the two trivial cases in which either 1f = IL' = a or 
1f' = IL = 0, this result is evident. Lastly, when (X,Y) is of the 
types nt or sn, with, say, X as the null vector, we have from 
Eqs. (2.5)-(2.7), 

(X,)2 = ILZy2, (y')2 = (IL')zyz, /-lIL' = O. (2.lO) 

Both the cases IL = 0, IL' #0 andIL #0, IL' = 0 evidently lead 
again to an orthogonal vector pair (X' ,V') in which one of the 
vectors is null (and is a constant multiple of the original null 
vectors X) and the other non-null vector has the same norm 
as that of the original non-null vector Y. 

Thus we see that every 2-flat defined by Eq. (2.4) admits 
precisely one type of an orthogonal vector pair only and 
hence can be characterized by the type of orthogonal vector 
pair it admits. This leads to a classification of these 2-flats 
into six types, corresponding to the six types of orthogonal 
vector pairs discussed above. These 2-flats may thus be des
ignated as ss-2-flats, st-2-flats, etc. 

I t is also interesting to note the relation between these 2-
flats and the null-cone 

RR=O, (2.11) 

passing through the origin. Evidently, the points at which 
the 2-flat of Eq. (2.4) intersects this null-cone are given by 

R = 1fX + ILY, (2.12) 

where the (1f,IL) satisfy 

1JZX2 + IL2y2 = O. (2.13) 

Thus we observe that tt and ss 2-flats intersect the null-cone 
at only one point, namely the origin with 1f = IL = O. sn or nt 
2-fiats touch the null-cone along a line and with X as the null 
vector in the orthogonal pair (X,Y) we find the equation to 
this line of tangency to be 

IL = 0. 

A st-2-fiat cuts the null-cone along two lines given by 

1J = ± (y2/X2)1I2IL, 

(2.14) 

and and nn-2-flat lies entirely on the null-cone. These results 
may be compared with the corresponding results for the case 
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of E! given in Synge. 1 

3. PLANAR ROTATIONS IN E:: 
We know2 that the linear homogeneous transforma

tions A = (Ai})' in E ~, which leave the quadratic form 

X- X 2 2 2 2 2 (3 1) =x\ +X2 +",+xp -xp+\ -"'-Xn' . 

invariant, form the pseudo-orthogonal group G ~ . The trans
formation matrix A is evidently orthogonal, i.e., 

AA=E, (3.2) 

where E is the unit n X n matrix. Moreover, since the n-vec
tors A X and X must have the same structure, given in Eq. 
(1.2), the elements Ai} of A must satisfy certain reality condi
tions. On block-dividing A into the form 

A=(YJ 
ifiJ 

(3.3) 

these reality conditions imply that ,vA, 'f,', :J', ,7 are all real 
matrices of orders p Xp, P X (n - pi, (n - p) Xp and 
(n - p) X (n - p) respectively. The set of all such A with 
det(A ) = + 1, forms a subgroup G t of G;, . 

We now consider certain abelian subgroups of G t 
which may be interpreted as groups of planar rotations. Let 
(X,V) be a linearly independent orthogonal pair of vectors of 
E ~. Further, let us assume that X and V, whenever non-null, 
have been normalized to ± 1, so that in general the norms 
X2 and V2 have only the values ± 1,0, depending upon the 
nature of X and V. Then the skew-symmetric matrix 

S = XY - VX; XV = 0, 

is evidently nonzero, and the matrix 

A = exp(SO), 

(3.4) 

(3.5) 

where 0 is a scalar parameter, satisfies the conditions given 
in Eqs. (3.2) and (3.3). Moreover 

det(A ) = det[exp(SO)] = + 1, (3.6) 

as the trace of S is zero. Thus, the set of all such A defined by 
Eqs. (3.4)-(3.6), forms an abelian subgroup ofG t. Obviously 
S is the corresponding infinitesimal transformation. The or
thogonal vector pair (X,V) defining S also defines a 2-flat, of 
E ~, passing through the origin. If 77X + /-t V is an arbitrary 
vector of this 2-flat (plane), then 

S(77X + /-tV) = /-tV2X - 77X2V, (3.7) 

is again a vector of the same plane. If Z, on the other hand, is 
a vector orthogonal to this plane, then we have 

(3.8) 

Thus A = exp(SO) tranforms the plane [defined by (X,V)] 
into itself and leaves invariant any vector orthogonal to it. 
Moreover, since A preserves the norm of a vector and 
det(A ) = + 1, it may be regarded as aplanarrotation (2-flat 
rotation). 

We now evaluate the planar rotation matrices for each 
of the six types of2-flats discussed in Sec. 2. For this, we note 
that 

S2 = (XY - VX)(XY - VX) = - V2XX - X2VY, (3.9) 

S3 = - (XY - VX)(V2XX + X2VY) = _ X2V2S. (3.10) 
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Using these in Eq. (3.5), we obtain six particular forms of 
A = exp(SO), corresponding to the six types of planes as 
follows. 

In an nn-2-flat, with X2 = V2 = 0, we have 

A = E + SO = E + (XY - VX)O. (3.11) 

It is interesting to note that this transformation, though not 
an identity transformation, leaves all vectors in the nn-2-flat 
unaltered. In an nt-2-flat, with X2 = ° and V2 = - 1, we 
have 

A = E + SO +!S 20 2 

= E + (XY - VX)O + !XX02. (3.12) 

In an sn-2-flat, with X2 = ° and V2 = 1, we have 

A = E + SO + ~S 20 2 

= E + (XY - VX)O - ~XXO 2. (3.13) 
In a ss-2flat, with X2 = V2 = 1: we have 

A = E + SsinO + S 2( 1 - cosO) 

= E + (XY - VX)sinO - (XX + VY)(1 - cosO). (3.14) 

In a st-2-flat, with X2 = 1 and V2 = - 1, we have 

A = E + SsinhB + S2(coshO - 1) 

= E + (XY - VX)sinhB + (XX - VY)(coshB - 1). (3.15) 

In a tt-2-flat, with X2 = V2 = - 1, we have 

A = E + SsinO + S 2( 1 - cosO) 

= E + (XY - VX)sinO + (XX + VY)( 1 - cosO ). 
(3.16) 

We may now define the angle of rotation qJ as the angle 
between an arbitrary non-null vector lying in the plane and 
its image under the rotation. To determine the angle between 
two non-null vectors, we use the definition given in Petrov3 

and set 

(3.17) 

where qJ is angle between the n-vectors P and Q and the plus 
sign is taken when both p 2 and Q2 are positive and the minus 
sign when both of them are negative. Obviously, this defini
tion breaks down when a null vector is involved. Ifwe now 
set P = 77X + /-tV and Q = A Pin Eq. (3.17), we get 

cosqJ = ± PA P/IP"I, (3.18) 

where we must choose the plus sign ifP is spacelike and the 
minus sign ifP is timelike. An angle of rotation qJ is evidently 
defined by this formula for planar rotations in all 2-flats ex
cept the nn-2-flat. Using formulas (3.12)-(3.16) we find that 
qJ = ° for all rotations in the sn and nt 2-flats, qJ = 0 for 
rotations in the ss and tt 2-flats and qJ = ie, a pure imaginary 
angle, for rotations in the st 2-flats. Lastly we note that the 
formulas in Eqs. (3.11)-(3.16) yield the following known spe
cial cases. 

(i) Let X = Ik and V = II be the unit vectors defining 
the k - I coordinate 2-flat of E ~. Then we obtain from the 
formulas (3.14)-(3.16), the following nonzero components of 
A = (Ai}): 

Akk=A,,=coS<p, Akl= -Alk=Sincp,} (3.19) 
all other Amm = 1, 

where qJ = 0, qJ = - 0, or qJ = iO according as the coordi
nate 2-flat considered is ss, tt or st. This special form justifies 
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the terminology rotations for the planar transformation A. 
(ii) The rotation matrix for a rotation through a (real) 

angle () about the axis i = (a l,a2,a3) in the Euclidean space 

E3=E j, in the more familiar form as given in Jeffreys and 
Jeffreys,4 follows from Eq. (3.14) on writing XxV = i and 
we get 

( 

ai(l - cos(}) + cos(} 

A = (Aij) = a2a l(1 - cos(}) - a3sin(} 

a3a 1(1 - cos(} ) + a2sin(} 

a la2( 1 - cos(} ) + a3sin(} 

a~ (1 - cos() ) + cos(} 

a3a2(1 - cos(}) - alsin(} 

a la3(1 - cos(}) - a2Sin(}) 

a2a3(1 - cos(}) + alsin(} . 

a; (1 - cos() ) + cos(} 

(3.20) 

This gives the well-known relation 

A II + A22 + A33 = 1 + 2cos(}, (3.21) 

for the determination of the angle of rotation for a given A, 
and a somewhat more specific form 

Aij - Aji = 10k sin(}, (i,j,k = 1,2,3 cyclic), (3.22) 

to the relations, as given in Hamermesh2 or Wigner,5 for the 
determination of the axis of rotation. Further, the form of A 
given by Eq. (3.20) [and also Eq. (3.14) directly] shows that A 
will be symmetric for () = 11' and assumes the form 

(

2ai - 1 2a l a2 2a l a3 ) 

2a2a1 2a~ - 1 2a2a3 • 

2a3a l 2a3a2 2a~ - 1 

(3.23) 

Then Eq. (3.22) becomes a trivial identity leaving the axis i 
undetermined. One has now to solve for the ak from the 
elements of some row or column of the matrix (3.23), as for 
example from 

All = 2ai - 1, AI2 = 2a 1a2, AI3 = 2a 1a3 • (3.24) 

Inthiscase,det(E + A) = OandAwouidbewhatWeyl6cails 
an exceptional matrix since such matrices do not fit directly 
into Cayley's parametrization of the rotation group SO(3) 
and some effort is necessary, as Weyl puts it, to "render these 
exceptions ineffective." 

We note that in the exceptional case, i as given by Eq. 
(3.24) is determined only up to an ambiguity in sign and this 
reflects the fact that in the topological representation of the 
rotation group by a sphere of radius 11', diametrically oppo
site points are to be identified. As an example of an excep
tional rotation matrix, we have 

~ 
~6 "3) 1 -

A= - ~6 -1 ~2 , (3.25) 
3 _ 

3 ~2 -2 

which evidently has () = 11' and 

(3.26) 

4. PROPER LORENTZ TRANSFORMATIONS IN E; 
As an interesting application of the results of the pre

vious section we devote the rest of this paper to a complete 
discussion of the physically important case of proper Lo
rentz transformations in the Minkowski world E ~. We show 
that any general nonsinguiar (or non-null) Lorentz transfor
mation may be factored into a commuting product of two 
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planar transformations one of which is equivalent, by a prop
er Lorentz trasformation, to a pure rotation and the other to 
apure boost. We accordingly call these factor transforma
tions rotationlike and boost like. We also note that this resolu
tion is a Lorentz invariant one and is to be contrasted with 
the other known result (see for example Anderson 7) that a 
Lorentz transformation may be expressed as a (noncommut
ing) product of a pure-rotation and a pure-boost. A singular 
(or null) Lorentz transformation, on the other hand, is 
shown to be factorizable into a product of two rotationlike 
transformations, each with a rotation angle 11'. These factor 
transformations are symmetric in Minkowski coordinates 
with X 4 = ict, and show certain special features like the sym
metric rotations of Sec. 3 and are therefore termed exception
al following Weyl. These do not appear to have been noticed 
in the literature. Our analysis also yields the necessary and 
sufficient conditions for a Lorentz transformation to be 
planar and leads to an invariant classification of Lorentz 
transformations of all types. We note here that a different 
scheme of classification and a prescriptive procedure for de
termining the angles and planes of rotation based on the 
antisymmetric part of a Lorentz transformation has been 
given by Bazanski8 who also gives a formula which is essen
tially the same as our Eq. (4.39). Since, however, a pure boost 
is symmetric in real coordinates and an exceptional transfor
mation in Minkowski coordinates, one or the other has its 
anti symmetric part identically zero and is naturally ex
cluded in his classification. Our procedure, on the other 
hand, covers all cases and yields explicit formulas for the 
angles and planes of rotation in terms of the elements of a 
given Lorentz matrix L. Moreover, based as it is on group
theoretical considerations, as we shall see in the next section, 
our method yields an explicit formula for the three-dimen
sional complex orthogonal representation of the Lorentz 
group SO(3,I) which in turn leads to two other classifications 

schemes in terms of the characters X (L ) in the D \0 and D JO 

representations. 
It may be observed that there is a close analogy between 

the methods adopted here and those of electromagnetic the
ory because the algebra of the infinitesimal Lorentz transfor
mations is the same as that of the electromagnetic field ten
sor. In the case of the non exceptional (null as well as non
null) transformations, the analogy is with the reduction of an 
electromagnetic field at an event to its canonical form where
as in the exceptional case it is with the problem ofthe extrac
tion of an extremal root of the electromagnetic energy tensor 
as in the RMW theory.'} 

A proper Lorentz transformation in E! is represented 
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bythe4X4matrixL = (Lij)'i,j = 1,2,3,4, withLa4 andL4a 

for a = 1,2,3 purely imaginary while all other elements are 

real and 

LL = LL = E, detL = + 1, (4.1) 

where E is the 4 X 4 unit matrix. Note that we are following 

the conventions described in Sec. 1 and for E l this simply 
means that we are employing the conventional Minkowski 
coordinates with X 4 = ict. Since the proper Lorentz group is 
a Lie group, every proper Lorentz transformation L may be 

written as 

L = exp(I), (4.2) 

where the infinitesimal transformation Ihas the form I 

1= ( _Oh3 ~ ~~2 ~::) (4.3) 

h2 - hI ° ie3 
- ie l - ie2 - ie3 ° 

We observe that I has precisely the same structure as the 
electromagnetic field tensor with 3-vector fields e and h. In 
this case we may look upon the Lie parameters e l , e2, e3 and 
hI' h2' h3 as the components of two 3-vectors e and h which 
we shall call the parameter vectors of L. The eigenvalues of I 
are thus I ± iB" ± Bb, where 

B; = !(h2 _ e2) + [1(h2 - e2f + (h·e)2] 112, (4.4) 

B ~ = - !(h2 - e2
) + [Mh2 

_ e2
)2 + (h·e)2] 112, (4.5) 

and those of L are exp( ± iBr ), exp( ± Bb). A Lorentz trans
formation for which e = h = ° is evidently trivial (the identi

ty transformation). There are two types of nontrivial Lorentz 
transformations. If the two invariants h·e and (h2 - e2

) are 
both zero, then the eigenvalues of I are all zero and hence 
those of L are all equal to + 1. Such a Lorentz transforma
tion is called singular (null) by Synge I and its I corresponds 
to a null electromagnetic field. A Lorentz transformation is 
nonsingular (non-null) if at least one of (h2 - e2

) and h·e is 
nonzero. The "singularity" of L arises here from the fact that 
det I = ° although det L itself is + 1. 

We now invoke a basic result of electromagnetic theory 

(see for example Synge I or Landau and Lifshitz lO) that there 
exist Lorentz frames in which a non-null electromagnetic 
field has its electric and magnetic vectors parallel. Adapted 
to our case, this means that if at least one of (h2 

- e2
) and h·e 

is different from zero, there exists a Lorentz transformation, 
T, TT = E such that 

[ 

0 

-B 
[' ~ Tlt~ ~ , 

° 
° 
° 

(4.6) 

where the common direction of the parameter vectors e' and 
h' of I' has been chosen to be the z axis (of the new frame) 
rather than the x axis as chosen by Synge I in his discussion of 
the "geometry" of the electromagnetic field. This shows, in 
complete analogy with the four-dimensional rotation ma-
t · 11 12 th t . I Lo . nx.' a every nonslOgu ar rentz transformation may 
be brought to the canonical block-diagonal form (4-screw) 
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L I = TLT = T(expI)T = exp(TIT) = exp(I') 

[ 

~o~:~r ::~r ~ ~ 1 _ (4.7) ° ° coshBb isinhBb' 

° ° - isinhBb coshBb 

by a proper Lorentz transformation. We have thus given a 

direct proof of Synge's theorem 13 that every nonsingular 
proper Lorentz transformation is equivalent to a 4-screw. 
Writing L ' = R 'B' = B 'R " where 

[ 

cosOr 

R'~ -roc ° 
(4.8) ° o 

o ° and 

B'~ [~ ° ° 
;,101 1 ° ° coshBb 

(4.9) 

° - isinhBb coshBb 

we see that R ' is a pure rotation and B ' is a pure boost. Evi
dently R 'is aplanar Lorentz transformation in the ss-2-fiat 
defined by the 4-vectors 

X' = (1,0,0,0), Y' = (0,1,0,0), (4.10) 

and the corresponding angle of rotation is Br . Similarly, B I is 
a planar transformation in the st 2-fiat defined by the 4-
vectors 

Z: = (0,0,1,0), W' = (O,O,O,i), (4.11) 

and has the angle of rotation iBb. We thus have, in terms of 
the matrices of the original basis, 

L = RB = BR, R = TR 'T, B = TB'T, (4.12) 

where R is equivalent to a pure rotation and B to a pure boost 

by the Lorentz transformation T and have, respectively, the 
same invariant angles Br and iBb • We say that R is rotation
like and B is boostlike. Moreover, R I and B ' and consequent
ly Rand B are planar transformations since the latter are 
obtained from the former by a mere change of basis. 

We observe from Eq. (4.6) that in the canonical basis 
(primed letters denote quantities in the canonical basis), 

I' = BrS; + BbSb, (4.13) 

where 

[ i I 0 

~] S; -X'Y' - Y'X' = ° ° 0 ° 
(4.14) 

° ° and 

[~ 
0 ° !] , S b ==Z'W' - W'Z' = ° ° (4.15) 

° ° ° -i 
with (X',Y',Z',W') defined in Eqs. (4.10) and (4.11), are the 
infinitesimal transformations in the X' - Y' and Z' - W' 
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planes, respectively. Thus we get 

1= (}rSr + (}bSb; Sr=tS;T, Sb=tS~T, (4.16) 

for the infinitesimal transformations in the original basis. 
Here the suffixes rand b in Eqs. (4.13)-(4.16) are mere labels 
indicating rotation and boost respectively and no summation 
is implied by these repeated indices. We follow the same 
convention throughout the paper. From Eq. (4.16) it follows 
that 

Sr = XY - YX, and Sb = ZW - WZ, (4.17) 

where (X,Y,Z,W) are the inverse images of the orthonormal 
tetrad of vectors (X',Y',Z',W') under the transformation T 
i.e.,X = TX', Y = TY'etc. Thus,intheoriginalbasis,ano~
singular Lorentz transformation L is characterized by the 
two invariant angles (}r and i(}b and the orthonormal tetrad 
(X,Y,Z,W) giving the two blades (planes) of the transforma
tion. We now proceed to determine these quantities in terms 
of the elements, Lii of the given Lorentz transformation L. 

We know that the characteristic equation 14 of any n X n 
matrix A is given by 

n I ( - l)'A n - Pr = 0, (4.18) 
,,=0 

where Pr is the sum of all rth order principal minors in the 
determinant of A. Thus, we have for L, 

A 4 - xA 3 + 5A 2 - XA + 1=0, (4.19) 

where 
X = L11 + L22 + L33 + L44 = spurL, (4.20) 

and 5 is the sum of all principal minors of the second order. 
In Eq. (4.19) the coefficient of ( - A) is also X because each 
element of a proper orthogonal matrix A (AA = E) is equal to 
its cofactor. More generally, any minor of an orthogonal ma
trix is equal to its algebraic complement by Jacobi's theorem 
and hence it is sufficient to compute only three distinct sec
ond order minors of L to obtain 5. Since the roots of Eq. 
(4.19) are already known to be exp( ± iRr) and exp( ± 0b), we 
have from Vieta's formulas (see for example, Kurosh 15) 

2cosOr + 2coshOb = X, (4.21) 

2 + 4cosOrcosh(}b = 5, (4.22) 

and hence 

coshOo = A( X + 0"), 

cosOr = i( X - 0"), 

where 

0"== + (X 2 - 45 + 8) 112. 

(4.23) 

(4.24) 

(4.25) 

These equations determine (}r and 0b explicitly in terms of 
Lij' Since Or is actually a rotation angle [see Eq. (4.8)], we 
take it to lie between 0 and 1T. Similarly we take Ob to be 
positive. From Eq. (4.22) we have 

1 + ! 5 = 2 + 2cos(}rcoshOb, 

and hence it follows that 

(X-l-~5)=2(coshOb -lj(l-cos(}r);;;'O, 

where the equality holds if and only if at least one of Or or (}b 
is zero. But when Or or (}b is zero, the transformation is 
evidently planar and thus 
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X = 1 + ! 5, (4.26) 
is the necessary and sufficient condition for a proper Lorentz 
transformation to be planar. Further, if () r = 0 and Ob i= 0, we 
havex>4whileifOr#OandOb =0,X<4.ForOr =(}b =0, 
we have X = 4. We thus have the following invariant classifi
cation of proper Lorentz transformations: A proper Lorentz 
transformation is nonplanar or planar according as 
X;;;' I + ~ 5, and a planar transformation is rotationlike, sin
gular, or boostlike according as XS4. In particular, a rota
tion-like transformation L with (}r = 1T has some special fea
tures due to the fact that det(L + E) = 0 for it and we call 
such a transformation exceptional following Weyl's charac
terization of similar transformations of the rotation group 
SO(3). A nonplanar proper Lorentz transformation (with 
X> I + ~ 5) can always be written as a commuting product of 
two planar transformations one of which is rotation-like and 
the other boost-like. 

Next, we consider the problem of expressing the two 
planes associated with L in terms of its elements. Let 
S = UV - vir be the infinitesimal transformation in the 2-
flat determined by the orthogonal pair (U,V). As before, let 
us assume that U and V, whenever non-nUll, have been nor
malized to ± 1. One of these vectors, say U, must necessar
ily be spacelike since a null or timelike vector cannot be or
thogonal to another null or timelike vector. We now show 
that in the plane defined by the orthogonal pair (U,V), there 
always exists another orthogonal pair (P,Q) in which the 
spacelike vector P has its temporal component equal to zero. 
Consider first, the case in which both U and V are spacelike. 
Then (P,Q) given by 

P = UcoS<p - VSlntp, 

Q = Usintp + VcoStp, 

are again orthogonal and yield the same S. If we now choose 
rp such that tanrp = (U 4!U4 ), thenp4 would be zero (u 4, V4 and 
P4 are respectively the time-components ofU,V and Pl· 
Next, if V is timelike, we consider the vector pair (P,Q) given 
by 

P = Ucoshtp - Vsinhtp, 

Q = - Usinhtp + Vcoshtp. 

This pair (P,Q) is also orthogonal with P spacelike and Q 
timelike and yields the same S. But P4 would be zero only if 
we can choose a tp such that tanhtp = (U 4!V4 ). Since, howev
er, jtanhtpj.;;; 1, this choice is possible only if jU4!V4 j.;;; 1. This 
is certainly true, because 

u;v~ = (UIU I + U2U2 + U~U3)2 
.;;;(u~ +u~ +u~)(v~ +v~ +v~) 
=(I+u~)(-l+v~) 

= -1-u~+v~+u~v!, 

so that we have u~ - u!;;;. 1. Finally if V is a null vector, we 
consider the new orthonormal pair (P,Q) defined by 

P=U -kV, 

Q=V, 

which again lead to the same S. Evidently we may choose k 
such that P4 = O. Thus we may assume, without loss of gen
erality, that every infinitesimal Lorentz transformation of 
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the form 

S= VV' - viJ, (4.27) 

is such that the spacelike vector V has u4 = O. Since V is a 
unit vector, it follows that 

iJ = (0,0), (4.28) 

where U is a unit 3-vector. We have assumed that when V is a 
non-null vector, V'V = ± 1 and in the case of a null V it is 
convenient to assume that it is "normalized" in the sense 

vi + vi + v~ = v~ = 1, VV = O. (4.29) 

Now we proceed to determine such a pair (V,V) correspond
ing to a given planar infinitesimal transformation S whose 
parameter vectors satisfy the conditions 

h.e = 0, h2 - e2 = + 1, - 1, orO. (4.30) 

With iJ = (u,O) as given by Eq. (4.28) and V = (v,iv4 ), Eqs. 
(4.27) and (4.3) give 

(uXv) = h, uV4 = e. (4.31) 

This shows that the given S must have h·e = 0 in agreement 
with Eq. (4.30). Moreover, since V and V are orthogonal we 
have 

u·v = 0 (4.32) 

and this, in conjunction with Eqs. (4.30) and (4.31), implies 

hXe = v and V4 = lei. (4.33) 

We thus have, for the orthonormal pair (V,V), 

iJ = (e,O), V = (hXe,ilelJ. (4.34) 

Observe that 

IhxW -lel 2 = Ihl 2 1W -lel 2 
= h2 

- e2
, 

so that V is spacelike or timelike according as 
(h2 

- e2
) = ± 1, respectively, and is null when 

(h2 
- e2

) = O. In the latter case we may factor out the com
mon magnitude (J = lei = Ihl from S and write it as S = (JS) 

where the parameter vectors of S) are unit 3-vectors. We 
then have 

S, = VV' - vD, iJ = (e,O), V' = (hXeJ). (4.35) 

If the givenShas e = 0, then Eq. (4.34) fails to give (V,V). Sis 
then characterized only by h with h2 = 1 and we take V4 = 0 
in accordance with Eq. (4.31). The 3-vectors D, v and h would 
then form an orthonormal triplet and we choose (V,V) as 

iJ=(hi +h~)-1I2[h2,-h,,0,0], } 
- 2 2 - 1/2 [ 2 2]' (4.36) 
V = (h , + h 2) - hlh3' - h2h3,h 1 + h 2,0 

We thus note that the Eqs. (4.34)-(4.36) give the "orthonor
mal" pair (V,V) explicitly in terms of the parameter vectors 
of an infinitesimal transformation S which satisfies the con
ditions given in Eq. (4.30). The problem is completely solved 
on showing that we can always extract two planar transfor
mations Sr and Sb' both of which satisfy the conditions given 
in Eq. (4.30), from a given Lorentz transformation L. Then 
the above formulas for (V,V) determine the two 2-ftats span
ning the blades of L. 
A. Nonexceptional, nonsingular transformations 

It follows from Eqs. (4.14) and (4.15) that the parameter 
vectors of S; and S ~ satisfy 
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'2 '2 '2 '2 e; .h; = 0, e~ .h~ = 0, hr - er = eb - hb = 1. 

We also observe that 

S~3= -S;, S;=S~, S;S~ =S~S; =0. 

These relations, being invariant, are also true in the original 
basis and we have 

er -hr = eb ·hb = 0, h; - e; = e~ - h~ = 1, 

S~ = - S" S~ = Sb' SrSb = SbSr = O. 

(4.37a) 

(4.37b) 

Therefore 

L = exp(J) = exp((JrSr + (J"Sh) 

= exp(()rSr)-exp(()hSb) = RB = BR. 

where 

R = eXP(()rSr) = E + Srsin(Jr + S;(1 - cos()r) 

and 

B = exp(()"Sh) = E + Sb sinh()b + S ~ (COSMb - 1). 

On multiplying these and using Eq. (4.37), we obtain 

L = E + Sr siner + Sb sinhe., 

+ S;(l- cose r )+ S~(cosh(J" - 1), 

(4.38) 

(4.39) 

which is a polynomial of the second degree in the planar 
infinitesimal transformations Sr and Sb' We now proceed to 
determine Sr and Sb from the given L, or what is the same 
thing, we obtain explicit expressions for the parameter vec
tors er, hr, eb and hb in terms of the elements Lij of L. For
mulas given in Eqs. (4.34)-(4.36) will then give us the planes 
of rotation. 

Let 

[ -~, J¥'] -J¥'z ;w'] 
0 .#"/ i'll2 

LA = 
-d¥', 0 i'll3 ' 

(4.40) 
d¥'z 

-i'll, -i'llz -i'll3 0 

where 2J¥'y = L a {3 - L{3a' (a,/3,r = 1,2,3 cyclic), and 2'll a 

= La4 - L 4a , (a = 1,2,3), be the antisymmetric part of L. 
Equating the antisymmetric parts on both sides ofEq. (4.39) 
we have 

i.e., 

Srsiner + Sbsinh()b = LA> 

er sinOr + eb sinh()b = 11, 

hr sin(J r + hb sinh()b = J¥". 

(4.41) 

(4.42) 

The relation SrSb = SbSr leads to the following relations 
between the parameter vectors: 

er Xeb = hr Xhb=m, 

er Xhb = eb Xhr=n. 

(4.43) 

(4.44) 

Forming the several expressions for m2
, 0 2 and m·o, we 

obtain 

m2 = e~e~ - (er ·eb)2 = - (er·hb)(eb·hr) 

= h;h~ - (hr ·hb)2, (4.45) 

0
2 = (er·eb)(hr·hb) = e;h~ - (er·hbf 

= e~h; - (eb·hrf, (4.46) 

m·o = - (eb·er)(er·hb) = (er·eb)(eb·hr), (4.47) 
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= - (e •. bb)(bb·b.) = (eb·b.)(b •. bb)' (4.48) 

If(e.·eb)#O, Eq. (4.47) gives (eb·b.) = - (e •. bb) and substi
tuting this in Eq. (4.46) we get e;b~ = e~b;. But this would 
give, on using Eqs. (4.37), e~ = - e~, which is impossible 
unless e. = eb = ° leading again to a contradiction. Thus we 
must have 

e.·eb = O. (4.49) 

Similarly we obtain 

hr·hb = O. (4.50) 

Equations (4.49) and (4.46) now show that n = 0, i.e., er is 
parallel to hb and eb is parallel to hr. But the two expressions 
for m show that while eb is parallel to hr, hb is antiparallel to 
er· Further, Eq. (4.45) yields e;e~ = h;h~ and on using Eq. 
(4.37) we get e~ = h; and e; = h~ leading to 

(4.51) 

These relations show that Sr and Sb are duals of each other. 
Substituting Eq. (4.51) in Eqs. (4.41) and (4.42) and solving, 
we finally obtain 

hr = (sin2e. + sinh2eb)-J(l5'sinbeb + 2siner) 

(4.52) 

er = (sin2er + sinh2eb)-J(l5'siner - 2sinbeb) 

= - hb. (4.53) 

Since er and eb are known from Eqs. (4.23)-(4.25), these 
equations give the parameter vectors directly in terms of the 
elements Lij of L. In view of the properties given in Eq. 
(4.37), the formula given in Eq. (4.34) [or (4.36) ifer or eb is 
zero] now determines the orthonormal pair (X=U,Y=V) 
yielding Sr as 

Sr =XY-yX. 
Similarly we obtain the orthonormal pair (Z=U,W=V) 
yielding Sb as 

Sb =ZW - WZ. 
It also follows that the Lorentz transformation T, which 
sends the given L into the canonical block-diagona/form giv
en inEq. (4.7), hasforitsrows, the row-vectors (X,Y,Z, - iW). 

Although er and eb are given by Eqs. (4.23)-(4.25), we 
may obtain expressions directly for siner and sinheb from 
Eqs. (4.52) and (4.53). On using the relations hr·er = ° and 
b; - e; = 1, we can solve for sin2er and sinh2eb and we 
obtain 

sin2er = ~(2 2 _ 15'2) + [!(2 2 _ 15'2)2 + (2./5')2] 112, 
(4.54) 

sinh2eb = - !(2 2 - /5'2) + U(2 2 _ /5'2)2 + (2.lf)2j112. 
(4.55) 

We observe that the whole procedure breaks down in two 
particular cases. First, if the vectors 2 and If of L A are such 
that 2·lf = 0 and 2 2 - lf2 = 0, then sin2e r = sinh2eb 
= 0 and Eq. (4.52) and (4.53) become meaningless. We shall 

see that this corresponds to the singular Lorentz transforma
tion for which er = eb = O. The second case is that of the 
exceptional Lorentz transformation for which LA is identi 
cally zero and the procedure evidently breaks down. It wi] 
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be seen that e. = 1T and eb = 0 in this case, and we shall 
consider each of these cases separately, later. 

From Eqs. (4.54) and (4.55), we see that 
sinOr = (22_ lf2) 112 and eb = 0 if 2·lf = 0 and 
22> lf2. The corresponding transformation is rotation
like and we obtain from Eqs. (4.52) and (4.53) 

hr =(22_lf2)-J122=eb' 

e
r 

= (22 _lf2) -1I2lf = - h
b

• 

(4.56) 

(4.57) 

If on the other hand, ,}Y'./5' = 0 and 15'2> 2 2, we have a 
boostlike transformation with e. = 0, sinheb 

= (15'2 _ 22) 112 and 

eb = (15'2 - ,}Y' 2) ~ 112/5' = h.. (4.58) 

hb = (15'2 - ,}Y' 2) - 112,}Y' = - e.. (4.59) 

Equations (4.56) and (4.57) determine the blades in the for
mer case wherein eb = 0 in the st-blade. Similarly Eqs. (4.58) 
and (4.59) give the blades in the latter case with e. = 0 in the 
ss-blade. 

B. Singular Lorentz transformations 

In this case, the parameter vectors of the infinitesimal 
transformation satisfy 

~-~=~ ~=~ ~~ 
so that we have O. = eb = ° and each eigenvalue of Lis + 1. 
The infinitesimal transformation I [see Eq. (4.3)] now corre
sponds to a null electromagnetic field and all that one can do 
is to carry out a rotation T of the spatial axes such that the 
vector h, say, is along the z axis and e is along the x axis. 
Denoting the common magnitude of e and h bye, we have 
the canonical form 

I' ~ TIT ~ 8 [ ~ I 
0 

~] =8S', 
0 ° 
° ° 

(4.61) 

-[ ° ° where 

S' = X'N' - N'X', X' = (1,0,0,0), N' = (O,l,O,i), (4.62) 

with X' evidently spacelike and N' null. We also have 

(S')3 = 0, (4.63) 

so that we have in the original basis [see Eq. (3.13)] 

L = exp(eS) = E + es + !e 2S 2
, (4.64) 

as a planar transformation in the sn 2-fiat determined by 

X = tx', N = tN' and 

S = XN - NX = tS'T. (4.65) 

Since the eigenvalues of L are all + 1, we also have 
X = 1 + ! t = 4 as expected. On equating es to the antisym
metric part LA of L, we obtain, because of Eq. (4.64), 

ee = 15', eh = 2, (4.66) 

where e and b are the parameter vectors of Sand 15' and JV' 
are the vectors occurring in LA' Since e and h satisfy Eq. 
(4.60), we must have 

w2 
- ,}Y' 2 = 0, 'C .JV' = 0. (4.67) 

On the other hand, since Tis merely a spatial rotation of 
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the form 

T= (~ ~) (4.68) 

where f/( is a three-dimensional spatial rotation matrix, it 
transforms the 3-dimensional vector e occurring in S into 
e' = f/(e of S'. Since e' is a unit vector as is clear from Eq. 
(4.61), e = e and hence h = h are unit vectors. Therefore we 
have 

A A A 

0= lifl = I~I, e= if, h=~, (4.69) 

and the spacelike-null vector pair (X,N) determining the 
plane of the singular transformation is given by, in view of 
Eq. (4.35), 

A A '" A X = (if,O), N = (~X if,i), (4.70) 

expressed in terms of the elements of L. ~t is clear that the. 
Lorentz transformation (rotation) Tsendmg I to the canoOl
cal form l' ofEq. (4.61) is 

T= (~~~)\ [ 
~\ 

dY'1 
o 

A A 

~l (4711 

W here if a and dY' a are the components of the corresponding 
unit 3-vectors. 

c. Exceptional Lorentz transformations 

We have called a rotation like planar transformation 
with Or = 1T and 0b = 0, an exceptional Lorentz transforma
tion, and observe that it is symmetric as Eq. (4.39) with Or 
= 1T and 0b = 0 reduces to 

L = E + 2S;, (4.72) 

where S; is symmetric by virtue of the antisymmetry of Sr. 
We note, however, that an exceptional transformation is 
symmetric only in Minkowski coordinates and in a real co
ordinate system it is represented by an asymmetric matrix. 
Conversely, we show that we must have Or = 1T and 0b = 0 
for a symmetric Lorentz transformation. Taking the sym
metric L to be 

[L" 
q3 q2 

ip, ] 
L = q3 L22 ql lP2 

(4.73) 
q2 ql L33 iP3 ' 

ipl ip2 ip3 L44 
we have 

and 

~ 5 = (LIIL44 + pi) + (L22L44 + p~) + (L3~44 + p~) 
= L 44( X - L 44) + (L ~ - 1) = XL44 - 1, 

so that 

1 +~5=XL44' (4.74) 

But since L is symmetric (L = L ), we have LL = L 2 = E so 
that the eigenvalues of L are equal to ± 1 only. Since 
det(L) = + 1, all the eigenvalues must either be equal to 
+ 1, or while two of them are equal to + 1, the other two 
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must be equal to - 1. In the former case X = 4 and in the 
latter X = O. If X = 4, then Eq. (4.74) shows that 
5 = 8L44 - 2 and thus we have 
c? = X 2 - 45 + 8 = 32(1 - L44)' But L44'> 1 for a proper 
transformation and hence we must have L44 = 1 and (7 = 0 
as if can never be negative. The vanishing of (7 implies that 
Or = 0b = 0 [see Eqs. (4.23) and (4.24)]. Since L is orthogo
nal, L44 = 1 implies that P = 0 and L is then a pure rotation 
with Or = 0 which simply means that L is only the trivial 
identity transformation. On the other hand, if X = 0, we 
have 5 = - 2 and (7 = 4 leading to Or = 1T and 0b = O. Thus 
we have proved that any symmetric Lorentz transformation 
(in Minkowski coordinates with X4 = ict ) must necessarily be 
exceptional. 

We now proceed to determine the plane of rotation of 
an exceptional Lorentz transformation L. Since LA =0 for a 
symmetric L, Eqs. (4.52) and (4.53) evidently fail to deter
mine the parameter vectors er and hr . The problem now is to 
determine an antisymmetric Sr satisfying Eq. (4.72) from a 
symmetric L with L 2 = E and it is exactly analogous to the 
problem of the extraction of an "extremal root" of the elec-

. t 9 tromagnetlc energy ensor. 
If an orthonormal pair of vectors (X, Y) generate the 

plane of the transformation, which is an ss-2-ftat, then 

Sr =XY - YX, 

and 

(4.75) 

Therefore,S;X = - XandS;Y = - Yand it follows from 
Eq. (4.72) that X and Yare also eigenvectors of L belonging 
to the eigenvalue - 1. If the givenL has an especially simple 
structure, then one may determine a pair of orthonormal 
eigenvectors of L belonging to the eigenvalue - 1 without 
much effort. Although the problem may be regarded as 
solved in principle by this prescription, we adopt another 
procedure, in conformity with our purpose of determining 
these vectors explicitly in terms of the elements Lij of L. 

With hr ==h = (hl,hz,h3) ander =e = (e l,e2,e3)asthepa
rameter vectors of Sr and L = (L ij ), Eq. (4.72) implies the 
following relations in which the Greek suffixes take the run 
of values 1,2,3, and the sequence a,/3,r is cyclic in 1,2,3, 

Laa = 1 + 2(e; + h; - h2
), (4.76) 

(4.77) 

qy = Lap = Lpa = 2(hahp + eaep), a¥-/3, (4.78) 

Pa =L4a =La4 =2(eXh)a' (4.79) 

On using h2 
- e2 = 1 and h·e = 0, we obtain from Eqs. (4.76) 

and (4.77) 

e; + h; = ~(Laa + L44 ), 

while from Eqs. (4.78) and (4.79), we obtain 

4eaha = - qppP + qypy. 

Equations (4.80) and (4.81) now yield 

2ea = ± (fa ±ga)' 

2ha = ± (fa =Fga), 

where 
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• 2 - 1I2(L L )112 Ja = 44 + aa - qppp + qyPy , (4.84) 

ga = 2 - II2(L44 + Laa + qppp - qypy)ll2, (4.85) 
giving e and h explicitly in terms of the elements of L. Since 
we obtain the same L on replacing Sr by - Sr in Eq. (4.72), 
the vectors hand e are determined only up to an indetermin
acyin sign artd we may take 2ha =fa +gu in Eq. (4.83) and 
the solution of our problem will then be the hand e that 
are also consistent with Eq. (4.81) and the rel:tion a 

h2 
- e2 = 1. Theformulas ofEq. (4.34) now give the orthon

ormal spacelike vectors (X, Y) determining the plane of 
rotation. 

Lastly, we prove a result concerning a resolution of sin-
gular transformations. We saw that any non planar, nonsin
gular transformation may be written as a commuting prod
uct of two planar transformations one of which is 
rotationlike while the other is boostlike. We shall now obtain 
a somewhat similar result for singular transformations, 
namely, that every singular transformation is the product of 
two exceptional transformations. 

From Eq. (4.61), we have, for a singular L, 

TLT = L / = exp(!') 

[ 

~ 0 1 !!02 ~ 
- _ow _ i~2/2 ~ 

(4.86) 

But we may express L / as [_I ° 0 

~] L'~ ~ ° ° -1 

° ° [ -I -() ° -iO ] 
-0 1 _ I() 2 ° - i~2/2 

X ° 2 

° -1 

-w - W 2/2 ° 1 + !() 2 

=L;L;, (4.87) 

and observe that both L ; and L ; are symmetric and there
fore exceptional. We thus obtain the resolution 

L = L I L 2 , (4.88) 

where L I = TL ; T and L2 = TL ; T are evidently excep
tional proving the result stated above. Moreover, since the T 
as given in Eq. (4.71) has a particularly simple structure, we 
may even give L I and L2 explicitly. It is easy to check that 

A A.. A A 

(Ldap = (LdPa = PaPp - i5" a ~ 13 - oW'aoW'p,} 
(4.89) 

(Lda4 = (L 1)4a = 0, (L 1)44 = 1, 

(L 2 )ap = (L 2 )Pa = PaPp(1 -102 ) - (p/i'p + p/i' a)O I 
- (~a ~ 13 + ~a~p)' 

(L 2 )4a = (L Z)a4 = - i~ aO - iPaO 2/2, (L2)44 = 1 + 102, 

(4.90) 
A A A A 

wherep = Kx i5",0 = Ilfl = IKI andpa, If a andKa are 
the components of the respective unit vectors. 

D. Examples 

As an illustration of the foregoing discussion, we con
sider a few simple examples of Lorentz transformations. 

Example (i): Consider first, 

o 
y 
o 

-1 

° ° 
° 

i(T ~ 1)112] 

° ' 
y (4.91) 

wherey> 1. Clearly X = 2y and S /2 = 1 so that X > 1 +! S 
and 0' = 2y, and the transformation is nonplanar with Or 
= 1T/2 and coshOb = y. Forming the antisymmetric part of 

L, we get K = (0,1,0), If = (O,(T - Wi2,O) and hence from 
Eqs. (4.52) and (4.53), hr = eb = (0,1,0). The formulas ofEq. 
(4.34) then give 

X = (1,0,0,0), Y = (0,0,1,0), 

Z = (0,1,0,0), Vi = (O,O,O,i), 

where the first two vectors determine the plane of Or = 1T/2 
and the last two determine the plane of Ob = cosh - Iy, a fact 
which is at once evident from the structure of L. 

Example (ii): As a second example, consider 

1+ (y - l)v~/v2 

(y - 1)vyvx/v2 

(y-l)vzvx/v2 

(y - 1)vxvy/v2 

1 + (y - 1)v~/v2 

(y - 1)vzvy/v2 

(y - 1)vxvJv2 iYVJc 

L= 
(y - l)vyvz /v2 iyvy/c 

1+ (y - l)v;/v2 iyvz/c 
(4.92) 

- iyvJc - iyvJc - iyvJc y 

where y_(l - V2jc2)-I12 > 1, representing a pure boost with velocity y = (vx ,vy,vz ) (see M611er16 or Synge l
). Here X = 2y + 2 

and ~ 5 = 2y + 1 showing, as expected, that the transformation is planar and it is boostlike since X> 4. Moreover, 
cr = X 2 - 45 + 8 = 4(y - 1)2 so that 0' = 2(y - 1). Hence cosOr = !(X - 0') = 1, i.e., Or = 0 and coshOb = !(X + 0') = y. 
Forming the anti symmetric part of L, we get oW' = 0,i5" = yv/c, which yield through Eqs. (4.52) and (4.53) eb 
= y(r - I)-1/2y / C, hb = 0. But leb I = 1 as y2 = c2(r - l)y-2 and hence the 4-vectors defining the plane of the boost [see 
Eq. (4.34)] are Z = (vx/v,vy/v,vJv,O) and Vi = (O,O,O,i). 
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Example (iii): Another interesting example is 

L= [ ~ 1 

° 
° 

y 

° ° ° ' 
~ i(r~ Wi2] 

- i(T - 1)112 ° Y 
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(4.93) 
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where r > 1, and clearly the transformation is planar as X = r + 1 and! S = r. However it is rotationlike, singular or boostlike 
according as ~3. But £il = (r - 3f so that we must take q = 3 - r or q = r - 3 according as rS3. When r < 3, we have 
q = 3 - r,cosOr = !(r - 1) andOb = 0, for the resulting rotationlike transformation. When r> 3, wehaveq = r - 3 and the 
resulting boostlike transformation has Or = 0 and coshOb = !(r - 1). When r = 3, q = 0, Or = Ob = 0 and the transforma
tion is evidently singular. The vectors ofthe skew-symmetric part of L are ~ = !(y - 1)1/2 (1,1,0) and K = (O,O,~(r + 1)). 
Equations (4.34) and (4.56H4.59) now yield the vectors defining the planes of the transformations to be 

iJ = 2- 1/2[1,1,0,0], 

and 

{

(2(3 - r))-II2[ - (r + 1)112,(r + 1)1I2,0,i(4r - 4)1/2]; r < 3, 

V = 2- 1/2 [ - 1,1,0,i21/2 ]; r = 3, 
(2(r - 3))-1/2[ - (r + 1)1/2,(r + 1)1/2,0,i(4r - 4)1/2]; r> 3. 

We observe that the L in question is obtained by carrying out a rotation through 1,/2 in the x-y plane followed by a boost along 
the x axis with a velocity v corresponding to r and it is interesting that the composite transformation L could be any of the 
three types depending on r and stays rotationlike up to a velocity as high as c(8/9)1/2. 

Example (iv): We finally consider one simple example of an exceptional transformation. For the symmetric matrix 

[ 

1 -02Y ~ 1 ~ 2ir(y 0- 1)1/2] 

L = 0 0 1 0 ' (4.94) 

2ir(y - 1)1/2 0 0 2y - 1 

we evidently have X = 0, ~ s = - 1 so that X = 1 + ! s = ° and hence we have Or = 17' and Ob = ° in this case and the 
orthonormal vectors defining the plane of the rotation are obtained most simply as the eigenvectors of L belonging to the 
eigenvalue - 1. It is easy to verify that 

iT = (r,O,O, - irP), V = (0,1,0,0), 

are the orthonormal vectors belonging to the eigenvalue - 1 of L spanning the plane of rotation. We note that we would have 
obtained the same vectors by the second method wherein the parameter vectors which follow from Eqs. (4.82) and (4.83) are 
h = (O,O,r) and e = (O,rP,O). 

5. CLASSIFICATION OF LORENTZ TRANSFORMATIONS IN THE D 10 AND D }O REPRESENTATIONS 

We now give two other classification schemes of Lorentz transformations in terms of the characters X A (L ) and Xc (L ) of 
L, where XA (L ) is the character of the element L ofSO(3, 1) in its three dimensional complex orthogonal representation D 10 (or 

DOl) and X elL) is its character in the two-dimensional complex unimodular representation D}O (or D Of). We shall do this by 
explicitly constructing from a given L, a complex orthogonal matrix A which follows as an immediate consequence of the 
relations in Eqs. (4.16), (4.41), and (4.42). It is of interest to observe in this connection that Landau and Lifshitz lO make use of 
the idea that a Lorentz transformation may be regarded as a rotation through a complex angle in three-dimensional space and 
give the transformation that corresponds to a velocity along the x axis. Our matrix A is just the appropriate generalization of 
their transformation to an arbitrary Lorentz transformation. Writing hr = eb = «; er = - hb = a and denoting h + ie by f, 
it follows from Eqs. (4.3) and (4.16), that 

f= h + ie = (Or + fOb )(<< + ia). (5.I) 

We claim that the skew-symmetric matrix 

(5.2) 

is th~ infinitesi.mal ~ra~sformation in th~ D 10 representation ofS~(3, 1). To see this, we observe that, if laP'!r4 (a,(J,r = 1,2,3 
cychc) are the l~fimteslmal transfor~atlOns ofthe self-representation ofSO(3, 1) in the coordinate planes, laP' - if r4 would be 
the correspondmg ones for the rotatIOn group SO(4) which is a direct product of two three-dimensional rotation groups whose 
infinitesimal transformations are Jr = !(lap - ify4) and Kr = !(laP + ilr4 ) so that we have the well-known relations 

D ilVap) = D Vr)XD I(I) + D j(I)XD I(Kr ), D iI"( - iIy4) = D j(Jr)XDf(I) - D j(I)XD I(Kr ). (5.3) 

Noting that DO(J) = DO(K) = ° andDO(I) = 1, we get 

(5.4) 

and takingJr in the self-representation of the rotation group SO(3) we see that Eq. (5.4) yields for the representation matrix of 
I, exactly the same matrix J ofEq. (5.2). We thus have D 1°(1) = J, and obtain 

A = D IO(L ) = exp.F = exp(OS3) = E3 + sinO S3 + II - cosO)S L (5.5) 
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TABLE I. Classification schemes of proper Lorentz transformations. 

General 
nonplanar 

(Screw-like) 

Planar transformations 
Singular 

Boostlike (Null) Rotationlike 

D 112 1/2:S0(3,1) 
D IO:SO(3,C I 

D IO:SL(2,C) 

!s + \ <X 
XA complex 

orXA < -\ 
Xc complex Xc>2 

orxc< -2 

!S+I=X=4 
XA =3 

Xc = ±2 

~ s + I = X < 4;X = 0 Exceptional 
XA <3;XA = - 1 Exceptional 

- 2 <Xc < 2;X c = 0 Exceptional 

where 0 = Or + iOb and S3 is the three-dimensional skew-symmetric matrix constructed from a = (l + ip. We notice that A of 
Eq. (5.5) has determinant + 1 and has exactly the same structure as theA ofEq. (3.20) with the only difference that a and 0 are 
here complex so that A is complex orthogonal and unimodular. Since (l2 - p

2 = 1 and (l.p = 0, a is a unit vector and is an 
eigenvector of A ofEq. (5.5) belonging to the eigenvalue + 1 and may thus be regarded as the complex axis of rotation. We have 
from Eqs. (4.41) and (4.42) 

ii = (l + iP = (sinOr + isinhOb )-I(eW' + ilff) = (eW' 2 - 1ff2 + 2ieW'.Iff)-1/2(eW' + ilff), (5.6) 

and 0 = COS-I(lt - 0')/4) + icosh-I(lt + 0')!2) from Eqs. (4.23) and (4.24) so that all the elements of A = D 10(L ) are expressed 
explicitly in terms of the given Lorentz transformation L. We note that, since the proper Lorentz group SO(3, 1) and the 
complex orthogonal group SO(3,C) are both six-parameter groups andI-f is a one-one mapping, there exists exactly one 
complex orthogonal unimodular A corresponding to any given L, and conversely. 

For a pure rotation, Ob = 0, If = 0, sinOr = IeW'I so that we have a = ~ and we recover the formula (3.20). For a pure 
boost as given by Eq. (4.92), ()r = 0, eW' = 0, sinhOb = I Iff I and we have 

a = )f=(v""vy,v,)v- I
, 

giving 

[ 

1 + (y - 1)(1 - v;/v2
) 

D 10(L ) = - (VyVx/V2)(y - 1) - irv,/c 

- (V,VxlV2)(y- 1) + irvylc 

- (VXVy/V2)(y - 1) + irvz/c 

1 + (y - 1)(1 - V;/V2) 

- (vxvjv2)(y - 1) - irvy/c] 

- (vy vz /v2 )(y - 1) + iyvx/c . (5.7) 

- (v,vJv2)(y - 1) - iyvx/c 1 + (y - 1)(1 - V;/V2) 

For a velocity along the x axis Vx = v, Vy = Vz = 0 and Eq. (5.7) reduces to the transformation as given by Landau and 

Lifshitz. 10 

If L is exceptional, we have eW' = If = 0; ()b = 0, ()r = 1T and as expected Eq. (5.6) fails to determine a. The vectors (l and 
p and hence i must then be determined from Eqs. (4.82)-(4.85) and we have 1Ta = f and obtain with the corresponding S3 

D IO(L) = E3 + 2Si, (5.8) 

which follows from Eq. (5.5) with () = 1T. We observe that it has the same structure as Eq. (3.23) but with complex a. 
When L is singular, we have ()r = ()b = 0; IeW'I = I Iff I and a = eW' + ilff is now a null vector. With () = IeW'I = I Iff I, we 

obtain with the appropriate S3' 

D IO(L) = E3 + S3() + ~S~()2 

= !a2al () 2 - a3() 

!a la 2() 2 + a3() 

1 + !ai () 2 

[ 

1 + !ai () 2 

~a3al()2 + ale !a3a2()
2 

- al() 

This completes the explicit construction of the matrices of 
theD to representation of the proper Lorentz group SO(3,1). 
The complex conjugate D 01 representation is evidently real
ized by taking 0 = Or - iOb and i = (l - ip. It is now easy to 
introduce a classification of proper Lorentz transformations 
based on the D 10 or D 01 representations. We have seen al
ready that any complex orthogonal unimodular A belonging 
to SO(3,C) corresponds exactly to one proper Lorentz trans
formation L. Thus the trace X A of A would be the character 
of L in the D lO(D 01) representation ofSO(3, 1) and from the 
structure of the matrices A as given by the formulas (3.20) 
and (3.23) with complex elements and the formulas (5.7) and 
(5.9), we obtain immediately that the Lorentz transformation 
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(5.9) 

L that corresponds to A is (i) a general nonplanar transforma
tion ifxA is complex or real and < - 1, (ii) is planar ifxA is 
real and;;;. - 1, and is rotation like, singular, or boostlike ac
cording as X A ~3, and is exceptional if X A = - 1. 

The classification according to the D ¥l or D 0} represen
tations is also straightforward. We know that the two-di
mensional complex unimodular group SL(2,C) which is the 

same as the D ¥l or DO} representation provides a double
valued representation of SO(3, 1) and we have by the 
Clebsch-Gordon theorem, 

D¥lXD¥l = D 10 -+- D oo. (5.10) 

If, therefore, Xc is the trace of any complex unimodular ma-
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trix C belonging to SL(2,C), we have 

X~ =XA + 1, (S.I1) 

and since there is exactly one L corresponding to ± C, we 
arrive at the classification: The Lorentz transformation L 
that corresponds to a given C is (i) a general nonplanar trans
formation if Xc is complex; (ii) is planar if Xc is real and is 
rotation like, singular, or boostlike according as Ix c 1~2, and 
is exceptional if Xc = o. We collect the three classification 
schemes in Table I. 

Note added in proof It is shown by Synge [J. L. Synge, 
Comm. Dublin Inst. for Adv. Stud. Ser. A21, 22 (1972)] that 
with each proper Lorentz transformation, one can associate 
a pair of complex unit quaternions ± q= ± (ao + al'el')' 
where the el' (,u = 1,2,3) satisfy 
e~ = - 1, el'ev = - evel' = ep(,u,v,p = 1,2,3 cyclic). Since 
the quaternion units el' have an irreducible representation 
el'- - i(71' in terms of the Pauli matrices (71" we obtain 
q-acP - ial' (71' = C, an element ofSL(2,C), and we recover 

the D ¥J representation of SO (3,1). Thus Xc = 2ao and we 
arrive at the classification: A proper Lorentz transformation 
L which corresponds to a given q is (i) a general nonplanar one 
if ao is complex (ii) is planar if ao is real and is boostlike, 
singular, or rotationlike according as lao I ~ 1 and is exception
al if ao = O. Table I would therefore be augmented by the 
following row, with the same column headings 

Quater- ao complex 
nion 

ao > 1 - 1 < ao < I 
or 

ao< - 1 

ao = ± 1 

ao = 0 excep
tional 
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It is of interest to observe that the four classification 
schemes neatly taper off according to the characterizing in
tegers 4,3,2,1, which are the dimensions of the correspond
ing representations on formally regarding the quaternion re
presentation as one-dimensional. 
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Extension of inverse scattering method to nonlinear evolution equation in 
nonuniform medium 
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By allowing the entire spectrum of certain linear eigenvalue problems to evolve with time a 
general type of nonlinear evolution equation in nonuniform medium which is exactly integrable 
by the inverse scattering method has been derived. The derivative nonlinear Schr6dinger equation 
or the nonlinear Schr6dinger equation with linear or parabolic density profiles are special cases of 
this generalized form. 

PACS numbers: 03.40.Kf, 02.30.1r 

I. INTRODUCTION 

The method of inverse scattering has oflate become a 
standard tool for solving initial value problems of nonlinear 
partial differential equations associated with the evolution of 
nonlinear waves. In this connection Ablowitz1 ef al. have 
shown that a general form of the nonlinear evolution equa
tion whose exact solution can be determined by this tech
nique from the inverse problem of the Zakharov-Shabae 
type eigenvalue equation 

(ax - M)v = (ax -aq)v = - iP(1 O)v = - ipO")v (1) 
-r x 0-1 

is 

(0"3a, + 211 (LA »e) = 0 , 

where 

L = ~(ax -2r r dyq 

A 2' fX 
I -2Q. cO dy q 

(2) 

- cO (3) 
2rfX dy r ) 

- ax + 2q f oc dy r 

and 11 (p) is an entire function of p. Recently Kaup and New
elP have developed an elegant approach through application 
of which they have derived the general class of exactly inte
grable nonlinear evolution equations associated with Eq. (I). 
It is not imperative in their analysis that the eigenvalue re
mains time invariant. In fact they considered the case where 
the bound state eigenvalues are assumed to depend on time 
in a prescribed manner. However in such general situations 
the evolution equations are usually non local and further 
cannot be given explicitly in terms of the potentials rand q 
alone. The present analysis pertains to the case where the 
entire spectrum evolves with time in accordance with 

dp =!(p;f). 
dt 

(4) 

! ( p,f ) is an en tire function p with arbi trary functions of 
time f occurring as coefficients of the different powers of p. 
Equation (4) is solvable andp may therefore be expressed in 
terms of t and the initial Po' It is shown that the nonlinear 
evolution equation which can be exactly solved in this case is 

[0"3a, - 2if(LA,f)X + 211 (LA )](;) = 0 . (5) 

In obtaining (5) we have followed the AKNS 1 method. Al
ternatively one could derive the time evolution equation of 
the scattering data in a manner as shown by K aup4 and, by 
employing the closure properties of the complete set of ei
genfunctions of LA and its adjoint5, arrive at a more general 
form of evolution equation. The relationship between the 
two would be similar to that between the one determined by 
Kaup and Newe1l3 and Eqs. (2) and (3). However our main 
purpose as exhibited by Eq. (5) is to show that the extension 
of the time dependence to the entire spectrum renders the 
initial value problem ofnolinear wave propagation in certain 
types of nonuniform dispersive medium exactly integrable. 
The evolution equation though explicit in rand q may be
come non local depending on the choice off(p;f). The non
linear Schr6dinger equation with linear6 or parabolic density 
profiles7 are special cases of the last equations. Further un
der restrictions similar to those on 11 (p)1.3 it is possible to 
extendf(p;t) to suitable class of rational functions. 

With appropriate modification it is possible to obtain 
the general class of exactly integrable nonlinear evolution 
equation associated with the Newell-Kaup eigenvalue 
problem 

(ax - pM)u = - If/(J~U , 

the entire spectrum p being assumed to be time dependent. 
As shown by Newell and K aup8 the solution of the deriva
tive nonlinear Schr6dinger equation is related to the inverse 
scattering problem of this eigenvalue equation. 

II. EVOLUTION EQUATION CORRESPONDING TO 
ZAKHAROV-SHABATPROBLEM 

We assume that the time dependence of v is given by 

u = Nv = (A B)v . , C-A (6) 

The eigenvalue p being dependent on time cross differenti
ation of (1) and (6) leads to 

Me - Nx + [M - ip(J3,N 1 - ip'0"3 = 0 . (7a) 

In explicit form 
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Ax =qC-rB-ip" 

Bx +2ipB = q, -2Aq, 

Cx - 2ipC = r, + 2Ar . (7b) 

The first equation of the set (7b) shows that for q and r-<l as 
Ixl-oo the asymptotic behavior of A is given by 

A (x,t;p(t» - A b -) - ip,x x __ 00 

- A b + ) - ip,x . (8) 
x __ + 00 

We now proceed to a formal solution of (7) and the time 
evolution equation of the scattering data for the inverse 
problem of (1). A sufficient condition for the existence of the 
solutions subject to (7) could yield the general form for the 
nonlinear evolution equation for the potential q and r. This 
in essence is the procedure adopted by Ablowitz et al. I 

Let ,p,i and I/!,¢ denote the pairs oflinearly independent 
solutions of (1) with boundary conditions 

(9) 

I/! _ (O)e ipX; ¢ _ (I)e - ipx • 

x~ + 00 1 x~ + 00 ° 
The time development of the scattering data defined through 

,p = a¢ + bl/!; i = b¢ - iiI/!; aii + bb = 1 (10) 

are given by 

a, =(Ab+1-Ab-1)a+B(+)b; 

b
l 
=C(+)a-(A6+ 1+ A b-»b, 

ii, = - (A 6+ 1 - A 6- »ii - C (+) b; 

ii, = - B (+ fj + (A b + 1 + A b - »b, 

B 1+) = lim Be2ipx ; C I + J = lim Ce - 2ipx • 

x- >-'X:; x--", + OC' 

(11) 

These follow easily on noting that the extra contributions 
proportional to ± ip,x which arise from the time derivative 
of the asymptotic expressions for ,p and i are exactly com
pensated by virtue of (8). 

Writing cP = (~; ~) a formal solution for (7a) and (7b) is 
now expressed in the form 

(cP-'NcI»x~x' -(cI>~'NcI»x=x" 

- ipI (xci> ~ 1(}'3cP 1~:, + rX'dx cI> -1M, cI> 
L" 

+ ip, f' dx xax (cI> ~ i(}'3c1» , (12) 

Asx'- + 00 andx"- - 00 the integrated parton the right
hand side oft 12) exactly cancels the corresponding unbound
ed terms on the left-hand side arising from 
AI ± ) = limx~ + '" A (x,t;p), The last integral in (12) which 
completely takes into account the effect of the time depen
dence of p may be written explicitly in the form (x' - + 00, 

x"----+ - 00), 
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In deriving (13) we have used the eigenvalue equation 
(1) for,p and i; it is also assumed that the behavior of q and r 
at Ixl-oo are such as to guarantee the convergence ofthe 
integrals. 

Substituting (13) into (12) with x'- + 00 and 
x" _ - 00 we arrive at the expressions for A b +), B (+), C(+) in 
terms of A b ~ ) and the integrals of the form 

J (,pi) = f-+ ",'" dx x( - q,pziz + r,p,i,) , 

and finally with the help of (10) and (11) obtain 

(bla), = K~I/!) -(bla), 

(b 100r = K ~¢) -(b 10) , 

K (I/!,I/!) = I (I/!,I/!) - 2ip,J (I/!,I/!) . 

(14) 

(15) 

(16) 

(17) 

K (I/!,I/!) is the extension off (I/!.I/!) I to the casepr #0. As 
in the analogous case of time independentp we take 

K(I/!,I/!)=2fJ(p)ab= -2fJ(p) f~+","'dx(qrfz +~), 

K (¢.¢) = -2fJ (p) iib = 2fJ (p) f-+ ",'" dx (qi/lz + ~), 
(18) 

where fJ (p) is an arbitrary entire function of p. The time 
development of the scattering data are thus determined by 
the set oflinearized equations (15) and (16). We now assume 
that Pr = f( p.t ) is also an entire function of p. the coeffi
cients of the different powers of p being functions of t. Since 

'f/ = (~) satisfies the equation L'f/ = p'f/ where the operator 
L is identical with that in the analogous case for Pr = 0, we 
have 

fJ (p)'f/ = fJ (L )'f/; f(p,t)'f/ = f(L,t)'f/. (19) 

A sufficient criterion for the validity of (17) then leads to the 
nonlinear evolution equation for the potentials q and r. 

[(}'3ar -2lf(LA ,t)X+W(LA )](; )=0. 
The operator LA denotes the adjoint of L and is given by (3). 
Corresponding to the case where fJ (p )/( p) are the ratios of 
two entire functions we have the following generalizations: 

[fJ2(LA }f2(LA )a3a, - 2if1z(LA }ft(LA)x + 2fJ t(LA }f2(LA)] 

(20) 

where 

If A b +) = A b -) and B (+) = C (+) = 0, Eqs. (11) have the 
solutions 

a( pet ),t ) = a( po,D) , 
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b (p(t ),t) = b (po,o)exp( -2 fa (p(t '» dt') , 

Po =p(t = 0). (21) 

In the Marchenko equations determining q and r one has to 
make use ofthe above expressions for the time dependence of 
the scattering data. These last equations therefore enable us 
to obtain the solution of the nonlinear evolution equation (5) 
when the solutions of the corresponding homogeneous equa
tions are known. 

In particular withJ(p) = E and E + Iip2 and 
a (p) = ip2, Eq. (5) reduces to the nonlinear Schrodinger 
equation with linear and parabolic density profiles whose 
solutions have been obtained earlier. 6.7 

III. EVOLUTION EQUATION CORRESPONDING TO 
NEWELL-KAUP EIGENVALUE PROBLEM 

If (6) determines the time evolution of the solution of 
the eigenvalue problem 

(ax - pM)v = - ip2CT3V, (22) 

the Lax condition leads to 

pM, + p,M - Nx + [pM - ip2CT3,N] - i(p2),CT3 = ° .(23) 

The asymptotic behavior appropriate to this case is sim
ply obtained by replacingp andp, by p2 and (p2), in Eqs. (8) 
and (9). With these modifications (22) yields in the usual 

A = J... L 
( 

iax + qr + q ('" dy ry 

2 ('" 
-?-r L dyry 

Equation (27) suggests the ansatz 

K (t/J,t/J) = W (p2)ab = - 2pa (p2) L+ 00

00 

(qt/lz + n/l;) dx , 

manner the formal solution for N in this case 

[<1>-IN<1>]~'" = _i(p2),[x<1>-ICT3<1>]~'" 

+ i~' dx' [p<1>-IM,<1> +p,<1>-IM<1> 

+ i(p2), xaX<<1>-I CT3<1»]. (24) 

Here as well we find that the unbounded terms in (24) are 
compensated as x'---+ + 00 and x" ---+ - 00 leading to 

(aa - bb)A ~ +) + abB (+) + abe (+) =A b -) + K (</J,¢J) • 

2abA ~ +) + b 2B (+) - a2e+) = -i{ (</J,</J) • 

2abA 6 +) - a2B (+) +b2C (+) =K (¢J,¢J) , (25) 

where, 

K (</J,¢J) = pI (</J,¢J) - 4ip2 p,J (</J,¢J) + p,H (</J,¢J) , 

H (</J,¢J) = L+ ",00 ( - q</J2¢J2 + r</JI¢Jt) dx . (26) 

The time development equation for the scattering data re
duce to 

(bla), = K(t/J,t/J)la2; (b Iii), = K(t/J,t/J)\a2 . (27) 

If q,r-G as x---+ 00, then it can be shown from (22) that 

1[1 = (~) satisfies 

AI[I=~I[I, ~~ 

where 

(29) 

(30) 

where a (p2) is an entire function of p2. We next assume that the explicit time dependence of p is of the form 

(lop2) , =J(p2), (31) 

whereJ( p~ is also an entire function of p2. Substituting for K from (26) into (30) we obtain after the usual transformation the 
nonlinear evolution equation for (;) as a sufficient criterion for the integrability of this scattering data equations: 

CT3G} + BJ(AA)CT3-2iAAJ (AA)X+W(LA)](;) =0, (32) 

where A A is the adjoint operator 

With a (p2) = - 2ip4 andf(p2) = a, equation (32) reduces to 

( 
r ) ( r ) ( ( - xr)x) (irxx - (r2q)x 

_ q ,+!a _ q + a (xq)x + iqxx + (q2rlx 

which describes approximately propagation of circularly po
larized waves in a magnetoplasma in the presence of inho-
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(33) 

)=0. (34) 

mogeneities. Clearly its exact solution can be obtained by the 
inverse scattering method. 
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We derive detailed asymptotic formulae for the behavior at infinity of isotropic vortex solutions of 
the abelian Higgs model and monopole solutions of the Yang-Mills Higgs model. In particular we 
find that the classical mass of the Higgs field is the smaller of rn and twice the mass of the gauge 
field, where (rnc/fzf is the curvature of the Higgs self-interaction potential at the classical vacuum. 

PACS numbers: 03.S0.Kk, 11.l0.Jj, 11.1O.Lm 

1. INTRODUCTION 

In this paper we present an analysis of the asymptotic 
behavior at large distances of certain isotropic solutions of 
classical gauge field equations, namely the Nielsen-Olesen 
vortex solutions of the abelian Higgs model in two-dimen
sional Euclidean space, and the l' Hooft-Polyakov mono
pole solutions of the Yang-Mills Higgs model in three-di
mensional Euclidean space. The behavior at infinity of these 
classical solutions field indicates that the Higgs mechanism 
of symmetry breaking is operative in the quantized versions 
of these models, and the exact asymptotics determines the 
classical approximation of the masses of the corresponding 
quantum particles. We find that the mass of the Higgs parti
cle is rnq, = min! fz/c.[V "(Re< )] 1I2,2m1 j,where V is the 
Higgs self-interaction potential, R ~ is the asymptotic value 
of the norm ofthe Higgs field (i.e., the classical vacuum), and 
rnA is the mass of the gauge field. A physical interpretation 
of this result is given in the Conclusion. 

2. THE ABELIAN HIGGS MODEL 

The abelian Higgs model describes a charged scalar 
Higgs field which is self-coupled via a potential Vand which 
interacts with an abelian [i.e., U( 1)] gauge field in two-di
mensional Euclidean space. Thus the Higgs field $ is a com
plex-valued function on ]R2, and the gauge field may be writ
ten as iA, where A is a real-valued I-form on ]R2. [We 
represent the Lie algebra of U( I) as ilR.] The potential V is 
assumed to be twice continuously differentiable, nonnega
tive, and symmetric about the origin; furthermore we as
sume that Vhas a zero at R > 0 such that V"(R \ > 0 and 
VIR) > 0 if R <Roc' (See Fig. I.) f 

Using units in which R y = I and e/fzc = I (where the 
charge of the Higgs field is taken to be - e < 0), the Euclid
ean action for the abelian Higgs model is 

.r/($,A) = Ld 2x I ~IIF(A )11 2 + ~lld1$112 + V( 11$ Ill) ; (2.1) 

F (A ) = dA is the field strength of A and d 4 $ = d</1 + iA$ is 
the covariant derivative of $. The critical points of d for
mally satisfy the equations 

d ~d4$ + V'( 1\</1 \\)$ /\\$\\ = 0, 

d'dA + (l/2i)(Jd 4 $ - $dA $ ) = 0 

(2.2a) 

(2.2b) 

"'Supported in part by NSF-PHY-80-01979. This work represents part of 
the author's Ph.D. dissertation presented to the Department of Physics, 
Princeton University in August. 1980. 

(here * denotes the formal adjoint with respect to the appro
priate inner product, and - denotes complex conjunction). 
These are the abelian Higgs equations. 

We wish to consider vortex solutions of Eqs. (2.2a) and 
(2.2b) characterized by having finite Euclidean action (2.1) 
and by exhibiting a classical version ofthe Higgs symmetry
breaking mechanism, viz. 

lim \1</1 (x)11 = 1. 

Following Nielsen and Olesen I we look for isotropic solu
tions of the form 

</1 (x,y) = R (r)exp(inB ) (2.3a) 

and 

A (x,y) = S (r) dB, (2.3b) 

where n is an integer, and rand B are polar coordinates de
fined by x = r cosB andy = r sinB. It can be shown2 that for 
every integer n there exist Higgs and gauge fields </1 and A of 
the form (2.3) which are twice continuously differentiable 
and satisfy (2.2) throughout lR2

, and for which the Euclidean 
action is finite and lim ixl oOC 11$ (x)11 = 1. (The integer n is 
known as the vortex number.) In this paper we study the 
asymptotic behavior of such fields at large distances. 

As one may easily verify, the real-valued functions R 
and S on lR + = I rElR I r > 0 l satisfy the coupled pair of non
linear differential equations 

- R "(r) - r IR '(r) + r-2(S(r) + nfR (r) + V'(R (r)) = 0 
(2.4a) 

and 

- S "(r) + r-IS'(r) + R 2(r)(S(r) + n) = O. (2.4b) 

Furthermore, 

v 

R_ 1 

FIG 1. A typical Higgs field self-interaction potential. 
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F(R,S) = 1"0 rdr [!r- 2[S'(rW + HR '(r)]2 

+ !r- 2R 2(r)(S(r) + n)2 + VIR (rlll (2.5) 

is finite since F (R,S) coincides with (21T) -I d (t/J,A ); and we 
may assume that 

limR (r) = 1 (2.6) 

because lim 1xl _ 00 
Iit/J (x)11 = 1 and we can use a (global) gauge 

transformation to ensure that R (r) is positive for large r. In 
Sec. 3 we will prove 

Theorem 1: Suppose that Rand S satisfy (2.4)-(2.6) let 
m = [V "(1)]1/2. Then there exist constants a and,8such that 

Sir) = - n +,8rKI(r)·(1 + o(exp[ - min(m,2)r])) 

and 

S'(r) = - (S(r) + n)·(1 - (2r)-1 + 0(r-2)) 

as r- 00, and such that: 

(a) ifm <2, 

R (r) = 1 - aKo(mr).(1 + o(exp( - mr)) 

- [m 2 
- 4] - 1,82 [KI (rW(1 + 0(1)) 

and 

R '(r) = - m(R (r) - 1).(1 + (2mr)-1 + 0(r- 2)); 

(b) ifm = 2, 

R (r) = 1 - !,82r[KI(rW·(1 + 0(1)) 

and 

R '(r) = - 2(R (r) - 1).(1 + 0(1)); 

(c) ifm >2, 

R (r) = 1 - [m 2 - 4] - 1,82[KI(rW·(1 + 0(1)) 

and 

R '(r) = - 2(R (r) - 1)·(1 + 0(1)) 

as r_oo. 
From this result follows the decay properties of gauge

invariant quantities of physical importance, such as 
Iit/J II = IR I, ;jdAt/J =R·R' dr + iR 2'(n +S)dB, and 
dA = r- IS' dr 1\ rdB. In particular, the mass of the gauge 
field is m A = fzl c·ellic·R 00 and the mass of the Higgs boson 
is m", = min(fzlc.[V"(Roo )]I12,2mA j. 

3. PROOF OF THEOREM 1 

In order to determine the asymptotics of our fields we 
will find it convenient to work with the shifted fields u and v 
defined by 

u(r) = rl 12( 1 - R (r)) (3.1a) 

and 

vir) = r- 112(n + S (r)) (3.lb) 

instead of with RandS. Given that RandS satisfy Eqs. (2.4a) 
and (2.4b), u and v satisfy the differential equations 

- u"(r) + [V "(1) - r- 2/4 - V(r-112u(r))r-112u(r) 
+ r-lv2(r)]u(r) = r- 112v2(r) (3.2a) 

and 
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- v"(r) + [ 1 + ~r-2 - 2r- 1I2u(r) + r- Iu2(r)] vir) = 0, 
(3.2b) 

where we have written V'(1 -R) = - V"(I)R + V(R)R2. 
Note that VIR) = 0(1) asR-D by Taylor's theorem. 

In the proof of Theorem 1 we will show that u(r) and vir) 
vanish as r- 00. We will then be in a position to apply the 
following lemma, which shows that solutions of differential 
equations of the form of Eqs. (3.2a) and (3.2b) decay expon
entially at infinity, assuming that they vanish at infinity. The 
proof of the lemma is based on an elementary form of the 
maximum principle. 3 

Lemma 3.1: Suppose w is a C 2 solution on R+ of the 
differential equation 

- w"(r) + (K2 + f(r))w(r) = girl, 

wherefandg are continuous functions on R+ and K > 0. Ifw 
andfvanish at infinity, and 

girl = 0 (exp( - Ar)) 

as r-oo for some A> 0, then for every positive E < I 
w(r) = O(exp[ - min{K(l - E)112,A }r]) 

as r-oo. 
Proof Fix ° < E < 1. By hypothesis there is an r.ER+ 

and a constant r. such that !EK2 + f(r);;.O for all r;;.r. and 
such that Ig(r) I.;;; r. exp( - Ar) for all r;;. r •. Define K. 
=K(I-¥)1I2J. =¥K2+j,and,u. =min{K(1 -E)112,A}. 

Thus 

- w"(r) + (~ + f.(r))w(r) = g(r) , 

withJ.(r);;.O for all r;;.r. andg(r).;;;r.exp( - ,u.r) for all r;;.r •. 

Define the function w by 

w(r) = p.exp( - K.r) + [K; -,u; J - lr.exp( - ,u.r) - w(r), 

where P.;;,O is chosen so that w(r. );;'0. Then one easily veri
fies that 

- w"(r) + [K; + J.(r)]w(r) 
= f.(r)[ w(r) + w(r)] + r.exp( - ,u.r) - g(r);;.O 

for all r;;.r •. 
We will show that w(r);;. 0 if r;;.r •. Suppose to the con

trary that w(r l ) <0 for some r l > r.; then because w(r.);;.O 
and w(r)~O as r~oo there exists an rmin > r. at which w 
attains a strictly negative minimum. But then 

w"(rmin ).;;; [K2 + f.(rmin)]W(rmin) <0, 

contradicting the fact that w attains a minimum at r min; thus 
w(r);;.O for all r>r •. This inequality implies the bound 

w(r).;;;const exp( - ,u.r) 

for all r;;'r., since K. ;;.,u •. Because we may just as well apply 
this argument to - w, we deduce that w(r) = 0 (exp( - ,u.r)) 
as r~oo. 

By appealing to this lemma we will see that u and v 
satisfy equations which are modified Bessel equations, ex
cept for perturbations which are exponentially small at infin
ity. Therefore we will compare u and v to the modified Bessel 
functions that approximately solve Eqs. (3.2a) and (3.2b) to 
obtain more precise results about their asymptotic behavior. 
Let K v denote the usual4 modified Bessel function of order v 
that is subdominant at infinity, and define kv on R+ by 
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w = k" solves the differential equation 

- w"(r) + (1 + [V2 - iJ r-2)w(r) = O. 

The following properties4 of k" are used below: if v 2 is 
real, then k" is a real-valued function such that 

k,,(r) = exp( - r)·(l + O(r-I)) 

and 

as r-oo. 
Lemma 3.2 is a typical application of the variation-of

parameters technique from the theory of ordinary differen
tial equations. It is a slightly refined form of the WKB 
approximation. 

Lemma 3.2: Consider the differential equation 

- w"(r) + (K2 + [ v2 -!J r- 2 + h (r))w(r) = 0, 
where h is a continuous function on R+, v2 is real, and K > 0. 
If I h I is integrable at infinity then there exist C 2 solutions w+ 
and w- of this equation such that 

w ± = exp( ± Kr)-( 1 + o( I)) 

and 

[w±]'(r)= ±Kw±(r).(1 +0(1)) 

as r_ 00. Ifin addition h (r) = 0 (exp( - Ilr)) as r_ 00, where 
Il > 0, then 

w-(r) = k,,(Kr)·(1 + o (exp( -w)) 

and 

[w- ]'(r) = - Kw-(r)·(1 + 0 (r- 2
)). 

Proof For notational convenience we will assume that 
K = 1; the general case can be reduced to this case by rescal
ing the independent variable. We first seek a solution w- of 
our equation which is of the form w- kv'z, where z(r)-1 as 
r_ 00 . Motivated by standard tricks used to solve ordinary 
differential equations we proceed as follows. Suppose we can 
find a C 2 solution z of the Volterra integral equation 

z(r) = 1 + fO dr' K (r,r')h (r')z(r'), 

where 

K(r,r') = [k,,(r')]2f'dr" [k,,(r")]-2. 

Then z satisfies the differential equation 

- z"(r) - 2k ~(r) [k,,(r)] -Iz'(r) + h (r)z(r) = 0, 

so that the product w- = k,,'z satisfies our equation. It is 
thus of interest to find z; we will construct a solution of the 
Volterra integral equation in the usual manner, namely by 
proving that its Neumann series converges. 

Throughout the following fix roER+ such that k,,(r) > ° 
if r>ro' It is easy to check that there is a constantp such that 
O<"K (r,r') < ~p and 0<" - (JK IJr)(r,r')<"p for all r'>r>ro' 

For later convenience let H (r) = ~pS'; dr'lh (r')I. Note that 
H (r) = o( 1) as r_ 00 since Ih I is integrable at infinity; further
more, H (r) = o(exp( - Ilr)) as r- 00 in case 
h (r) = o(exp( - w)) as r_ 00 by l' Hopital's rule. 
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Define Zo = 1, and for nonnegative integers) define 
Zj + I inductively by 

Zj + I (r) = LX> dr' K (r,r')h (r')zj (r'). 

Then we find that IZj I <"(j!)-IHj and ~Iz; I <"(j!)-IHJby a sim
ple induction argument applied to the formulae for Zj and z;. 
From the first estimate we conclude that the series ~t= OZj 

converges uniformly on ]ro, 00 [ to a function z such that 

Iz(r) - 11 <"exp(H(r)) - l<"constH(r) 

for all r> ro; the second estimate, along with the formula for 
z)', shows that z is C 2 on ]ro, 00 [ and that 

-! I z'(r) I <"exp(H (r)) - 1 <"const H (r) 

for all r> ro. In addition, z is a solution of the Volterra inte
gral equation, as follows by the Lebesgue dominated conver
gence theorem. 

As a consequence w- = k,,'z is a solution of our origi
nal equation with the properties that 

and 

w-(r) = k,,(r)z(r) = k,,(r).(1 + o (H(r))) 

= exp( - r)·(1 + 0(1)) 

[w-] '(r) = k ~(r)z(r) + k,,(r)z'(r) 

= -w-(r).[l +0(r-2) + o (H(r))] 

as r-oo. We may construct a second solution w+ by setting 

w+(r) = 2w-(r)fdr' [W-(r')]-2 

for r> r l [where we choose r l > ro large enough that 
w-(r)¥=O for all r>rl]' That w+, so defined, solves the same 
equation as does w- is easily checked directly; the motiva
tion for defining w + in this way comes from requiring that 
the Wronskianofw+ andw- be a constant, which is taken to 
be - 2. The asymptotic behavior of w+ may be determined 
as follows: by l'Hopital's rule 

2S' d '[ - ( ')] - 2 

I . +() -() I' "r w r Imw rw r = 1m 2 
,~oc H= [w-(r)]-

2[w-(r)] -2 

= !i~ _ 2[w-],(r)[w-(r)]-J = 1, 

so that w+(r) = exp(r).(l + 0(1)) as r-oo; and 

lim [w+]'(r)[w+(r)]-I 

= lim [w-],(r)[w-(r)]-I +2[w-(r)w+(r)]-1 = 1, 

so that [w+]'(r) = w+(r).(1 + 0(1)) as r_oo. This completes 
the proof. 

We now are in a position to prove Theorem 1. Define u 
and v through Eqs. (3.la) and (3.lb). First of all, there is a 
strictly positive constant such that 

VIR (r))>const (I - R (r))2 

for sufficiently large 'A this is because V(R ) = V"(I) 
X(I - Rf + 0(1 - R)2 as R-I, where V"(I) >0. Since 
F (R,S) is finite we conclude that u is square-integrable at 
infinity. Since 

u'(r) = - r l/2 R '(r) + 1r - I u(r) 
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the finiteness of F (R,S) shows further that u/ is square-inte
grable at infinity. Hence (u 2 l' = 2u·u' is integrable at infinity, 
so that lim r .", u(r) exists; but this limit must vanish in order 
that u 2 be integrable at infinity. Since the third term r' rdrir-2R 2(r)(S(r) + n)2 = i'" dr!\1- r-1/2u(r))V(r) 

inF (R,S ) is finite it follows that v is square-integrable at infin
ity. Since 

v/(r) = r- 1/2S/(r) - ~r-Iv(r), 

the finiteness of F(R,S) guarantees that v/ is also square-inte
grable at infinity. As before we conclude that v vanishes at 
infinity. 

An examination of Egs. (3.2a) and (3.2b) shows that we 
may apply Lemma 3.1 to v: given any positive e < I, 

vIr) = O(exp[ - (I - e)1/2r]) 

as r- 00. Using this bound we may apply Lemma 3.1 to u 

u(r) = O(exp[ - minlm,2J(I- e)1/2r]) 

as r-oo. 
Again referring to Eqs. (3.2a) and (3.2b) we see that 

Lemma 3.2 applies to the equation satisfied by v. Since v 
vanishes at infinity it must be proportional to the subdomin
ant solution constructed in Lemma 3.2, so there exists a con
stant (J / such that 

vIr) =(J'k,(r).(1 + o(exp[ - minlm,2J(1 - e)1/2r])) 

and 

v/(r) = v(r).(1 + 0 (r- 2
)) 

as r-co. 
Consider now the equation satisfied by u, which we will 

write as 

- u"(r) + [ m2 - *r- 2 + h (r)l u(r) = gIrl· 

Let u + and u _ denote the solutions of the corresponding 
homogeneous equation that are constructed in Lemma 3.2. 
Using u + and u _ we may construct a particular solution up 
of the equation satisfied by u: let 

up(r) = (2m)- 'i~dr' u_(r)u+(r/)g(r') 

+ (2m)-' J'" dr' u+(r)u_(r')g(r') 

for r-;.r ,. Then 

- u;(r) + (m 2 
- *r- 2 + h (r))up(r) = - (2m)-' W(r)g(r), 

where the Wronskian W(r) = u+(r)u'_ (r) - u_(r)u'+ (r) 
= - 2m(l + 0(1) by Lemma 3.2; but since W/ = 0 we must 

have the W = - 2m, so that up satisfies the correct equa
tion. Because u - up satisfies the homogeneous equation 
there exist constants a + and a _ such that u = a + u + + 
a _ u _ + up' We will determine the asymptotic behavior of 
u by examining up' 

First ofall, 

I
. (2m)-'s';" dr' u_(r')g(r') 
1m --~~~----~--

I' _'" g(r)[u+(r)]-I 
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I
. - 2(m)-'u_(r)g(r) = Im--------~~--~~~-----

1'-'00 g(r)[u+(r)]-I!(lng)'{r) - (Inu+)'(r)J 

= (2m)-' [m - !~~(Ing)'(r) J - I 

by I'H6pital's rule. But with gIrl = r- I 12v2(r), 
(lng)'(r) = - ~r-I + 2(lnv)'(r) 

= - 2(1 + *r- I + 0(r-2)) 

as r_ co, so that the second term in up exhibits the behavior 

(2m)-'i'" dr' u+(r)u_(r/)g(r') 

= (2m)-'(m + 2)-'g(r).(1 + 0(1)) 

as r-co. 
Suppose m < 2. Then the first term in up may be written 

as 

(2m)-IJ'" dr' u+(r/)g(rlu_(r) 

- (2m)-'i"'dr' u_(r)u+(r/)g(r') 

because u + (r)g(r) vanishes exponentially as r_ co. But 

- (2m)-'J"'dr' u+(r/)g(r') 

lim -------------------
r~", g(r)[ u _ (r)] - I 

= lim (2m)-'u+(r)g(r) 
r~", g(r)[ u _ (r)] - I( (Ing)'{r) - (lnu _ )'!r)j 

= (2m)-'(m - 2)-1. 

Thus there is a constant a" such that 

up(r) = a"u_(r) + [m 2 
- 4] -'g(r).(1 + 0(1)) 

as r_ 00 • Since u vanishes at infinity it follows that there is a 
constant a/ such that 

u(r) = a'ko(mr).(1 + o(exp[ - m(1 - e)l/2r ])) 

+ [m2-4]-lr-1/2[j3'kl(r)f.(1 +0(1)) 

as r_ 00. If on the other hand m > 2, then because g.[u _]-1 
grows (exponentially) at infinity, 

(2m)-'Ldr' u+(r/)g(r') 

lim -----'-------
r~oo g(r)[u_(r)]-I 

= lim (2m)-'u+(r)g(r) 
r-·oc g(r)[u_(r)] -I ((lng)'!r) - (lnu_),(r) 1 

= (2m)-'(m - 2)-1, 

so that 

u(r) = a_ko(mr).(1 + o(exp[ - 2(1 - e)1/2r])) 

+ [m2-4]-lr-'/2[(J'kdr)f.(1 +0(1)). 

Lastly, in case m = 2, rg(r)[u _ (r)] -I grows (as r 1/2) as r_ co, 

so 

(2m)-'i~dr' u+(r/)g(r') 
lim 

rg(r)[u_(r)] -I 

= Jim (2m)-'u+(r)g(r) 
r~", rg(r)[ u _ (r)] - I( r- I + (lng)'{r) - (lnu _),(rlJ 

Bradley Plohr 2187 



                                                                                                                                    

= (2m)-'Iim[ r1tr-' + 0(r- 2)]]-1 = m- I 

7_00 

because (lng)'(r) = - 2 - ~r-I + 0 (r- 2) as r---? 00; thus 

u(r) = a_k()(mr).(l + o(exp[ - m(l - E")1/2r])) 

+ m- Ir l !2[ /3'k,(r)]2.(l + 0(1)) 
as r-+oo. 

Recycling these formulae through Lemma 3.2 shows 
that the factors (1 - E") I 12 may be eliminated. The same anal
ysis gives the asymptotic behavior of u' and v'; we omit the 
details. Finally, application of the definitions of u and v in 
terms of Rand S and of k" in terms of k" finishes the proof. 

Let us make some remarks about the constants a and /3 
appearing in Theorem I. First of all, /3 must be nonzero be
cause v cannot vanish identically; the sign of /3 may be deter
mined as follows. Note that 

!!... (v(r)v'(r)) = [(I + r-l/2u(r))2 + ~r-2) v2{r) + [v'{rW 
dr 

so that v·v' is strictly increasing; but limr _ oo v{r)v'(r) = 0, so 
we see that v(r)v'(r) < 0 for all r. Since (sgnn )·v(r) is positive for 
small enough r, [because2 S (r)-+O as r-+O] we conclude that 
(sgnn).v(r) is positive for all r, whence (sgnn)./3 is positive. It 
seems that we cannot argue in this way to show that a is 
positive, but under the assumption that IR (r) I.;;; 1 for large r it 
is clear that a > O. 

Using a different approach we may derive inequalities 
which a and /3 satisfy in certain circumstances. Define the 
function iv by 

((r) = (27Tr) 1/2I v(r), 

where Iv is the usual4 modified Bessel function of order v 
that is subdominant at the origin; iv satisfies the same differ
ential equation as does kv' and i~kv - ivk ~. = 2. 

If we write the equation satisfied by v in the form 

- vn(r) + [ 1 + ir-2] v(r) 

= (1 - R 2(r)).r- 1/2(n + S(r)) =/v(r) 

we find that [ii v - i,v']' = idu' By the proofs of Lemma 3.2 
and Theorem 1, 

ii (r)v(r) - i dr)v'(r) = 2/3' + o( 1) = (2JT) 1/2/3 + o{ 1) 

as r~ 00. On the other hand, one may deduce2 from the be
havior of i I and v as r---->-O that 

i; (r)v(r) - i I (r)v'(r) = (27T) 1/
2n + o( I) 

as r-+O. Therefore 

(27T)1/2( /3 - n) = f" dr i\(r).!:,(r). 

Since (sgnn)1u > 0 if IR I,;;; 1 (and n #0) we find in particular 
that 

(sgnn)./3> Inl 

under the assumption that IR I.;;; 1. 
In a similar fashion we may write 

_ u"(r) + [ m2 - *r- 2) u(r) 

= r1/2[ V'(R (r)) 
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+ V"(I)(I - R (r)) + r-2(S(r) + n)2R (r)] 

=/u(r) 

J. Math. Phys., Vol. 22, No. 10, October 1981 

and show that2 

(27Tm)I!2a = 2ma' = [mib(mr)u(r) - io(mr)u'(r) Jef 

= i"'drio(mr)/u(r), 

so long as m < 2. Therefore 

a>O 

in case R >0 and the potential V satisfies 

V'(R) + V"(l)(1 - R»O 
"-

for all R >0. For example, the quartic double-well potential 
V m defined by 

Vm{R) = km2(1 - R2)2 

satisfies this condition. We note that for the vortex solutions 
that have been constructedZ the field R satisfies O.;;;R,;;; 1. 

4. THE YANG-MillS HIGGS MODEL 

The Yang-Mills Higgs model describes a scalar Higgs 
field which is self-coupled via a potential Vand which inter
acts with a Yang-Mills [i.e., SU(2)] gauge field in three-di
mensional Euclidean space. The Higgs field transforms ac
cording to some finite dimensional, real, symmetric 
representationg;--+U(g): W-+W of the Lie group SU(2) in the 
vector space W, and thus ¢ is a W-valued function on R3; the 
gauge field is a I-form on R3 taking values in the Lie algebra 
su(2) of SU(2). The potential V is assumed to be twice con
tinuously differentiable, nonnegative, and symmetric about 
theQrigin, and):o have a zero atRoo > 0 with V "(R 00 ) > Oand 
V(R) > a for R <Roc' Using units in which Roo = 1 and 
elk = 1 (where e is the coupling constant for the interaction 
between the Higgs and gauge fields) the Euclidean action for 
the Yang-Mills Higgs model is 

.a1(¢,A) = L,d 3x WF(A )11
2 + ~lldA 112 + V( II¢ II)], (4.1) 

whereF(A) = dA + ~[A,A ] is the field strength (curvature) of 
A, and d A ¢ = d¢ + U (A )¢ is the covariant deri vati ve of ¢. 
The criticial points of.# formally satisfy the equations 

d ~dA ¢ + V"( II¢> II)¢> III¢> II = 0 (4.2a) 

and 

(4.2b) 

here the Higgs current JA (¢> ) is defined so that 

(XIJA {¢))su(2) = (U(X)¢> IdA¢»w 

for all XESu(2). Monopoles are solutions of Eqs.(4.2a) and 
(4.2b) which have finite action (4.1) and exhibit symmetry 
breaking ( II¢ (x)II-+1 as Ixl--oo). 

One may constructl,5-7 monopoles which are isotropic 
in the sense that 

(4.3a) 

and 

0" xJdx k 

A (x) = S (Ix!) L --:E"ajk -I 12 
aJ.k 21 x 

(4.3b) 

for some integer /, where the 0", a = 1,2, 3, are the usual 
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Pauli spin matrices, and the rm,m = - 1, ... ,1, transform ac
cording to the I th irreducible representation ofSU(2) in such 
a way that 

(lIi)L a¢ + U(cf'/2i)¢ = 0 

(hereL a = l,j,kE"jkXj (lIi) JIJxk is the usual angular momen
tum operator). For example, we may take 

cf' xa 

¢ (x) = R (Ixl)~ 2i N 
if ¢ transforms according to the I = 1 adjoint representation, 
as first shown by CHooft8 and Polyakov.9 

Assuming a suitable normalization for r m
, the fields R 

and S may be shown to satisfy the differential equations 

- R "(r) - 2r- 1R '(r) + I (I + 1)r-2 

x{S(r) + 1)2R (r) + V'(R (r)) = 0 (4.4a) 

and 

- S "(r) + F (l + I)R 2(r)(S(r) + 1) 

+ r- 2S (r)(S (r) + I)(S(r) + 2) = 0, 

to have 

F(R,S) = 100 

r dr {HR 'trW 

(4.4b) 

+ r-2[S'(rW + V( 1+ I)(S(r) + IfR 2(r) 

+ ~r-4S2(r)(S(r) + 2f + VIR (r))] , (4.5) 

finite, and to satisfy 

limR (r) = 1. (4.6) 

Theorem 2: Suppose that Rand S satisfy (4.4)-(4.6); let 

m = [V"(I)]1/2,m, = W ( 1+ 1)]1/2, and Vo = i 31/212. 

Then there exist constants a and f3 such that 

Sir) = - 1 + f3(m,r)1/ 2K v,.(m,r) 

X(1 + o(exp[ - min{m,2m,}r))) 

and 

S'(r) = - mdS(r) + 1).(1 + o (r-2)) 

as r---+ 00, and such that: 

(a) if m < 2m" 

R (r) = 1 - a(mr)-Ie - mr(l + o(exp[ - mr])) 

- 2mi[m2 
- 4mTJ-If32(m,r)-1 [Kvuim,rlf·(1 + 0(1)) 

and 

R '(r) = - m(R (r) - 1)·(1 + (mr)-I + 0 (r- 2
)); 

(b) ifm = 2m, 

R (r) = 1 - !mrf3 21n(m,r) [Kvjm,rW'(1 + 0(1)) 

and 

R '(r) = - mdR (r) - 1).(1 + 0(1)); 

(c) if m > 2m" 

and 
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R (r) = 1 - 2mi[m2 - 4m7]- 1f3 2(m,r)-1 

X [Kv,,(m,rlf·(l + 0(1)) 

R '(r) = - m,{R (r) - 1).(1 + 0(1)) 
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H 

T 
FIG. 2. The Feynman vertex coupling a Higgs particle to two massive 
photons. 

as r---+ 00. 

The proof of Theorem 2 is exactly analogous to the 
proof of Theorem 1, so we spare the reader from the details. 
As far as the constants a and f3 are concerned, clearly f3 =I- 0, 
and f3 > 0 if S (r);:;. - 1 for all large r; equally clearly a> 0 if 
IR (r) I,,;;; 1 for all large r, and2 one may show, in the manner of 
Sec. 3, that a > 0 in case R;:;.O and the potential satisfies the 
inequality (3.3). 

The asymptotic behavior of physical fields such as 
II¢ II = IR I,(¢ IdA)w = R·R' dr, 
II¢ 11 2 11dA ¢ 112 - II(¢ IdA ¢ )w11 2 = I (I + I)R 4(S + If, 
I!P(A )11 2 = 2r-2(S')2 + r- 4S 2(S + 2)2, and (in case 1=1) 
(¢ IF(A ))su(2) = R-S (S + 2)dO 1\ sinO d¢. In particular, the 
massofthegaugeparticlemA = fzle.elfle·R oo 'W( I + 1)]1/2, 
while the mass of the Higgs boson is m,. 
= mint fz/c.[V"(RoJl 1/2, 2mA I. 

5. CONCLUSION 

Let us comment on the physics behind the result that 
the mass of the Higgs field cannot exceed twice the mass of 
the gauge field. In the case of the abelian Higgs model, it is 
seen from the proofs of Theorem 1 that this arises because 
the differential equation (3.2a) for the shifted field u has an 
inhomogeneous term r- I 12u2(r) whose decay is twice that of 
the gauge field. In the context of the quantized version ofthis 
model, the term in the Euclidean action which gives rise to 
this inhomogeneous term in the field equations corresponds 
to the Fenynman vertex shown in Fig. 2 which describes the 
decay of a Higgs particle into two massive photons. Thus the 
peculiarity in the Higgs particle mass in the classical field 
theory reflects the existence of a decay mode H---+2y in the 
quantum field theory. A similar interpretation is possible for 
the Yang-Mills Higgs model. 

Finally, we note that Jaffe and Taubes lO have studied 
nonisotropic vortices and monopoles with the quartic dou
ble-well potential V me/Ii and have established that 
m", ;:;.min[ m,2mA l; they conjecture that m,. 
= min [ m,2m A I in this more general setting. 
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This paper presents further progress in the solution of the three-dimensional inverse scattering 
problem for the Schr6dinger equation. We prove that if the potential is in a specified class and 
produces no bound states, then the kernel of the generalized Marchenko equation defines a 
compact operator and the equation has a unique solution unless the operator has the eigenvalue 1. 
A partial characterization of scattering amplitudes associated with underlying local potentials 
without bound states is given and the potential is constructed without assuming its existence. An 
improved generalization of the Marchenko equation is presented for the case with bound states. 
The generalized Gel'fand-Levitan equation is critically reviewed. 

PACS numbers: 03.6S.Nk 

I. INTRODUCTION 

This paper continues the work of Ref. 1 (which will be 
referred to as II) on the inverse scattering problem for the 
Schr6dinger equation in three dimensions, in which spheri
cal symmetry of the potential is not assumed. Paper II intro
duced two methods for the reconstruction of such a poten
tial: one was a generalization ofthe Marchenko equation, the 
other, of the Gel'fand-Levitan (GL) equation. While its re
sults guaranteed the uniqueness of the reconstruction of an 
underlying potential, they did not include a detailed analysis 
of the nature of the kernels of the integral equations, nor a 
proof that the generalized Marchenko equation has a unique 
solution. Also, II contained no results on the construction 
problem if a scattering amplitUde is given and the existence 
of an underlying potential is not known. 

In Sec. 2 of this paper we analyze the kernel of the gen
eralized Marchenko equation introduced in II in the absence 
of bound states. Under specified conditions on the potential, 
the kernel is found to define a compact self-adjoint operator 
9J x on L 2(JR+ xS 2) whose square is in the Hilbert-Schmidt 
class. The central result of this section is Theorem 2.1 which 
states that unless 9J x has the eigenvalue I, the generalized 
Marchenko equation has a unique solution in L 2 (JR + X S 2). 
In fact, if ,~ x does not have the eigenvalue - I either, the 
equation can be solved by iteration. 

Section 3 is addressed to the construction problem if an 
underlying potential is not known to exist. It is restricted to 
the case without bound states (which is recognizable by 
means of the Levinson theorem). Theorem 3.1 provides a 
partial solution to the characterization problem. 2 On the as
sumption that the given scattering amplitude belongs to a 
specified class .C'/, a potential is found to exist and to lead to 
the originally given amplitude, provided that the solution of 
the generalized Marchenko equation is miraculous (which is 
a property that was defined in II). The integrability proper
ties of the constructed potential have not yet been 
established. 

In Sec. 4 we point out that the generalized Marchenko 
equation of II in the presence of bound states is not solvable 
by standard methods. (In order to show what the problem is 
we devote Appendix B to solving the "scalar" Hilbert prob-

lem, which can also be solved by quadrature, by a Mar
chenko-like equation.) We therefore introduce an alternative 
method that is based on removing the bound states, not by 
the Fredholm determinant of the Lippmann-Schwinger 
equation as in II, but by a procedure like that of Sec. 6 of II 
for the generalized Jost function. The effect is an equation to 
which the results of Sec. 2 are applicable; consequently the 
reconstruction with bound states works as well as without 
them. However, a transfer of the method of Sec. 3 to accom
plish a partial characterization when there are bound states 
was found to lead to technical difficulties that have not yet 
been surmounted. 

Section 5 contains a criticism of the generalized G L 
equation proposed in II. The crucial triangularity property 
of one of the kernels used, while probably correct, is found 
not to be firmly established. Ifit holds, all the known GL 
equations, including those for nonzero reference potentials 
and the nonlinear GL equation are readily generalized, and 
for central potentials one obtains the known radial GL equa
tions upon expansion in terms of spherical harmonics. The 
publication of the details of these statements will be deferred 
until the basis on which they must rest is secure. 

Appendices A and C provide detailed proofs of Lem
mas 2.1 and 4.1. 

2. PROPERTIES OF THE GENERALIZED MARCHENKO 
EQUATION 

We shaH assume here that there are no bound states. In 
the procedure of Sec. 4 of II, and in Theorem 4.1 of II, the 
function R (k ) may then be replaced by I, and the generalized 
Marchenko equation may be written in the simplified form"' 

17x(a) = Gx(a)l + f" d/3Gx(a +/3)17x(f3), (2.1) 

where 

Gx(a) = + r~ cn dk [Y'~(k) - 1 ] Qeika
, (2.2) 

Y'x(k;e,e ') = S(k;e,e ')exp[ikx.(e - f) ')], (2.3) 

or more explicitly 

Gx (a;e,e ') = - i(21T) - 2 f'" dk kA : (k; - e ',e )eikn
, 

- 00 (2.2') 
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in which 

Ax(k;e,e ') = A (k;e,e ')exp[ikx·(e - e ')) (2.4) 

is the scattering amplitude of a potential shifted by x, and i is 
thevectorinL 2(S 2) represented by/(e) = 1. (In contrast to II 
we now use a notation in which operators on L 2(S 2) act to the 
right, and we no longer use sUbscripts to indicate the k de
pendence.) Since yO' x depends on x, so do Gx(a) and 77x(a). 
Writing explicitly 77x(a,e), Theorem 4.1 of II stated that if V 
satisfies the hypotheses of Lemma 3.2 of II then it has the 
representation 

V(x) = - 2e,V'r/x(0,e), (2.5) 

where 77x (a,e) is the only "miraculous" solution of(2.1) [i. e., 
for which the right-hand sideof(2.5) is independent ofe] that 
satisfies the hypotheses of Lemma 3.2 of II. 

Ifwe wish to reconstruct an underlying potential V(x) 
then it will be important to know if, in fact, Eq. (2.1) has a 
unique solution. Theorem 4.1 of II leaves open the possibility 
that (2.1) has more than one solution, but only one of them is 
miraculous. We therefore must investigate the properties of 
the kernel of the integral equation (2.1). In Appendix A we 
shall prove the following: 

Lemma 2.1: Suppose that V (x) satisfies the hypotheses 
of Lemma 2.1 of II, which are: 3a > ° and Csuch that for all 

YER" 

f d3XIV(xw+fd3xIV(x)l( Ixl + lyl +a)2 <C, 
Ix-yl 

(2.5a) 

and 3 xoER3 and a monotone functionM1{t )EL I(R+)nL 2(R+) 
such that for all xER3

, 

(2.5b) 

furthermore, suppose that 3XoER3, C, and E, with ~ < E < 1, 
and M 2(t) such that for all xER3, 

IVV(x + xo)1 <M2(lxl), (2.5c) 

and M2 satisfies the inequalities 

fdt t 3/2M2(t) < 00, (2.5d) 

F2(S)= f" dt tM2(t) < Cs - 2<. (2.5e) 

Then the self-adjoint operator ~ x on L 2(R+ xs 2) whose 
kernel is ~ x (a,{3;e,e ') = Gx(a + {3,e,e 'I, whereGx(a;e,e 'lis 
given by (2.2'), is compact and its square is Hilbert-Schmidt; 
3C such that for all xeR311~; 112 < c.4 

We note that if 3XoER3 and C, E> 0, such that for all 
xER3

, 

IVV(x + xo)1 < C lxi' - 2(1 + Ixl) - 2.-- 2, (2.6) 

then the hypotheses of this lemma are satisfied. The self
adjointness of ;fj x follows from the fact that A satisfies time
reversal invariance,5 

A ( - k,e,e ') = A *(k,e,e 'I, (2.7) 

and reciprocity, 

A (k;e,e') =A (k; - e', - e). (2.8) 

Let us now write (2.1) in operator form, 
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77x =Sx + fJ x 77x' 

where, explicitly, 

sx(a,e) = Ide I Gx(a;e,e ' ). 

Iterating (2.1 ') once we have 

(2.1 ') 

77x =sx + fJxsx + fJ;77x' (2.1n) 

It follows from Lemma 3.2 of II that 5xEL 2(R+ xs 2). [The 
hypotheses of this lemma are somewhat stronger than (2.5d), 
and (2.6) would not meet them. However, if 

IVV(x+xo)I<Clxl< 1(1+lxl)-2<-J, (2.6' ) 

then the hypotheses of Lemma 2.1 and of Lemma 3.2 of II 
are satisfied.] Since according to Lemma 2.1 ::/; x is bounded, 
fJ x5xEL 2(R+ xs 2). Consequently, unless.'9 x has the eigen
value 1, Eq. (2.1 n) has a unique solution 77x in L 2(R-t xs 2) 
that is constructable by the Fredholm method, and we may 
write it as 

77x = ("ll. - ,~ x) - 15x· 

Suppose that ,,§ x has the eigenvalue v, so that for a > 0, 

v/(a) = f" d{3 Gx (a + {3lf(j3)· 

Define 

p(k) = 1= da e - ikf1(a), 

so that 

JX oc dk (P( - k ),p(k )) 

= roc oc dk i oc 

da i oc 

d{3 e - ik if If (3 V(j3 ),j(a)) = 0, 

where the inner product is in L 2(S 2). Therefore we get 

° = i'" da (v/(a), v/(a)) 

-i= da i= d{3 (v/(a), Gx(a + {3lf(j3)) 

= 100 

dk (vp(k), vp(k)) 

- I:ocdk{VP(k), [Y':(k)-"ll.]Qp(-k)) 

= f'dk (vp(k), [vp(k) - Y;(k )Qp( - k)]) 

= f" dk ([vp(k) - Y:(k )Qp( - k I], 

X [vp(k) - YZ(k )Qp( - k I]) 

+ vI: = dk ([YZ(k )Qp( - k) - vp(k I], p(k)) 

+ (v2 
- I)I: oc dk (P(k), p(k)) 

-J~ oc dk [(p( - k), QY xY:Qp( - k)) 

- (P( - k), p( - k )ll· 
The second and fourth integrals vanish. It follows6 that if 
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v2 > 1 then p(k ) = O. Therefore no eigenvalue v of [§ x can be 
such that v 2 > 1. 

Consequently, if neither 1 nor - 1 is in the spectrum of 
;g x then the Neumann series for (1 - [§ x) - I converges. 
Thus we have proved 

Theorem 2.1: If the potential satisfies the hypotheses of 
Lemma 3.2 of II and those of Lemma 2.1 [which are all 
satisfied ifit obeys (2.6')] then the generalized Marchenko 
equation (2.1) has a unique solution inL 2(R+ xs 2), unless its 
kernel ;g x has the eigenvalue 1. If neither 1 nor - 1 is in the 
spectrum of ;g x then (2.1) can be solved by iteration. 

It follows from this theorem that in the absence of 
bound states, and if [§ x does not have the eigenvalue I, the 
reconstruction of V via (2.1) and (2.5) works. 

3. CONSTRUCTION AND CHARACTERIZATION 

We shall no longer assume the existence of an underly
ing potential. Instead we start with a given amplitude func
tion A (k;8,8 ') with the following properties: 

(i) A (k;8,8 ') satisfies (2.7) and (2.8). 
(ii) For all 8and 8 ',A (k;8,8 ') is a continuous function of 

k for all k€R. 
(iii) If A (k ) is the operator on L 2(S 2) whose kernel is 

A (k;8,8 '), andS (k ) = Jl - (k 121Ti)A (k ), then for almost all k 
S (k ) is unitary and it satisfies the Levinson theorem for no 
bound states, namely, 3c such that 

log detS (0) = lim (log detS (k ) + ikc). 
k- ---00 

[We note that (ii) implies the existence and continuity of the 
Fredholm determinant detS'(k) for all k.] 

(iv) kAESL 2(R), which means that 3C such that for all 
IEL 2(S2), Sdk k 211A (k )/11 2 < C 11/112. This implies that the 
Fourier transform of kA (k ) strongly converges in the mean, 
and we define Gx (a;8,8 ') by means of(2.2') and (2.4). Accord
ing to (2.7) the function Gx(a;8,8 ') is real. Let Gx (a) be the 
family of operators on L 2(S 2) whose kernels are given by (2.2') 
and let ,'{/ x and ;g ~ be the self-adjoint operators on 
L 2(R+ XS2) whose kernels are given by 

~§ x (a,/3;8,8 ') = Gx(a + /3;8,8 '), 

,''} ~ (a,/3;8,8 ') = G ~ (a + /3;8,8 ') = - Gxf - a - /3;8,8 '). 

[Their self-adjointness follows from (2.7) and (2.8).] We then 
assume 

(v) ,'1 x and ~ ~ are compact and [§ ~ and ~ ~2 are Hil
bert-Schmidt. 

(vi) Save for isolated values of x, neither;g x nor ;g ~ has 
the eigenvalue 1. 

We shall refer to functions that satisfy assumptions (i) to 
(vi) as in class J::l. Conditions (i) to (v) are met by potentials 
that satisfy the hypotheses of Theorem 2.1; condition (vi) 
may be assumed to hold for such potentials as well. 

Since the given amplitude AE,W', Eq. (2.1) has a unique 
solution 1JxEL 2(1R+ XS2). We define 

yx(k) = i + 1~ da 1Jx(a)eika . (3.1) 

[In the following we shall temporarily drop the subscript x 
on yx(k). Its x dependence will not be used for the time be-
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ing.] It follows from the properties of1Jx(a) that 
II y(k ) - i IIEL 2(R) and that y(k ) is the boundary value of an 
analytic function holomorphic in the upper half-plane such 
that there 

lim Ily(k) - 111 = O. (3.2) 
Ik I~oc 

We shall refer to the class of functions with these properties 
of y(k ) - 1 as JY+. It also follows from (2.1) that the 
function 

I(k ) = y( - k ) - Y! (k )Qy(k ) (3.3) 

is in JY+. But because of (2.7), (2.8), and the unitarity of S,J 
satisfies the relation 

I( - k) = QY x (k )f(k ). (3.4) 

The fact that/EJY+ and (3.4) are now utilized in the same 
manner that led to (2.1) to show that the Fourier transform of 
I(k), 

O"(a) = _1_ foc dkl(k)e - ika, 
21T - 00 

(3.5) 

[which converges in the mean because of(3.3) and the prop
erties of Sand y] vanishes for a < 0, and that for a> 0 it must 
solve the homogeneous integral equation 

O"(a) = 1"" d/3 G ;(a + /3 )0"1/3). (3.6) 

Since by assumption (vi) 1 is not in the spectrum of ;g ~, (3.6) 
has only the trivial solution O"(a) = 0, which implies/(k ) = 0 
and hence by (3.3), 

y( - k) = Y:(k )Qy(k). (3.7) 

In order to derive the Schrodinger equation we apply 
the operator.J - 28, V J I Ja to Eq. (2.1) and define 

r x(a,8) = (.J - 28.VJIJa)1Jx(a,8). (3.8) 

After an integration by parts and some algebra one finds that 
rx (a) satisfies the equation 

rx(a) = r~O)(a) + Ie d/3Gx(a +/3)r)J3), (3.9) 

where 

r~)(a,8) = - 2fd8' Gx (a;8,8')8',V1Jx(O,8'). 

Consequently, if the solution 1Jx (a) is miraculous, i. e., ifit is 
such that 8,V1Jx(0,8) is independent of8, then we may define 

V(x) = - 28,V1Jx(O,8) (3.10) 

and write 

r~)(a) = V(x)Gx(a)I. 

Because (2.1) has a unique solution, comparison of (2.1) and 
(3.9) allows us to conclude that 

rx(a) = V(x)1Jx(a). 

In view of(3.8) this means that 1Jx(a,8) satisfies the partial 
differential equation 

[.J - 28·VJIJa - V(x)]1Jx(a,8) = O. (3.11 ) 

Use of (3.1) now shows that therefore Yx (k,8) satisfies the 
equation 
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[..::1 + 2ikO·V - V(x)lYx(k,O) = O. 

Finally we define 

t/;(k,O,x) = Yx (k,O )exp(ikO·x) (3.12) 

and we find that t/; satisfies the Schrodinger equation, 

(..::1 + k 2)t/; = Vt/;, (3.13) 

with the potential V defined by (3.10). 
As indicated in II it is sometimes more convenient to 

rewrite Eq. (2.1) in the form 

1lx(a,O) = IdO' g(a +x.O';O,O') 

+ I dO 'L:d/3 g(a + /3;0,0 ')1lx ([J,O '), (3.14) 

where 

and 

(3.15) 

g(a;O,O ') = - i(21T) ~ 2J~ oc dk kA *(k;O, - 0 ')e ikrz . 

(3.16) 

One then finds that if 1l x (a,O) satisfies (3.14) then 

I foo = -2 dk A (k;x,O)e - ika. 

1T -00 

Use of(3.12) and (3.1) leads to 

t/;(k,O,x) = eik().x + (00 da 1lx (a,O )eika , 
Je.x 

and hence from (3.17), 

(3.17) 

(3.18) 

lim Ixl (t/;(k,O,x) - eik(),x]e - iklxl =A (k;x,O). (3.19) 
Ixl '00 

We therefore have proved 
Theorem 3.1 (Partial Characterization): Suppose that 

A (k;O,O ')Esf'. Then Eq. (2.1), with Gx constructed from A, 
has a unique solution 17 x in L 2(R X S 2). Suppose further that 
this solution 17x(a,O) is miraculous, i. e., O·V17x(O,O) is inde
pendent of O. Then the function (3.12), given in terms of the 
Fourier transform (3.1) of 17x (a,O), satisfies the Schrodinger 
equation (3.13) with the potential V given by (3.10). Further
more, the outgoing and incoming wavesolutions are con
nected by (3.7), in which the S matrix is given by 
S = 1 - (k /21Ti)A, and the asymptotic form ofthe wavefunc
tion is given by (3.19). 

This theorem implies that the essential characterization 
of a scattering amplitude associated with a local potential is 
the miracle. However, it gives only a partial characterization 
because it does not state the properties of the associated po
tential, i. e., the class to which it belongs. It should also be 
noted that class d [property (iii)] implies that there are no 
bound states. At this time a construction procedure, in con
trast to a reconstruction procedure, for potentials that cause 
bound states is unknown. 
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4. THE GENERALIZED MARCHENKO EQUATION WITH 
BOUND STATES 

In II we removed the bound-state poles from t/;(k,O,x) by 
multiplying it by the Fredholm determinant D (k ) of the 
Lippmann~Schwinger equation. This gave rise to the pres
ence of the factor R (k ) = D ( - k )I D (k ) in the kernel of the 
generalized Marchenko equation, so that .Y':(k) in (2.2) is 
replaced by .Y!(k)R (k) = (Y": - I)R + (R - 1)1. The op
erator [<J x on L (R + X S 2) is thereby replaced by a sum of two 
terms 

the first of which is defined by a kernel just like (2.2'), except 
that A: is replaced by A :R; and the second is the tensor 
product of the unit operator on L 2(S 2) and the operator 9' on 
L 2(R+) whose kernel is 

g(a,/3) = _I_I'" dk [R(k)_11eik,a+i3I, 
21T - '" 

'9(21_ "" 1 • - '7 'CY • 

It is not difficult to generalize Lemma 2.1 for g~ll, i. e., to 
prove the compactness of !1~I, as well as to prove that,? is 
compact. One then constructs (1 - !1 x) - 1 as follows: 

(1 - .0 x) - ( = [1 - (l - .'1(21) - 1 9'~II] ~ 1 (1 _ ,0 (2)) - I, 

in which 

(1 '/."121) --I - (1 ) - .'l - - '7 1 ® 1. 

This procedure works, provided that neither?, nor 
(1 - '7) -1:'9~) have the eigenvalue 1. Unfortunately, as we 
show in Appendix B, when there are bound states '7 always 
has 1 as an eigenvalue. Therefore, though Theorem 4.1, of II 
is correct, in the presence of bound states it is not very useful. 

We therefore give here another method of dealing with 
bound states in the generalized Marchenko equation is anal
ogous to the method used in II for removing the bound states 
from S before finding the Jost function. The matter is slightly 
different here because of the need to remove them not only 
from S but from 'Yx for all x. 

Let Y~", (0), b = 1, ... ,N m' be characters of the N m -fold 
degenerate eigenvalue - K;n as defined in Sec. 5 of II. As 
shown there they can, in principle, be obtained from the for
ward scattering amplitude and its angle derivatives. Let jf'-: 
be the N m -dimensional subspace of L 2(S 2) spanned by the 
functions Y~", ( - 0 )exp(Km O·x), b = 1, ... ,Nm , with fixed m. 
(If there are I bound states then there are I such subspaces 
,J(-:, m = 1, ... ,1, but they are not necessarily disjoint.) The 
functions y~", (0 )exp(Km e·x) are the characters of the poten
tial translated by x, and they can be chosen to be real. Let B m 

= B;;, = B;", m = 1, ... ,1, be the set of projections on 
C.;; I JY':, where 

Cm=(I+B1 2KI )"'(I+Bm~1 2K
m_] ). 

Km - K] Km - Km _ ] 

(4.1) 

The operators Bm depend on x, and the requirement of self
adjointness makes this dependence complicated. 7 We then 
define the family of operators 
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ll(k)=(1 +BI~)"'(1 +B,~) k -IK I k -IK, 
(4.2) 

which, for real k, are unitary and obey the relation 

II ( - k) = II *(k). 

(By II * we mean the operator whose kernel is the complex 
conjugate of that of ll.) 

The reduced functions Ved are now defined by 

Ved(k) = II -'(k )y(k). (4.3) 

The residue ofy(k) atk = iKm being an operator whose range 
isW'-;" [see (5.8) of II], and 

JI- I [IKm] = ... (1 - Bm)C,;;- I, 

the definition of B m assures that Il-'(iKm) annihilates the 
residue of y(k) at iKm. Therefore Yred (k )&W'+. 

Corresponding to the definition (4.3) we define a re
duced S matrix 

y:ed(k) = Q [Il(k )]-lQYx(k )Il( - k), (4.4) 

so that (3.7) leads to the equation 

Yred ( - k) = (y:ed(k) )tQved(k). 

Furthermore, y:ed is unitary; it satisfies y:ed( _ k) = y:ed 
(k )*, and reciprocity, y:ed = Qy:edQ. Since 

detfl(k) = IT (k + ~Km )Nm , 
1 k-IKm 

we have , (k + iK )2Nm 
dety:ed = II . m detS. 

I k-IKm 
(4.5) 

AS a result, if S satisfies the I ,evinson theorem appropriate to 
I eigenvalues with a total of "LN m eigenfunctions, then y:ed 
satisfies the same for no eigenvalues, i. e., condition (iii) of 
Sec. 3. 

It is now straightforward to prove Lemma 4.1: Define 

G:ed(a) = _I_J'" dk [y:ed(k) _ IPQeika, 
21T-", 

and let :1:ed be the self-adjoint operator on L 2(lR+ XS2) 
whose kernel is :1:ed(a,/3;B,B ') = G :ed(a + {3,B,B 'i. Then on 
the same hypotheses as in Lemma 2.1, :1 :ed is compact, its 
square is Hilbert-Schmidt, and 3C such that for all xll:1~ 112 
<Co 

The proofwiII be given in Appendix C. 
As a result of this lemma Theorem 2.1 is applicable to 

the generalized Marchenko equation for a > 0, 

7J:cd(a) = G :ed(a)} + L" d{3 G :ed(a + {3 )7J:ed(j3). (4.6) 

Then by (4.3) 

7Jx(a) = - dke-ika[y(k) - 1] 1 Joo 
21T - oc 

= 7J:ed(a) + flx(a)} + i oo 
d{3 flx(a -{3)7J:ed(j3), 

where 

flx(a) = _I_I'" dke-ika[ll(k) -1]. 
21T - oc 

The explicit form (4.2) of II (k) allows us to conclude that 
flx(a) = ° for a >0, and for a <0, 
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(4.7) 

where Cm is given by (4.1) and 

Consequently for a> 0, 

7Jx(a) = 7J:ed (a) + 1'" d{3 flx(a -{3)7J:ed(j3), (4.8) 

while for a < 0. 

l]x(a) =flx(a)l + l"'d{3flx(a _{3)7J:ed(j3). (4.8') 

Now if we insert the Fourier transform (3.1) into the 
Schrodingerequation (A + 2ikO·V)Yx(k,0) = VYx(k,B), we 
find that fora> ° and fora < 0, l]x(O,a) must be a solution of 
the differential equation 

(A - 2 :a B·V - V(X)]7Jx(B,a) = 0, 

and it must satisfy the boundary condition across its discon
tinuity at a = 0, 

V(x) = - 2B,V[7Jx(B,0 +) -7Jx(O,O - )]. (4.9) 

Insertion of(4.8) and (4.8') in this equation leads to 

V(x) = -20.V[7]:ed(B,0+)-flx(B)]. (4.10) 

where by (4.7), 

flx(B) = -2~KmfdB'[CmBmDm](0,O')' (4.7') 

The reconstruction is now accomplished by solving 
(4.6) and using (4.10). 

On the other hand, if the existence of an underlying 
potential is not known then a construction procedure analo
gous to that of Sec. 3 is enormously complicated by the fact 
that II depends on x, and a method such as using (3.10) does 
not appear to be feasible. As a result there is at the present 
time no known construction or characterization in the pres
ence of bound states. 

5. CRITICAL REMARKS ON THE GENERALIZED GL 
EQUATION 

The method of Sec. 8 of II, based on Sec. 7, is flawed. 
The first criticism is that the function ifJ (k,B,x) defined by 
(7.1) of II is not known to be of exponential order 10,xl as a 
function of k. Eq. (7.1) leads only to the conclusion that ifJ is 
an entire analytic function of k of exponential order Ixl. 
Therefore the Povsner-Levitan representation (7.3) has to be 
replaced by 

f
ixi 

ifJ (k,B,x) = eiklJ.x - da q(x,B,a)eika , 
-Ixl 

(5.1) 

where q(x, - B, - a) = q(x,B,a). Insertion of(5.I) in the 
Schrodinger equation leads to the conclusion that q must 
have a discontinuity at a = B·x, that for a < B·x and for 
a> B·x it must satisfy the partial differential equation 

[~ -A + V(X)jq=o, aa2 

and that it must satisfy the boundary conditions 
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q(x,e,lxl - ) = 0, (5.3) 

2e·V[q(x,e,e·x + ) - q(x,e,e·x - )] = V(x). (5.4) 

We may also define the three-dimensional Fourier 
transform (7.8) of II, 

cp (k,e,x) = e'klJ.x - f d 3y eiklJ'Yh (x,y), (5.5) 

so that q(x,e,a) may be taken to be the Radon transform of 
h(x,y), 

q(x,e,a) = J d 3y b(a - e-y)h (x,y). (5.6) 

Insertion of (5.6) in (5.2)-(5.4) leads to the partial differ
ential equation for h, 

[.a y -.ax + V(x)]h(x,y) = V(xW(x-y). (5.7) 

Introduction of the variables u = i(x + y), v = x - y, leads 
to the equation 

[V(u+iv) -2Vu,Vvlh(U+iv, u-!v) = V(uW(v) 
(5.7') 

together with the requirement that 

h ( u + 1v, u - !v) = 0 for U'v < O. 

Integrating (5.7) over a sphere of radius € in v space, we 
obtain the formula for V, 

V(u)= -2Iim€d dee.vuh(u+¥e, u-¥e). 
e-D Je.u>o 

(5.8) 

It is easily seen that (5.7) used in (5.5) leads to the Schro
dinger equation for cpo 

Alternatively we may require that, for Iyl < lxi, h satisfy 
the partial differential equation 

[.a y -.ax + V(x)]h(x,y) = O. (5.7") 

If we then insert the representation 

cp (k,e,x) = e,klJ.x - J d 3y eiklJ'Yh (x,y) (5.5') 
lyl < Ixi 

in the Schrodingerequation we find that for Ixl = Iyl, h must 
be related to the potential by the formula 

V (x)b(x,y) = -2X,Vx[h(lxlx,lxIY)lxI2]. (5.9) 

The crucial question now is whether from the fact that 
the support of q(x,e,a) as a function of a lies in the interval 
lal < lxi, one may conclude that the support of h (x,y) as a 
function of y is confined to the ballly I < Ix I. As q is discontin
uous the best applicable theory of the Radon transform ap
pears to be that in distribution spaces, and the desired result 
follows, K provided that q meets the (infinitely many) moment 
conditions that for all nand all I > n, I m I <I, 

f de Y7'(e )f'x, da anq(x,e,a) = O. 
-ixi 

Whether, in fact, q satisfied these conditions is unknown; 
therefore the support question for h (x,y) cannot be regarded 
as settled. 

If the support of h (x,y) is contained in Iy I < Ix I then the 
generalized GL equation (8.4) of II is readily derived as in 
Sec. 8 of II. A generalized GL equation for q(x,e,a) then 
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'allows by a partial Radon transform. One can also readily 
ierive further generalized GL equations for nonzero "refer
.:nce potentials" as well as a generalized nonlinear GL equa
tion. What is more, if the potential is central then expansion 
of h on the basis of the spherical harmonics leads from (8.4) 
of II to the well-known radial GL equations. However, since 
the foundation of the GL method is the "triangularity" of 
h (x,y), and this support problem is still unsolved, we shall 
postpone the publication of the details of these statements 
until it is. 
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APPENDIX A 

We shall prove here Lemma 2.1 
As a preliminary we note that properties (2.5d) and 

(2.5e) imply that 

(AI) 

(A2) 

As a further preliminary we shall prove that for each 
o < a < 1 there exists a C < 00 such that 

1= f de " Ie - e " I" - 21 e ' - e " I a -, 2 < C I e - e ' 12a , 2 

(A3) 

for all e, e 'ES 2. 

We use e + e' as thez axis and e - e' as thex axis in the 
e "integration,setting(e + e ')·e" = Ie + e 'Iu,(e - e ')·e" 
= Ie - e'l(1 - U2)1I2 coscp, so that (e' - e ")2(e - e /If 
= (2 - Ie + e 'Iuf - Ie - e '1(1 - U

2
)COS

2cp, and hence 

It is easily seen that for a < 1 the integral 

fT dcp I a2 _ cos2cp 1
112a - 1 

= 2 t dt (1 _ t 2) - 1/21 a2 _ t 21 1/ 2a -, I 

)0 
is 0 (Ia l - 111/2<1 - 1/2) near a2 = 1. Since it is 
o (la2 - 111 112a - I) as a2

_00, 3C such that for all a, 

1" la2 - 11 112n ,1/2 
dA. I a2 _ cos2cp Ill2a' 1 < C -'----'----

o 'f' (l + la2 _11)112 

It follows that if a 2>b 2 then 

.c dcp (a 2 - b 2COS2cp ) 1/2a - I <C (a 2 _ b 2) l/2a 1/21 a I 

In the present instance a2 = (2 - Ie + e'lu)2, 
a2 - b 2 = (Ie + e 'I - 2uf. Therefore, 
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I<cf~ldU 1(le+e'1-2uW~II(2-le+e'lu)1 ~I. 
This integral converges for all e and e " except when e = e " 
where one easily finds that it is 0 (I e - e ' 12a ~ 2). Thus in
equality (A3) follows for a < 1. For a = 1 the argument has 
to be modified and is left to the reader. 

We next consider the following integrals: 

In (k,e,e') = f d 3xo···d 3xn ! (xo,···,xn ) 

X exp{ik [e.xo - e' ·Xn + h (XO,. .. ,xn ) n, 
where 

!(XO,. .. ,xn ) = I ' 
Ixo - xllix i - x21···lxn~ I - Xn 

h (XO,.··xn) = Ixo - xII + IXI - Xzl + ... + IXn ~ I - Xn I· 

We have the Fourier transform 

in (a,e,e') = _1_ f'" dk eikakIn (k,e,e') 
21T ~ '" 

and hence 

= if d 3xo···d 3x n 8[a + e·xo - e"Xn 

+ h (Xo, ... ,xn)WVof, 

J: 00 da lin(a,e,e') 12 = Jd3Xo ... d3Xnd3X~ ... d3x~ 
X8[e.(xo - X~) - e "(Xn - X~) 

+ h (Xo"",Xn ) - h (xb , ... ,x~ )] 

Xe.vo!(Xo"",xn)e·Vb!(xb,.··,x~ ). 

The integral fda alin 12 has a factor of[e.xb - e '.x~ + h (xb, 
... ,x~ )] < 2( Ixb I + ... + Ix~ I) in its integrand. Therefore for 
m =0,1, 

1" da am J de de ' lin (a,e,e ') IZ < cJ d3XO···d3X~ 
X IVo!(xo, ... ,xn)IIVb!(xb, ... ,x~)1 

X (Ixb I + ... + Ix~ 1 )m 

Ixo -x~ I 
If V satisfies (2.Sa) then the integrals over x 1, ... ,Xn and x; 
, ... ,x~ all converge and are uniformly bounded (with the Ixb I 
term in the numerator included). The subsequent integrals 
over Xo and xb are all of the form f d 3X d 3y I V (x) V (y) II 
Ix - YI, fd 3x d·1yl V(x)IIVV(Y)l/lx - YI, or fd 3x d 3y 
X IVV(x)IIVV(Y)l/lx - YI. The first converges by (2.Sa); the 
second and third converge by (2.Sa) and (A2). We therefore 
have for m = 0, 1 and all n > 1, 
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iOOdaamJdede' lin(a,e,e'w< 00. 

We now write 

(A4) 

- 41TA (k;e,e') = J d 3X d 3y V(x)[ (1 - GoV) ~ I ](x,y) 

xexpUk (B'.y - B·x)] 

= I A In) + Rim), 
o 
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where Go is the Green's function - eik IX~YI/41Tlx - yl, and 

A (0) = f d 3X V (x)exp (ikx·(B ' - B)], 

A (n) = J d 3X d 3y V (x)(GoV)"(x,y)exp[ik (e '.y - B·x)], 

Rim) = fd 3X d 3y V(x)[(I- GoV) ~ I(GoV)m+ I](X,y) 

xexp[ik (e '.y - e·x)]. 

We also define 

A (a;e,e') = _1_ f'" dk keikuA (k;e,e ') = fA In) + Rim ). 

21T ~ oc 0 

For n;;;:.1, A In) is of the form In and hence A In) is of the 
form in. Therefore by (A4), for m = 0, 1 and n> 1, 

fO da amtr [A In)(a)A In)t(a)] < 00 (AS) 

iL4 In)(a) is theoperatoronL 2(S2)whosekemelisA In)(a;e,B '). 

We next consider Rn: 

Rn (k,e,e') = J d 3X d 3y V I12(x)(KK n)(x,y) I V(y) 1112 

xexp[ik(e'.y - e.x)], 

where V I/Z = IV II/Zsgn V, K = IV Il/ZGoV 112, and 
K = I V 11/ZGV 1/2 = (1 - K )-IK. Therefore 

k 2trRnR! 

<cf d 3X d 'x'd 3y d 3y ' I V (x)V(X')V(y)V(y') 1112 
Ix -y'lly - y'l 

X I (KKn)(x,y) I IKKn(x',y') I. 

Since K is uniformly bounded it follows from the corollary to 
Lemma 2.1 of II that for n > 2, 

J"" 00 dk IIKK nll~ < 00. 

Therefore by Schwarz's inequality and (2.Sa), for n>2, 

(A6) 

We must also examine the derivative of Rn with respect 
tok. When the derivative acts on exp[ik (B ':y - e.x)] it simply 
brings in an additional factor of Ixl or IYI, which by (2.Sa) still 
leads to a finite result. When it acts on KK n we use 

~K=(I-K)~1 JK (I-K)~I. 
Jk Jk 

But since both (1 - K ) ~ I and JK I Jk are uniformly bounded 
operator families, we have for n>3, 

foc 2 JRn JR ~ 
dkk tr-- -- < 00, 

~ 00 Jk Jk 
and hence 

as well as by (A6), 
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l°OdaatrRnR~ < 00. (A7) 

Now the operator :!J x on L 2(lR+ XS1) is such that by 
(2.2'), 

II [§I x Iii = 100 

da 100 

d{J f d8 dB' I Gx (a + {J;8,8'W 

= (21T) - 21°Oda atvt(a)A !(a) 

by integration by parts. Ifwe write A = A (0) + A' and corre
spondingly for :!J x' then (A5) and (A 7) imply that 

11:!J~111<C< 00. (A8) 

What is more, since A x is the scattering amplitude of a poten
tial that is translated by x, and the constant C in (2.5a) and 
the functions M, and Ml in (2.5b) and (2.Sc) are unchanged 
by such a translation, the constant C in (A8) is independent 
ofx. 

We must now separately consider A (0). 

G ~)(a;8,8 ') 

= - i(21T) - 2 f'" 00 dk keika A 1°)(k;f},f} ') 

= ~ ~fd3y V(y +x)t5[a + (B' - B)·y) 
81T Ja 

= 8~ IB-B'I- 2Jd 3y [(8'-8).Vy V(y+x)] 

xt5[a + (8' - 8).y). 

Therefore by (2.Sc), 

\ G ~)(a;B,f}') 1 

,;;; 81T2(8 ~ B ')2 f d 2Y1M2[ (IYl 12 + 

= I rOO~2M[(t2+ 
81T(B - B 'f Jo z 

= 41T(B ~ B ')2 FZ( If) ~'8 '1 ). 

where a' = la - 21xol - 21xll and Fis defined by (2.Se). 
Since Fis monotone, by (2.Se), 

I G ~)(a;B,8 ') I 
,;;;_1 F(Ja')( a' )EF( a' )a'-EIB_B'IE-2 

41T Z 18-8'1 18-8'1 
,;;;CF( !a') a' -<18 - B'I<-2. (A9) 

Now write 

B (a,{J;8,8 ') = 100 
dy f d8 "G ~I(a + y;B,8 ") 

G ~1(/3 + y;B ",B '). 

Then by (A3) and (A9) 

I B (a,{J;B,B ') I ,;;;CF 1/2( !a) F 1 12( !f3) a - 1/2<{J - 112< 
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x f dB " 18 - 8 " IE - Zl8 ' - 8 " I E- 2 

Therefore, by (2.Se) 

f" da d{J f dB dB' I B (a,{J;B,B') 12 

<C[f"dSS fFUs) rfdBd8' IB-8'14E 4 

The last integral is of the form f'_ 1 du (I - U)2E' 2, which 
converges for € > l' The first integral converges for ~ < € < 1, 
by (2.Se). Thus if ~ < € < 1 both converge, and 

II ,"l~)1211~ = r~ da (00 d{J liB (a,{J )II~';;;C < 00 (AIO) 
Jo Jo 

for all x. 
One also readily proves by means of(A9), (A3), and 

(2.Se) that [§I~) is a bounded (uniformly in xl operator. Now 

(AS) implies that II [§I'; liz';;; II [§I ~ II~ ,;;;C < 00, and II [§I~).'1 ~ 112 
,;;;II[§I~IIIII :!J~ Ilz';;;C < 00. Therefore II:!J~ Ib,;;;C < 00 and,~ x 

is boundea. Since it is self-adjoint iffollows that it is compact. 

APPENDIX B 

It is instructive to solve the scalar Hilbert problem by 
the same method used to solve (3.7). We are to find a function 
D (k ) that is the boundary value of an analytic function holo
morphic in 9 C + , and such that there 

lim D(k) = 1, (Bl) 
II..I "X 

and such that 

D ( - k) = R (k )D (k ), (B2) 

whereR (k) is continuous, R ( - k) = R *(k) = I/R (k) and 
IR (k) - IIEL 2( - 00,(0). We shall call asolution of(B2) with 
the required analyticity a I-solution if it satisfies (B 1), and a 
O-solution if D + 1 satisfies (B 1). 

Defining 

1 f" . 1](a) = - dk e - ,ka[D (k) - 1 J 
21T _ x 

1 J"" = - dkeika[D(_k)_I], 
21T .", (B3) 

we conclude that for a < 0 we must have 1](a) = 0, and for 
a> 0 the function 1](a) must satisfy the Marchenko-like 
equation 

1](a) = g(a) + {X d{J g(a + {J )1](/3), 
Jo 

where 

g(a) = g*(a) = _1_ foo dk [R (k ) - 1] ei'''. 
21T - 00 

(B4) 

Does (B2) always have a I-solution? Ifso, is it unique? Is a 1-
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solution of (B2) always the one-sided inverse Fourier 
transform 

D (k ) = 1 + f'" da eika7J(a) (BS) 

of the (unique?) solution of (B4)? If (B2) has no I-solution, 
does (B4) have no solution? 

In this case the problem can be solved by quadrature. If 
we define 0 = ipnR so that 0-0 as k- 00, then the explicit 
solution for Imk > 0 is well known to be 

D (k) = [~( 1 - :~ ) ]exp [ ~ f: co dk' kO~ ~ ,], (B6) 

where the k n are the zeros of Din C+, whose number N is 
fixed by the Levinson theorem, 

8(0) = rrN. (B7) 

N is called the index. 
Case 1: Suppose that N = O. Then (B6) implies that (B2) 

has a unique I-solution. Assume that (B4) has more than one 
solution. Then the homogeneous form of (B4) must have a 
nontrivial solution: 

(B8) 

and the self-adjoint operatoryr on L 2(R +) whose kernel is 
g(a,p) = g(a + P) must have the eigenvalue 1. In order for 
(B4) nonetheless to have a solution it is necessary for t to be 
orthogonal to the inomogeneity g(a): 

LX da g(a)t (a) = 0. 

By (B8) this equation is identical to the requirement that 
t (0) = 0, or that its one-sided inverse Fourier transform 

h (k) = L""da eikat(a) (B9) 

have the property 

f: x dk h (k ) = ° (BlO) 

Now multiply (B8) by t (a) and integrate: 

IX da t 2(a) = 1= da 100 

dP t (j3 )g(a + P)t (a). 

In the Fourier-transform language this reads 

f"",.cdk Ih(kW= f~oodkh2(k)[R(k)-I] = J:oodkh
2
R, 

because of the analyticity of h in C + and the fact that it 
vanishes as Ik 1-00. Therefore 0 = S~ oc dk h (h * - Rh) 
= Sdk (h * - Rh)(h - R *h *) + [Sdk h (Rh - h *)]" and 

hence, Sdk Ih * - Rh 12 = O. Consequently, 
h ( - k ) = R (k )h (k ). Thus h is a O-solution of(B2). But since 
for N = 0 the I-solution of (B2) is unique, it follows that 
h = 0 and hence t = O. Thus for N = 0, 1 cannot be in the 
spectrum of the operator yr, i. e., (I - 9') is invertable. 

An argument similar to the one given above shows that 
'7 cannot have eigenvalues whose squares are larger than 
one. Therefore, unless '7 has the eigenvalue - 1, the Neu
mann series for (I - '?) - I converges. 
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Case 2: Suppose now that N > O. Then we know that the 
I-solution of(B2) is not unique. Let/l and/2 be two solutions 
that differ by the location of one of their zeros: 

II(ko) =/2(k~) = 0. 

Then by (B6) 

II = k 2 _k 2 

12 k 2 - k 'G 
and the difference 

L1 = II -12 = 12 (k '6 - k 6 )/ (k 2 - k '6 ) (B 11) 

is a O-solution of(B2). Thus its Fourier transform must solve 
(B8), and (BID) follows from (BII) by Cauchy's theorem. 
Thus the existence of a nontrivial solution of (B8) still allows 
the existence of solutions of(B4) that lead to the I-solutions 
of(B2). Thus if N > 0 then 9' must have the eigenvalue 1, but 
(B4) is nevertheless solvable. 

Case 3: If N < 0 then there are no I-solutions of(B2). All 
solutions of (B2) that are merorphic in C+ and tend to 1 as 
Ik 1-00 must have - N poles there. Suppose then that (B4) 
nevertheless has a solution. Then its one-sided inverse Four
ier transform (B5) is such that 

E (k ) = D ( - k ) - R (k )D (k ) 

is a O-solution of the equation 

E ( - k) = R *(k )E (k ). 

(BI2) 

(BI3) 

If E = 0 then D is a I-solution of (B2), which cannot exist; 
hence E cannot vanish identically. Its Fourier transform 
must therefore be a nontrivial solution of the integral 
equation 

t(a) = - Loo dpg( - a -p)t(j3) (BI4) 

for a > O. Thus the operator .'?' on L 2(1R+) whose kernel is 
{/(a,p) = g( - a - P) must have the eigenvalue - 1. 

We also note that if N < 0 then the index of R * is posi
tive. Hence the problem 

liD ( - k) = R *(k)[ lID(k)] (BIS) 

has a nonunique I-solution and the operator r/ must have 
the eigenvalue 1. We conclude that if N < 0 then'7' must have 
both I and - 1 as eigenvalues. 

We may use the same argument as for case 3, for case 2, 
where the index of R * is negative. Thus when N> 0, 9' must 
have - I as an eigenvalue as well. When N = 0 then the 
index of R * is also zero, and (J1. - 9") must be invertible too. 

Thus when N = 0, 1 is not in the spectra of either '7 or 
y'!; when N> 0, both I and - 1 are in the spectrum of ,'7; 
when N < 0, both 1 and - I are in the spectrum of~/. 

It is noteworthy that the eigenvalues ± I of'7 or,?' have 
such a remarkable stability under what may appear to be 
rather general kinds of perturbations of the function R (k). If 
IN I has given large integral value then it takes a "large 
change" in 8 (k ) to remove 1 or - 1 from the spectrum of 9' er 
9". We note, on the other hand, that some large changes in 
8 (k ) are small, in reasonable norms, for 
R (k) = exp[ - 2i8 (k )]. In other words, the mappings from 
the operators '7 and,?' to the phase 8 (k) are not continuous, 
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and small changes in R that remove I or - I from the spec
trum of f? or f?' appear as large changes in /). 

APPENDIXC 

Here we shall prove Lemma 4.1. 
It follows from (4.2) that" (k) may be decomposed as 

"(k)=l+k-I"o+"'(k), (CI) 

where "0 is constant, II"olb < 00, and for all 
kER,II" '(k )112 < 00 as well as 

11"'(k)11z = O(k -2) (C2) 

as k--.. + 00. Furthermore, lid" '(k )ldk 112 < 00 and 

Ildll'(k )/dk 112 = O(k -3), (C3) 

so that 

J~ 00 dk (k 2 + I lIl" '(k )II~ < 00, (C4) 

J~ 00 dk (k 2 + l)lld"'(k) / dk II~ < 00. (CS) 

What is more 

J: oc dk 11"(k) - lll~ < 00 (C6) 

and 

f" 00 dk Ild"(k)ldk II~ < 00. 

Since Y x = 1 + (ik /21T)A x' we may decompose 

y,:ed _ 1 = (ik /21T)Ax + D + E + H, 

where I I 

D(k) = QiI( - k)QIl( - k) -1, 

E (k) = ( - i121T) [Q"oQAx(k) + Ax(k )Ilo] 

H (k) = (i/21T) [QiI '( - k )QAx (k)(kl - "0) 

+ Q(kl- iIo)QAx(k )"'( - k)] 

+ QlI( - k )QAx(k )Il'( - k). 

By (C6) and (C7) 

J~ co dk liD (k )II~ < 00, 

J~ 00 dk IldD (k )ldk II~ < 00. 

One easily finds that 

J~ 00 dk IIAx(k )II~ < 00, 
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(C7) 

(C8) 

(C9) 

(CIO) 

(Cll) 

as well as 

Jdk IldAx(k )ldk II~ < 00, 

and therefore 

(CI2) 

J: = dk liE (k )II~ < 00, f" 00 dk IldE (k )ldk II~ < 00. 

(CI3) 

Similarly, it follows from (C4), (CS), (Cll), and (CI2) that 

Ioc x dk IIH (k lIl~ < 00, J: x dk IldH (k )ldk II~ < 00. 

(CI4) 

As a result, if we write F = D + E + H, 

j'"' 00 dk IIF(k )II~ < 00, J: 00 dk IldF(k )ldk II; < 00. 

(CIS) 

Therefore, if Y is the operator onL 2(R+ XS 2) whose kernel 
is ,7(a,8,/3,8 ') = (~1T)S: 00 dk eikl<X + f3 IF (k,8, - 8 ') = 

F(a + /3,8, - 8 '), then 11,711~ = Se;" da aIIF(a)ll; <C < 00 by 
(CIS); furthermore, C is independent of x. Together with 
Lemma 2.1 this proves Lemma 4.1. 

'R. G. Newton, 1. Math Phys. 21,1698(1980). This paper will be referred to 
a~ II. 

'Another solution has been given by L. D. Faddeev, Itogi Nauk. Tekh. SOy. 
Probl. Mat. 3,93 (1974) [1. SOy. Math. 5, 334(19761]· 

'We remind the reader that x is a point in R'; e is a point on S' (or a unit 
vector in R'I; A (k;e,e ') is the scattering amplitude, which we regard as the 
kernel of an operator family A (k ) on L 'IS 'I. We use t for the Hermitian 
adjoint and • for the complex conjugate. 

411.11, denotes the Hilbert-Schmidt norm, IIA II~ = tr A tA, where tr denotes 

the trace on L '(1R c X S 'I· 
'These are (3.4) and (3.6) of II. 
('It also follows that if V' = I then Qf'x(k )p(k 1 = vp( - k I; this leads to 

Lemma 6.1 of II. 
7If Ex is theoperatoronL 2(S')ofmultiplication by exp( - KmX·e) andB 0 is 
the projection on di4, then E xBuE, is a projection on ,r~ but it is not 

self-adjoint. 

"D. Ludwig, Commun. Pure Appl. Math. 19, 49(1966), Theorem 4.9, p. 60. 
'Ie e is the upper half of the complex plane. 
"'See, for example, R. G. Newton, Scattering Theory of Waves and Particles 

(McGraw-Hili, New York, 19661, p. 348. 
"The tilde denotes the operator whose kernel is the transpose. 
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A new direct proof of the expansion of a Coulomb-distorted plane wave in 
Coulomb-distorted spherical waves 

Masao Furukawa 
National Space Development Agency of Japan, Tokyo, 105, Japan 

(Received 20 February 1981; accepted for publication 22 May 1981) 

By employing specific properties of confluent hypergeometric functions, it has been directly 
proved that a Coulomb-distorted plane wave is expressible in superposition of Coulomb-distorted 
spherical waves. 

PACS numbers: 03.65.Nk, 24.1O.Fr, 02.30. - f 

F(a,y;z) = eZF(y - a,y; - z), (4) It is well known that a Coulomb-distorted plane wave 
e'kzF ( - i1], 1 ;ik (r - z)) can be expanded in Coulomb-dis
torted spherical wavesX/(1],kr)PI(cosO) (I = 0,1,2, ... ) in the 
following form 1,2: 

d I ala + 1) .. ·(a + 1- 1) 
-I F(a,y;z) = F(a + I,y + I;z). (5) 
dz y(y+l) ... (y+l-l) 

e'kZF( - i1], l;ik (r - z)) = f (21 + l)ilXI (1],kr)PI (cosO ). (1) 
I~O 

Here rand 0 denote the spherical polar coordinates with 

In order to demonstrate Eq. (1), it is convenient to em
ploy new variables defined asp = kr and t = cosO. The prob
lem is thereby attributed to determination of a coefficient, 
al( pI, in the following series: 

e'PtF( - i1],l,ip(l- t)) = fal(p)PI(t). (6) 
I~O 

z = rcosO, k the wavenumber, 1] the Coulomb parameter, 
and PI (cosO ) the Legendre polynomial ofthe I th order, while 
X/(1],kr) represents a Coulomb function of the first kind de
fined by 

r (l + 1 + i1]) (2kr)le'kr 
X/(1],kr) = F(1 + i1]) (21 + I)! 

Multiplying PI(t) on both sides of Eq. (6) and integrating 
over a range of - 1 to 1, one obtains a basic expression to be 
calculated, 

XF(l + 1 + i1],21 + 2; - 2ikr). (2) 

An expression equivalent to Eq. (1) was first found by 
Gordon,3 Mott,4 and Temple5 in the process of obtaining the 
Rutherford formula in wave mechanics. Their approach is, 
therefore, not so straightforward from the angle of demon
strating Eq. (1), and seems rather complicated. In this paper, 
a more direct proof of Eq. (1) will be presented by using the 
following properties of confluent hypergeometric functions: 

al(p)= 2/+1 II e,ptF(-i1],I;ip(l-t))P/(t)dt. (7) 
2 -I 

Applying Eq. (4), one has 

ailp)= 2/+ 1 II e'PF(1 +i1],I;ip(t-l))P/(t)dt 
2 _I 

21 + 1 . II [ d I ] = --e'P -F(l +i1],l;ip(t- 1)) 
2/+1l! -I dt l 

~ ala + 1) .. ·(a + m - 1) zm 
F(a,y;z) = 1 + £... -, 

m ~ I y(y + 1) ... (y + m - 1) m! 
(3) 

x (1 - t 2)1 dt. 

Because ofEq. (5). Eq. (8) is transformed into 

al(p) = 2/+ 1 e,p(ipf (1 +i1])(2+i1])"'(/+i1])II F(l+ 1 + i'YI 1+ 1-i:p(t-l))(I-t2)ldt 
2/+1l! I! -I '1" 

= 1-:- 2 ~11] e'P(ip)1 F(/+l+i1]'/+I;ip(t-l))(I-t 2)/dt. 
21 1 r(1 + 1 .) II 

2 + (l!) r(1 +11]) -I 
By using Eq. (3), the integration in Eq. (9) is carried out as follows: r IF (! + 1 + i1],1 + l;ip(t - 1))(1 - t 2)1 dt 

=II (l-t 2)ldt+ f (/+ 1 +i1])(/+2+i1]) ... (/+m+i1]) (_ip)m II (l-tnl-t2)/dt 
- 1 m ~ I (/ + 1)(1 + 2) .. ·(1 + m) m!_1 

=22/+1 l!l! + f (l+I+i1])(l+2+i1]) ... (/+m+i1]) (_ip)m 221+m+1 (l+m)!l! 
(2/+ I)! m~1 (/+l)(/+2) ... (/+m) m! (2/+m+l)! 

= 221 + 1 (I W [1 + f (I + 1 + i1])(1 + 2 + ;1]) ... (1 + m + i1]) ( - 2ip)m ] 
(21 + I)! m ~ I (21 + 2)(21 + 3) ... (21 + m + 1) m! 

22/+ 1(/!)2 
(21 + I)! F(I + 1 + i1],21 + 2; - 2ip). 
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Hence Eq. (9) is reduced to 

a ( ) = (2/ + 1);1 r(l + 1+ iq) -,( ...... 2p-,-)I_ei
P
_ F (1 + I + i'Y/,21 + 2; - 2ip) = (21 + l)i~I('Y/,p), 

1 P r(1 + i'Y/) (21 + 1)1 
(II) 

Substitution of Eq. (II) into Eq. (6) yields 

eip'F( - i'Y/,I;ip(l- t)) = ! (21 + l)i~I('Y/,p)PI(t). (12) 
I~O 

Thus Eq. (I) has been proved directly. 

'K. Adler et al., "Study of Nuclear Structure by Electromagnetic Excita-
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tion with Accelerated Ions," Rev. Mod. Phys. 28(4), 432-542 (1956). 
2 A. Sommerfeld, "Uber die Beugung und Bremsung der Elektronen." Ann. 
Physik (Leipzig) 11, 257-330 (1931). 

'W. Gordon. "Uber den Stosszweier Punktladungen nach der Wellen me
chanick," Z. Phys. 48,180-191 (1928). 

4N. F. Mott, "The Solution of the Wave Equation for the Scattering of 
Particles by a Coulombian Center of Force," Proc. R. Soc. London 118, 
542-9 (1928). 
~G. Temple, "The Scattering Power of a Bare Nucleus According to Wave 
Mechanics," Proc. R. Soc. London, 121,673-5 (1928). 
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I. INTRODUCTION 

In recent years, System Theory has arisen as a math
ematically oriented discipline, attempting to provide unified 
methodology for diverse branches of engineering and phys
ics, and perhaps playing the role in technology that math
ematical physics has historically played in physics and 
chemistry. Mathematics has a strong role to play here, as, of 
course, it has in mathematical physics. Existing mathemat
ics must be adapted to the problems, and information about 
the applications must be fed back to stimulate the develop
ment of new mathematics. As in physics, geometry (differen
tial and algebraic) and Lie theory has played an increasing 
role in System Theory in recent years. 

In Ref. 1, Martin and I were led to the introduction of 
certain concepts of algebraic geometry and complex mani
fold theory for the study of the finite dimensional linear, 
time-invariant, input-output systems. This work has been 
carried considerably further in the work of Byrnes and Dun
can.2 The purpose of this paper is to extend the study of the 
relations with algebraic geometry to other systems, particu
larly those of transmission line theory3 and related "distrib
uted parameter systems." What might be of interest to the 
wider mathematical physics community is that scattering 
problems can be treated with a related geometric formalism. 

II. THE FREQUENCY VARIETY OF FINITE
DIMENSIONAL, LINEAR, TIME-INVARIANT INPUT
OUTPUT SYSTEMS 

Let us briefly recall the situation of Ref. 1. Let U, Y, X 
be finite-dimensional vector spaces, over the complex num
bers as field of scalars. Let 

L(U,Y) 

be the vector space of linear maps: U----. Y. Suppose we are 
given a triple 

(A,B,C), 

with 

AEL (X,x), BEL (U,X), CEL (X,Y). 

Construct the input-output system 

dx 
- =Ax+Bu, y=Cx. 
dt 

(2.1) 

·'Supported by a grant from the Ames Research Center (NASA), #NSG-
2402. the U.S. Army Research Office, #ILIG1I02RHN7-05 MATH, 
and the National Science Foundation. 

Thefrequency response determines the solution of Eqs. 
(2.1), which are eigenvalues of the operator d / dt. Algebra
ically, it is determined by 

T(s)=C(s-A)-IB. (2.2) 

a rational map ofC---.L (U, Y) (in classical matrix language, a 
matrix of rational functions of the complex variable s.) 

In Ref. 1, an algebraic variety was assigned to the sys
tem (2.1) and the frequency response function (2.2) in the 
following way: Let 

W=UEBY (2.3) 

be the direct sum of the input and output spaces, 

n =dimU (2.4) 

Let G "( W) be the Grassmann manifold4 of n-dimensional 
linear subspace of the vector space W. 

Define a mapping 

(2.5) 

of the complex numbers (parameterized by the complex vari
able s) into G n( W) as follows: 

y(s) = ! (u,T(S)U):UEU). (2.6) 

y(s) is essentially the graph of T (s). It is shown in Ref. 1 that y 
can also be defined at the poles of T, Le., the eigenvalues of A, 
so as to be an analytic map ofC---.G "(WI. Further, y can be 
extended holomorphically to s = 00, to obtain a holomor
phic mapping of the extended complex plane [which we de
note as Pdq, since it is isomorphic to the complex projective 
space of one-dimensional linear subs paces of C2

] into 
G "( WI. The image under r is a rational algebraic curve in 
G"( WI. In this paper it will be called thefrequency variety of 
the system. The natural algebrogeometric invariants of the 
curve then turn out to be the natural system theoretic invar
iants of the system (2.1). 

III. THE FREQUENCY VARIETY OF LINEAR, TIME
INVARIANT FILTERS 

Let U and Y continue as finite-dimensional complex 
vector spaces. A (linear, time-invariant filter) is an integral 
operator transforming time-parameterized curves in U into 
curves of Y, of the following form: 

y(t)= LK(t-7)U(7) d7 (3.1) 

Here, t-~K (t) is a curve in L (U,Y). 
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The symbol of the filter is the Laplace transform 

o"(s) = 100 

e -"K (t) dt (3.2) 

of the kernel of the integral operator. For the filters com
monly encountered in engineering, this symbol will be ini
tially defined by (3.3) as a hoi om orphic function in a region S 
of the complex s plane, and then may be analytically contin
ued. Let us adopt the Grassmannian approach of Ref. 1 to 
the situation. 

Again, let 

W=UffiY 
G n( W) = Grassmann manifold of n-dimensional linear sub
spaces of W. Set 

y(s) = [(u,O"(S)U:UEU ]. (3.3) 

s~y(s) then is a holomorphic mapping of S into G n( WI. 
Definition: The algebraic closure of the set y(S) in 

G n( W), i.e., the smallest algebraic subvarietl·5 of G n( W) 
containing y(S), is called thefrequency variety of the filter. 

Remark: It is a basic property of algebraic varieties4 .5 

that the set of algebraic subvarieties is closed under intersec
tion (equivalent to the Hilbert basis theorem) which assures 
us that the "frequency variety" is a well-defined concept. 

One can now refer to a table of Laplace transforms to 
have an idea of the possible diversity of frequency varieties. 

A more general possibility is to define the "frequency 
variety" as the analytic closure of y(S), i. e., as the smallest 
analytic subvariety5 of G n( W) containing y(S). 

IV. ALGEBRAIC AND ANALYTIC VARIETIES 
ASSOCIATED WITH ONE-DIMENSIONAL WAVE 
EQUATIONS AND BOUNDARY VALUES 

Let Wbe a finite dimensional complex vector space and 
let x and t be two real variables (physically, space and time). 
Consider a linear partial differential equation of the follow
ing form: 

w, = A (x)wx + B (x)w, 
(4.1) 

(x,t )~A (x), B (x) 

are assumed to be (for simplicity) real analytic maps: 

R~L(W,W). 

Solutions (x,t )~w(x,t) to (4.1) are to be real analytic maps: 
R 2~W. Subscripts denote partial derivatives: 

aw aw 
w

x
= ax =axw, w,= ar =atw. (4.2) 

The system of differential equations (4.2) is time-trans
lation invariant, i.e., if 

(x,t )~w(x,t) 

isa solution, so isa,w. Let us look for eigenvalues of at on the 
space of solutions with eigenvalues s. They are solutions of 
the following system of ordinary differential equations, with 
s as parameter: 

2204 

w(x,t) = et'w(x,s), 

siiJ = AiiJx + BiiJ. 
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(4.3) 

(4.4) 

For fixed s, (4.4) will be a system oflinear, ordinary differen
tial equations. Let us assume (for simplicity) that the space of 
solutions (analytic in x) forms an n-dimensional complex 
vector space, denoted as 

,9'(s). 

Let Ybe another complex vector space with 

C:W~Y 

a linear map. Let G (Y) be the Grassmann space of Y consist
ing of all linear subspaces of Y. G (Y) is acted on by GL (Y). 
The orbits are, of course, the Grassmann manifolds G n( Y) of 
subspaces of fixed dimension. 

For two values of x, say 

x = a, x = b, (4.5) 

let y(s) be the following linear subspace of Y ffi Y 

y(s) = (C (iiJ(a)),C (w(b ))):iiJEY(S). (4.6) 

This determines a map y from certain regions S of the 
complex plane to G (Y ffi Y). We will now define the analytic 
frequency variety of the boundary value system as the small
est analytic subvariety5 of G (Y Ell Y) containing y(S). Of 
course, this is not, at this stage, completely meaningful as a 
definition, since it is not clear that the definition of "analytic 
variety" can be extended from the Grassmann manifolds to 
these more general spaces. The study of this point will be put 
off until more examples are available as data. 

V. AN ILLUSTRATIVE LINEAR WAVE SYSTEM 

To provide a class of examples, let us specialize the sys
tem (4.1) to one of the following form: 

w, =Awx ' 

w here A is a linear map: W ~ W such that 

A 2 = 1. 

(5.1) 

(5.2) 

[(5.1) is thus a constant coefficient wave equation.] Thus, the 
equation determining Y(s) is the following: 

Wx =sAw 

or 

w(x,s) = exp(sxA )wo> 

where w is an element of W. 

(5.3) 

(5.4) 

Now, in view of our assumptions (5.2) about the alge
braic property of A, we can calculate exp(sxA ) explicitly: 

exp(sxA ) = cosh(sx) + sinh(sx)A (5.5) 

Hence, 

,J" (s) = set of curves in W of the form 

x~cosh(sx) + sinh(sx)Aw, 

where w runs through W. 
Thus, 

y(s) = [(w(a),w(b )):s-+w(s) in ,9'(s)] 

= \ (cosh(as)wo + sinh(as)Awo' 

cosh(bs)wo + sinh(bs)Awo)] ' 

(5.6) 

(5.7) 

where Wo runs through W. y(s) is thus an n-dimensional lin
ear subspace of WEll W. The algebraic and analytical closure 
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ofy(S) is readily calculated, using the algebraic relations sat
isfied by the cosh and sinh functions. 

In particular, note what happens if 

b>O, a = - b: 

(w( - b ),w(b )) 
= (cosh(bs)wo - sinh(bs)Awwcosh(bs)wo 

+ sinh(bs)Awo) 
= cosh(bs)(wo - tanh(bs)awo,wo + tanh(bs)Awo) 
= cosh(bs)(wo,(l + tanh(bs)A ]1[1 - tanh(bs)A ] - wo)· 

(5.8) 

This proves: 

Theorem S.l:y(s) is the graph of the linear map: 

[1 + tanh(bs)A ]/[1 - tanh(bs)A J: W- W. (5.9) 

We can now establish a relation to scattering theory: Set 

s = ik, kER.. (5.10) 

Set 

s(k) = [1 + tanh(ikb )A J/[1 - tanh(ikb )A ]. 

S (k ) is the scattering operator of the system. If W = (;2, with 
A a real, symmetric matrix, note that S (k ) is unitary. Note 
that it is a Cayley transform of a real symmetric matrix. 

This parameterization of y(ik ) as the graph of a unitary 
matrix is the "scattering picture" in classical circuit theory 
(see Ref. 3, Chap. 3). This suggests a geometric description of 
"scattering theory" for more general nonconstant coeffi
cient systems. 

VI. SCATTERING THEORY 

Return to the general, nonconstant coefficient one-di
mensional transmission line-wave equation: 

w, = A (x)wx + B (x)w. (6.1) 

For SEJ, let .9'(s) be the space of solutions of the equation: 

sw = A (x)wx + B (x)w. (6.2) 

Let Ybe another vector space with 

C:W->Y 

a linear map. Let b be a positive real number, and consider x 
over the interval 

- b<,x<,b. 

Let 

s->y(s,b )EG(YEll Y) 

be the boundary value map constructed in Sec. IV, i.e., y(s) is 
the space of vectors of the form 

(Cw( - b ),CW( - a)), (6.3) 

where w runs over .7'(s), i.e., the solutions of (6.2). 
Now, we are prepared to define the scattering curve 

S->y(S)EG(YEll Y) 

(heuristically) as 

y(s) = lim y(s,b ). 
b ""00 

(6.4) 

y is called the scattering curve, and its algebraic or analytic 
closure is the scattering variety. 
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Of course, in the physics literature one finds scattering 
defined in terms of matrices. 

Let 

s->y(s,b ). 

Now, various subsets of the Grassmann spaces are parame
trized by matrices. 

For examnle, one might have a linear map 
S(b,s):Y->Y 

such that 

y(s,b) = t ( y,S (b,s)y): yE Y 1 
i.e., y(s,b) is the graph ofy. One might try to define "scatter
ing matrix" as 

Sis) = lim S (b,s). (6.5) 
h ." 

This limit is a curve in the Grassmannian G "( WEll W). The 
scattering operator would, of course, then be defined as a 
curve 

S->S(s). 

in L (W, W), such that 

y(s, (0) = graph of S. 

Of course, discussing the rigorous conditions for the 
existence of these limits requires analytic technique, some of 
which can be developed with known methods, which will be 
considered in a later paper in this series. 

We now turn to the relation between the formalism and 
the usual description of I-D scattering for the inhomoge
neous wave equation. 

VII. SCATTERING THEORY FOR THE 1-0 WAVE 
EQUATIONS6 

Specialize now to the case 

W=(;2. 

Let us put the following wave equation, 

Yl/ = Yxx - v (x)y, 

into "system"form. Factor the wave operator: 

Then, (7.1) takes the form 

lv, - Yx), + lv, - Yx)x = Vy. 

Put 

z=y, -yx. 

Then, 

z,+zx=Vy. 

Now, write (7.4)-(7.5) as an "evolution" system: 

y,=yx+z, z,=Vy-zx' 

In matrix form, 

(7.1) 

(7.2) 

(7.3) 

(7.4) 

(7.5) 

(7.6) 

Look for solutions of(7.7) that are eigenvectors of a/at 
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with eigenvalue ik, with k real. Thus, 

(Y) = eik(~(X,k)) 
z z(x,k) 

ik(;) = (~: ~ J(~x + (_ ~(X), ~) (~,(7.8) 
where y, i are functions of x and k. 

Now, set up boundary conditionsatx = ± a. Let Ya(k) 
be the two-dimensional linear subspace of C2 ttl C2 generated 
by the boundary values of the solutions Y(k ) of (7.8) at 
X= ±a: 

yu(k) = {~i = ::~ D ttl ~i::~ D YEY(k)}. 

Rewrite (7.8) as follows: 

A ~ (Y\ = (ik' I )( y) 
ax i) - V(x), ik k' 

A = (1, 0) 
0, - 1 . 

Note that 

A ( ik, 
- V, 

Hence, (7.9) takes the form 

1) = (ik, 
ik V, 

- 1) 
-ik . 

(7.9) 

(7.10) 

(7.11) 

(7.12) 

Let (x,k,a)-g(x,k,a) be the map from R 3 to the 2X2 
matrix group GL(2,Cl such that 

ag (ik' I) (7.13) 
ax = - V(x), -ik g, 

g( - a,k,a) = 1. (7.14) 

Since 

( 
ik, 

tr _ V, 1 ) _ ° -ik - , 

g is a map from R 3 to SL(2,C), the group of determinant one 
real 2 X 2 matrices. If V = 0, notice that g lies in a compact 
subgroup ofSL(2,C). Thus, if 

x-(~ (x,k) 

belongs to .!/'(k ), then 

(~>x,k ) = g(x,k,a{ ~( - a,k ) . (7.15) 

Thus, we see that we have proved 
Theorem 7.1: Let G 2(C4

) be the Grassmann manifold of 
two-dimensional linear subspace ofC4

. Then, (ik,a) (as de
fined in Sec. VI) is the linear subspace 

Hw,g(a,k,a)w):wEC2 j. (7.16) 

The scattering matrix S (k ) is then defined as follows: 

limg(a,k,a) = S(k). (7.17) 

We can, of course, write the usual Volterra integral 
equation for the function 
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g(x,k, 00) = limg(x,k,a): 

a ) = (ik, 
x(g ° , 

Hence 

a ."" 

1) (0, 
-ik g+ - V, 

g(x,k,a) = 1 + fuexp((X - u{~: _lik)) 

( 0, 0) 
- _ V(u), ° g(u,k,a) du, 

g(x,k,oo) = 1 + f ~ exp((x - u{;' _lik )) 

( 0, 0) 
- _ V(u), ° g(u,k,oo) duo 

(7,18) 

(7.19) 

(7.20) 

From this, the scattering matrix itself may be obtained from 
(7.17). 

Remark: This general 2-vector formalism is not neces
sarily the optimal one for this example. One can follow Fa
deev's formalisms better by introducing an "output" space 

y=c 
with 

C:w-y 
given by 

C(~)=y. 
Of course, the case 

C2 = W = y, C = identity, 

is essentially that described exhaustively by Ablowitz, 
Kaup, Newell, and Segur,7 

VIII. FINAL REMARKS 

The preceding example, when viewed in terms of this 
geometric-systems formulation, suggests many directions of 
generalization. Note the role played by the orbit structure 
and its closure of the action of various linear groups on 
Grassmannians. For example, in Sec. VII we dealt with 
G 2(C4

), with the usual transitive action of GL(4,C), 
GL(2,C)X GL(2,C) is a subgroup, A subgroup of this is the 
group G = 1 X SL(2,C). Basically, we are dealing with the 
orbit of this group and its closure. Of course, the usual "uni
tarity" of the S-matrix7 has something to do with the action 
of the 1 X SU(2,CJ subgroup. A Lie-group theorist will see 
obvious possibilities of extending the formalism to more 
complicated systems and Lie groups. 

Another source of fruitful speculation might be analo
gies between "inverse scattering" and the "identification
filtering" problem of system theory.9 

1R. Hermann and C. Martin, SIAM J. Control Optim. 16.743-755 f.l978). 
2c. Byrnes and T. Duncan, "On certain topological invariants in system 
theory." in New Directions in Applied Mathematics, edited by P. Hilton and 
G. Young (Springer-Vergag, Berlin) to be published. 

'R. Newcomb, Linear Multipart Synthesis (McGraw-Hill. New York. 
1966). 
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1966). 
4P. Griffiths and 1. Harris, Principles of Algebraic Geometry (Wiley, New 
York,1976). 

'H. Whitney, Complex Analytic Varieties (Addison-Wesley, Reading, 
Mass., 1972). 

61. Kay, Comm. Pure. Appl. Math. 13, 371-393 (1960). 
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7M. 1. Ablowitz, D. J. Kaup, A. C. Newell, and H. Segur, Stud. App!. Math. 
53,249-315 (1974). 

"L. D. Fadeev, "Properties of the S-matrix of the one-dimensional Schro
dinger equations," Am. Math. Soc. Trans!. Ser. 265,139-166 (1967). 

oM. Hazewinkel and J. Willems, in Proceedings of the 1980 Les Arcs NATO 
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A perturbative look at the dynamics of extended systems in quantum field 
theory 
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The structure of a quantum field theory with an extended object is explored perturbatively. The 
perturbative expansion consists of coupled differential equations which are derived from the 
Heisenberg field equation. These equations are used to reduce the zero mode problem to a choice 
of boundary conditions. They are then integrated and the constraint of the equal time 
commutation relations is used to set the boundary conditions and derive commutation relations 
for the physical fields and the quantum coordinate. Using this information the quantal Hilbert 
space is constructed. 

PACS numbers: 03.70. + k, 11.10. - z, 11.30. _ j 

1. INTRODUCTION 

In recent years much effort has been devoted to extend
ing the methodology of quantum field theory to the analysis 
of physical systems which have spatially inhomogeneous 
ground states. Quantum systems of this kind are said to con
tain extended objects. 

Some motivation for the study of such systems is de
rived from the fact that many nonlinear field equations pos
sess classical soliton solutions. I These are, for either dynami
calor topological reasons, classically stable, nontrivial 
configurations of the basic fields. It is of considerable inter
est to study the role of these classical solutions in the corre
sponding quantum field theory.2 From the point of view of 
the latter theory the classical nature of these solutions is not 
the result ofa classical limit of the quantum theory. Instead, 
classical objects coexist with quanta and interact with them. 

Furthermore, there are many examples of these types of 
extended structures in nature. Point defects and dislocations 
in crystals and vortex lines in superconductors are extended 
objects which are imbedded in and coexist with quantum 
systems. Grain boundaries and surfaces are also good exam
ples. Many quasi-one-dimensional systems such as long 
polymer chains are known to possess soliton like behavior. 
The study of systems such as these requires the development 
of a consistent methodology for the analysis of extended ob
jects in quantum field theory. 

The analysis typically begins with some classical solu
tion of the Heisenberg field equation of the quantum field 
theory and treats this solution as a first approximation to the 
vacuum matrix element of a basic field in an expansion in 
Planck's constant fz (a loop expansion). This first approxima
tion is known as the tree approximation. Quantum correc
tions are to be added perturbatively. However, naive pertur
bation theory immediately encounters a technical problem, 
that of the so-called "zero modes". The field equation, when 
linearized about some static classical solution, possesses zero 
frequency eigensolutions, the zero modes. These modes arise 
when the classical solution is non invariant under some sym
metry transformations which leave the original field equa
tion invariant. Since they have zero eigenvalues, the part of 
the Green's function corresponding to these solutions does 

not exist. This makes a direct integration of the inhomoge
neous differential equations of perturbation theory 
impossible. 

Several methods have been proposed for dealing with 
this problem. One of them, the collective coordinate meth
od,3 anticipates the appearance of the zero modes by per
forming a canonical transformation which elevates the sym
metry parameters which give rise to the zero modes to the 
status of dynamical variables. This is accompanied by the 
imposition of certain cons taints on the operator fields which 
can be arranged in such a way that a diagrammatic type of 
perturbation theory is possible. This method has been used 
for the calculation of quantum corrections to the ground
state energy and the soliton-soliton scattering amplitudes in 
some model quantum field theories.4 

A systematic method for describing extended systems 
has been investigated within the orthodox formalism of 
quantum field theory. In this method (the boson method') 
extended objects are created by a boson condensation pro
cess. The Heisenberg equation of a quantum field theory is 
first solved for the case of a spatially homogeneous ground 
state. Then certain extended objects are created in this sys
tem by means of the boson transformation which is the 
mathematical expression of a boson condensation. It has 
been shown that, in the tree approximation, the boson trans
formation leads to the corresponding classical field equa
tions and their soliton solutions.1> 

For example, consider a quantum field theory consist
ing of a single boson Heisenberg field satisfying the field 
equation 

;1 (J )w(x) = F[w(x)], (1.1) 

which interpolates single boson in- and out-fields p"'(x) and 
pOlll(X) satisfying the equation 

A (J )p\l1(x) = A (J )pOlll(X) = O. ( \.2) 

Let us assume that both field equations exhibit space
and time-translational symmetry. A solution of this quan
tum field theory is given when all matrix elements of the 
Heisenberg field w(x) in the Fock space of the in-fields pill(X) 
are given. This is expressed compactly in an expression 
known as the dynamical map 
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(1.3) 

The boson transformation theorem states that the Heisen
berg field 

tj/(x) = t/J [x, pin + f] (1.4) 

satisfies the field equation 

A (a )tj/(x) = F [tj/(x)], 

whenf(x) is a c-number function satisfying 

A (aif(x) = 0 • 

The operator translation 

pin(x)-+pin(x) + fIx) 

(1.5) 

( 1.6) 

(1.7) 

is called the boson transformation. It corresponds to a con
densation of the bosons pin(x). The Heisenberg field tj/(x) 
completely describes the quantum system with extended 
structure. 

In general, an essential feature of static extended objects 
is the fact that the boson transformation functionf(x) must 
have some singularities which prohibit its Fourier trans
form. Computations in this formalism, then, require particu
lar care in the treatment of these singularities. This has been 
demonstrated explicitly in the calculation of the soliton solu
tions for some (1 + 1 i-dimensional field theories. 6 

The physical fields pin(x) are modified by their interac
tion with the extended object. In general, besides the scatter
ing states of these asymptotic particles, there appear bound 
states of the particles to the extended object and also a single 
quantum mechanical mode associated with the translation 
of the system. This mode is known as the quantum coordi
nate. Its appearance is a natural result ofthe canonical com
mutation relations of the Heisenberg fields. 7 

The quantal Hilbert space of the system with extended 
structure is therefore different from the Fock space of the 
fields P'"(X). The physical fields are, in fact, complicated 
functionals of the boson transformation functionf(x). They 
consist of infinite summations of the physical fields pil1(X) 
interacting through the many-point Green's functions of the 
homogeneous theory with the classical fieldsf(x). These se
ries may not converge, but in certain spatial regions may be 
asymptotic. The commutation relations are useful in defin
ing the sums in these regions. 

In Ref. 8 it was shown that, once the order parameter in 
the tree approximation is known, it is possible to derive 
coupled equations for the many-particle components of the 
dynamical maps of the Heisenberg fields in the tree approxi
mation. These equations take the form of a perturbative ex
pansion. They must be solved consistently together with the 
canonical commutation relations. This was done in Ref. 8 for 
the first few orders. The physical Hilbert space for the sys
tem is the direct product of the Hilbert space of the quantum 
coordinate and the Fock space of the particlelike states. 

However, particularly subtle effects occur in higher or
ders of this perturbative expansion where the recoil of the 
extended system under scattering by particles is taken into 
account. The Hamiltonian of the system must contain terms 
which describe this interaction and thus is not a simple linear 
sum of the energies of the quantum soliton and the quantum 
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particle modes even after the "diagonalization" is 
completed. 9 

It is the purpose of the present work to explore this 
regime perturbatively. The first result is a theorem which 
establishes a connection, at least in the tree approximation, 
between the quantum coordinate and the collective coordi
nate used in the collective coordinate method. This theorem 
states that, when the tree approximation is summed to all 
orders, the quantum coordinate Q appears in the dynamical 
map in the combination x + Q with the spatial coordinatex. 
This gives a criterion by which the coupled equations of the 
perturbation theory are solved. Then the dynamical map is 
calculated to second order in the tree approximation for a 
(1 + 1 i-dimensional boson model. In the course of convert
ing the perturbative equations into the form of integral equa
tions, the zero mode associated with translational invariance 
presents a technical problem. The usual Green's function 
method is applicable only to those components which are 
orthogonal to the zero-mode wavefunction. The compo
nents which are proportional to zero-mode wavefunction 
can, however, be determined to within the addition of a solu
tion of the homogeneous equation. Solutions of the homo
geneous equation which may be added at each order of the 
perturbative calculation as well as the commutation rela
tions among the linear (or physical) operators are then deter
mined using the canonical commutation relations. This is 
done both indirectly through the canonical momentum and 
Hamiltonian operators and also by direct perturbative calcu
lation of the commutation relations. The physical Hilbert 
space is then constructed as a direct product of the Schro
dinger picture realization of the quantum coordinate and the 
canonical momentum and the Fock-space realization of the 
quantum particle excitations. 

The number representation of the physical particles is 
used to construct their Fock space. This Fock space does not 
manifest translational invariance. Completeness requires 
the presence of the quantum coordinate which serves to re
cover translational invariance. Thus the physical Hilbert 
space must be a direct product of these two subspaces. 

II. THE QUANTUM COORDINATE 

Consider a one-component boson field in (1 + 1 )-di
mensions satisfying the Heisenberg field equation 

(a 2 + m2 )t/J(x) = F[t/J(x)). (2.1) 

It is assumed that this equation, together with the equal-time 
canonical commutation relation 

[t/J(x),t,bLY)]x"=Y" =i8(x-y), (2.2) 

can be realized in the Fock space of a single free boson field 
pO(x) with field equation 

(a 2 + m2 )p°(x) = O. (2.3) 

Thus the boson transformation p()(x)-p()(x) + fIx) leads to 
the field equation 

(a 2 + m2 )t11(x) = F [tj/(x)]. 

The following is a study of this equation in the tree 
approximation. 
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Some of the notation we will use is the following. The 
symbol dx denotes spatial integration and d 2X a space-time 
integration. The symbol x denotes either the space coordi
nate or the space-time coordinates. Whether or not the time 
coordinate is included should be clear from the context. 

The vacuum expectation value of !/fix) in the Fock 
space of po(x) is called the order parameter. It is the sum of all 
connections through the many-point Green's functions of 
the Heisenberg field t,V(x) with the cla~sical functionsf(x). We 
will, for purposes which will be clear later, denote the order 
parameter by t,V _I (x). One can obtain the n-particle term in 
the dynamical map of !/fix) by removing n of the functions 
fix) from the order parameter and replacing them with a 
normal-ordered product of n of the basic fields po(x) 

t,Vn _ 1 (x) = :0 ft,b _I(X):, (2.5) 

where 

8f = fd Zy PolY)_8_. (2.6) 
8flY) 

It is useful to consider a power-counting parameter A 

t/I;.(x) = I A nt,Vn(x). (2.7) 
n = - 1 

In the tree approximation the order parameter satisfies the 
equation 

(a 2 + rnZ)t,V_I(x) =F[t,V_I(x)]. 

Equation (2.4) leads to 

(a 2 + rn 2)t,Vn (x) = 8; + IF [t,V_I(X)] 

or 

where a l + ... + a, + 1 = n + 1; al, .. ·,a,:;;'O; 1:;;.0 and 

F [,/,_ (x)] = a'F[t,V_I(x)]. 
, 'I' I at,V_l(X)' 

If the powers of A are inserted in Eq. (2.9) we see that 

(2.8) 

(2.lO) 

that is, A is like a scaling factor. The right-hand side of Eq. 
(2.9) contains a term which is linear in t,V n (x). When this term 
is subtracted from each side of the equation, the right-hand 
side contains components of order strictly less than n 

{a Z + rn2 
- FI [t,V_I(X)]}t,Vn(x) 

I = '" -F, [t,V-I(X)]t,Va (x) .. ·t,Va (x), (2.11) 
L-/! " 

where a 1 + ... + a, + 1 = n + 1; al, .. ,a,:;;'O; 1:;;.2; n:;;.O. 
Equation (2.11) is supplemented by the classical field equa
tion (2.8). We assume that t,V _I (x) behaves as x_ ± 00 in 
such a way that FI[t,V _I(X)]-O and t,V'- I (x)--..O faster than 
any polynomial. We also assume that t,V _I (x) is static. The 
quantum field t,Vo(x) satisfies the linear field equation 

[a 2 + rn 2 
- FI[t,V _I(X)] I t,Vo(x) = 0, (2.l2) 

possessing the well-known solution 

t,Vo(x) = Qt,V'- 1 (x) + ¢o(x), (2.13) 
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where the prime denotes differentiation by the spatial co
ordinate. The operator Q is the quantum coordinate and 
¢()(x) is written as 

./, () '" I {() - I"~,,' • ( ) i<D,' t} 
'1'0 X = L- 1/2 Ui x e a i + Uk X e a i 

i (2w j ) 

I f dk { () - iw,' • ( ) feu" t} (2.14) +--1/-2 1/2ukxe ak+ukxe a k , 
(21T) (2Wk) 

whereui(x), wiand uk(x), Wk are the bound-state and scatter
ing-state eigenfunctions and eigenfrequencies respectively of 
Eq. (2.l2). Note that Q depends on time, t. The function 
t,V'- I (x) is commonly referred to as the zero mode or transla
tion mode. 

Theorem 1: Q = o. (2.15) 

Proof t,Vo(x) satisfies Eq. (2.12). Since t,V'-- I (x) satisfies 
Eq. (2.12) and is time-dependent, Q = 0 in order that 
Qt,V'- 1 (x) satisfies Eq. (2.l2). Q. E. D. 

From Eq. (2.15), Q is given by 

Q = q + Qt. (2.16) 

In the following we will show, by the iteration of the field 
equation with (2.13) as the first order term, that Q in the 
dynamical map appears in the combination x + Q. 

Definition: tp(x) = t,V(x) when Q = Q = O. (2.17) 

Therefore ¢n satisfies Eq. (2.11) with t,Vi replaced by ¢i' 

Theorem 2: When Q = 0, the following relation holds: 
n + 1 I _ 

t,Vn(x) = k~ok!(Q·V)kt,Vn-k(X), (2.18) 

where we have used the symbol V to denote the spatial de
rivative to emphasize the fact that this theorem is valid for 
any number of space dimensions. 

Proof For n = - 1 and n = 0, Eq. (2.18) leads to t,V-1 
and Eq. (2.13). Suppose that (2.18) is true for t,Vm (x) when 
rn < n. When we define tp)., (x) by 

tp)., (x) = I A ntp" (x), (2.19) 
n = - 1 

we see from Eq. (2.19) with t,V(x) replaced by ¢i that tp)., (x) 
satisfies 

(2.20) 

Here, we have replaced the Klein-Gordon operator 
(a 2 + rn 2

) by A (J) in order to emphasize that the theorem is 
valid regardless of the form of the field operator. If Q = 0, 
Eq. (2.20) is also valid for ¢)., (x + AQ), since this is a simple 
space translation 

A (ax)tp).,(x + AQ) = A -IF [Atp).,(X +AQ)]. (2.21) 

Note that Eq. (2.21) follows from Eq. (2.20) if 

A (ax )(Q.V)'g(x) = (Q.V)'A (ax) g(x) (2.22) 

even when Q "sO. ¢). (x + AQ) is given by an expansion in A 
as 

- 1 J - iw' • ( ) iwi t} t,Vo(x) = "---\.Ut(x)e 'a i + Uk X e at -7' (2w, )112 

= ! A I! (AQ~)k ¢,(x) 
'~-J k=O k. 
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00 L ,i n¢n(x), (2.23) 

with 
n = -1 

¢n (x) = :t~ (Qk~)k ¢n - k (x). (2.24) 

The,i n_th term of the right-hand side of Eq. (2.21) is calcu
lated as 

,i -IF [,i¢,dx +,iQ)] 

=,i -IF [¢_I(X) +,i¢o(x) + ... +,i n+ I¢n(x) + O(,i n+2)] 

= ... +,i n{FI[¢_I(X)]¢n(X) 

+ n:f~F, [¢_I(X)]¢a, (X)"'¢a,(X)} + O(,i n + I), (2.25) 
,~ 21. 

where, in the summation, a I + ... + a, + 1= n + 1. There
fore comparing the,i n_th terms ofEq. (2.21), we have 

{A (ax) -FI[tP_I(X)]Nn(x) 

n 1 - - -
= L -/' [tP-I(X)]tPa, (x)···tPa,(X). (2.26) 

,~ 21. 

Since a i in the right-hand side of Eq. (2.26) satisfies 
O..;;a i <n - 1, 

¢a,(x) = tPa,(x). (2.27) 

From Eqs. (2.9) and (2.26), we have 

{A (axl - FI [tP_I(X)] Nn (x) 

= {A (ax) -FI[tP_I(X)]}¢n(X)' (2.28) 

By requiring that the homogeneous terms which satisfy 
{A (ax) - FI [tP _ dx) ]}8tPn (x) = ° vanish when Q = 0, we 
have 

(2.29) 

This completes the proof of the theorem. 
Given Theorem 2, it is easy to prove the following 

theorem. 

Theorem 3. tP;. (x) = f ,i n¢n (x + ,iQ). (2.30) 
n = - I 

Proof A combination of Eq. (2.7), (2.24), and (2.29) 
leads to 

= f f,i ~/ (Q. V)'1¢n _ 'I (x),i n - 7/ 

n ~ - lr/~O 1/. 

= f f,i >Q.V)k¢n(X),i n 
n~ -~Ik~ok. 

= f ,i n¢n(X +,iQ). 
I 

Thus the theorem is proved and 

tP;. (x,t) = ¢;. (x + ,iQ, t). (2.31) 

In this way we see that when the time derivatives of Q 
are ignored Q appears everywhere in an additive combina
tion with the space coordinate. 

The remaining task is to determine how the presence of 
Q modifies the result ofEq. (2.31). A solution ofthis problem 
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has already been given in Refs. 8 and 9. For the sake of 
completeness we will repeat the derivation here. In the proof 
of Theorem 2, the replacement of Q by (X - x) with X I' being 
a function of xl', Q, and Q does not change the steps when 

A (a)(x - x)I"···(X - xj'"'"al', ···al'ng(x) 

= (X - xjI""'(X - xj'"'nal'-, ···al'nA (a )g(x), (2.32) 

similar to Eq. (2.22) holds. This replacement is considered as 
a partial summation of the perturbation series to include the 
effect of Q. It has the following particular property: 

( a, + ~)~X - x)I'-' ... (X - xj'"'na ···a g(x)} \ axv 1'-, I'n 

(2.33) 

Here it is understood that av does not operate on x in X. 
Given the replacement (2.32), the property ofEq. (2.33), and 
the notation 

(2.34) 

an equation analogous to Eq. (2.28) can be written as 

{A (a) - FI [tP-I(X)]}tPn(x) = {A (D + a) - FI [tP_I(X)]} 

n + I 1 _ 
X k~ok !(X - X)I"···(X - xj'""a

"
, ... al'-' tPn _ k(X). 

Summing both sides over n, we obtain 

{A (a) - FI [tP _ I (x) ]}tP(x) 

= {A (D) -FI[tP_I(x)]}¢(X). 

Here in the right-hand side, we have A (D ) instead of 

(2.35) 

A (D + a ), because ¢(X) contains x only through X. If one 
now determines X 1'( = X, T) so that 

A(a)=A(D), (2.36) 

XO __ t and Xi __ X + Q as Q __ O, and x and Q always appear 
as x + Q in X, Eqs. (2.35) and (2.36) lead to 

1f/(x,t) = ¢(X,T). (2.37) 

In the case of A (a) = a 2 + m 2 in (1 + 1 i-dimensions we have 

T= (1 - (2)1/2t + [Q/(1- (2)1/2](X + Q), (2.38) 

X = [1/(1 - (2)]1/2(X + Q). (2.39) 

In this section, using the perturbative development, we 
have explicitly shown that the quantum coordinate Q ap
pears in the dynamical map in the combination x + Q with 
the spatial coordinate x. Section III is devoted to a further 
exploration of the perturbative development of Eq. (2.37). 

III. A PERTURBATIVE LOOK AT THE DYNAMICAL MAP 

Consider the field equations corresponding to the first 
few orders ofEq. (2.9): 

{a 2 + m 2 - FI [tP-I(X)]}tPI(X) 

= F2 [tP - dx)] [tPo(xW /2!, 

{a 2 + m2 - FI [tP _ dx) ]}tP2(X) 

(3.1) 

= F3 [tP _I(X)] [tPo(X)]3 /3! + F2 [tP _I(X)] tPo(x)tPl(x).(3.2) 

We seek a solution of these equations which is consistent 
with the replacement x--x + Q. Substitution of Eg. (2.13) 
into Eq. (3.1) leads to 
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{a 2 + m" - FI [¢_I(x)]}¢dx) 

= (Q "/2!)F2[¢_I(X)]¢'_ I (X)2 + QF1 [¢_ dx)]¢'_ I (x)t,bo(x) + F2[¢_I(X)] [t,bO(X)]2/2! 

= (Q 2/2!){F [¢_I(X)]" - FI [¢_I(x)l¢'~ dx)} + Q {(FI [¢-I(X)]t,bO(x))' - FI [¢_I(x)]t,bb(x)} 

+ {a 2 + m2 - FI[¢_I(x)]}t,bI(x) 

= (Q 2/2!){a 2 + m" - FI [¢_I(X)]}¢''- I (x) + Q {a 1 - m2 - FI [¢_ dx)]}t,bb(x) + {a 2 + m2-Fl [¢_I(X)]}t,bI(X) 

= {a 2 + m2 
- FI [¢_I(X)]}{(Q 2/2!)¢''- I (x) + Qt,b() (x) + t,b1(X)} - (2Q 2/2!)¢"_ dx) - 2Qt,bb(x). (3.3) 

Using the relations 

{a 2 +m 2 -FI[¢_I(X)]}x¢' I(X)= -2¢"_I(X) (3.4) 

and 

{a 2 +m 2 -FI [¢_I(X)]}X¢O(X)= -2¢b(x), (3.5) 

Eq. (3.3) may be written as 

{a 2 + m 2 
- FI [¢_I(X)]}¢I(X) 

= ! a2 + m" - FI [¢_ dx)] I! (Q2/2!)¢" I (x) 

+ (Q2/2!)x¢'. dx) + Qt,b;)(x) + Qxt,bo(x) + t,b1(Xl! 
(3.6) 

and therefore 

¢dx) = (Q2/2!)¢'.' I(X) +.(Q2/2!)xt,b, dx) 

+ Qt,b;) (x) + Qxt,bo(x) + t,b1(X). (3.7) 

Now, consider Eq. (3.2). A series of manipulations simi
lar to those used in deriving Eq. (3.3) leads to 
{a J + m 2 

- FI [¢_I(X)]}¢2(X) 

= {a J + m 2 
- FI [¢- dX)]}{~¢"~ I (x) + QQ\¢" I (x) 

3! 2!-

+ ~!2 ib~(x) + QQx~b(x) + ~!2 xt,bb(x) + Qt,b; (x) 

+ QX¢I(X) + t,b2(X)} - 2 Q 2xt,bb(x). (3.8) 

Use of the identities 

{a 2 + m 2 
- FI [¢_I(X)]}X 2Jo(x) = - 4x¢b(x) - 2¢o(x) 

and 
(3.9) 

{a 2 + m2 - FI[¢_I(x)]}t~o(x) = 2¢o(x) (3.10) 

leads to 

wo(x) = Q -' ¢"~ I (xl + QQ 2 x¢"_ I (x) Q 2 ~~(x) 
- 3! 2! 2! 

+ QQxJ.;) (x 1 + Q \ibb (x) + Q 2 x 2¢o(x) 
2!' 2! 

+ ~!2 t¢o(x) + QX¢I(X) + Qt,b; (x) + ibz(x). 

(3.11 ) 

However, Eq. (3.11) does not lead to (a /aQ )¢2(X) 
= (a /ax)¢I(x), which is necessary if x and Q appear in the 
form (x + Q). The difference appears through the explicit x 

dependence of ¢dx) 

w; (x) - ~¢o(x) = Q 2 w'_ I (x) + Qtbo(X)' (3.12) 
aQ - 2! . 

This difference must be remedied by introducing into ¢2(X) 
appropriate terms which satisfy the free field equation. The 
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r 
first term on the righ~-hand side ofEq. (3.12) can be compen
sated by adding Q (Q 2/2!)¢'_ I (x) to ¢2(X). The second term 
can be compensated by adding (Q - Qt )Qt,bo(x). In this way 
we arrive at 

wz(x) = Q
3

,3 ¢'" I (x) + QQ 2 x¢''- I (x) + QQ 1 ¢'_ I (x) 
. ~ ~ 

+ Q2,2 t,bb'(x) + QQxtfb(x) + QQ¢o(x) + Q 2 xibb(x) 
. 2! 

Q2.. Q2. . 
+ V-x2t,bo(x) - T!tt,bo(X) + Qxt,bdx) + Qlf; (x) + t,b2(X) 

(3.13) 

The dynamical map is 

t/I(x) = ¢_ I(X) + Q¢' I (x) + t,bo(x) + ¢I(X) + ¢2(X) + .... 
(3.14) 

The solution determined here is consistent with a power se
ries expansion of Eqs. (2.37), (2.38), and (2.39): ¢f(x) 
= t/!(X,T). 

IV. THE CANONICAL MOMENTUM 

Consider the quantity 10 

PA = f dx ~ (x)l/1(x). 

The field equation (2.4) leads to the conservation law 

1\ =0 

(4.1) 

(4.2) 

and the equal-time canonical commutation relation of Eq. 
(2.2) leads to 

[1/1; (x), PA ] = it/l/(x) (4.3) 

and 

[~(x), P;, ] = i~'(x). (4.4) 

Thus P generates spatial translations and can be identified 
with the canonical momentum of Q. Since x and Q appear 
only in the combination x + Q, conditions which are suffi
cient to yield Eqs. (4.3) and (4.4) are that 

and 

[Q, P; ] = i/A (4.5) 

[ibo(x), Pl. ] = [tbo(x), PA ] = O. 

Combining Eqs. (2.7) and (4.1) leads to 

P" = J dx {L ¢k (x)¢;(x)}, 

(4.6) 

(4.7) 

where k + 1= n;k>O; I> - 1. The first few orders of Eq. 
(4.7) are 
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P - I = f dx Ipo(x)tf;'- I (x), (4.8) 

Po = f dx {lpl(X)tf;'_ I (x) + Ipo(x)tf;~(x)}, (4.9) 

PI = f dx {lp2(X)tf;'- I (x) + IpI(X)tf;~(X) + IpO(X)tf;; (x)}. (4.10) 

Equation (2.13) leads to 

P_ I =MQ, M= fdX tf;'_I(X)tf;'_I(X). (4.11) 

Also, Eqs. (2.13), (3.7), and (4.9) lead to 

Po = f dx ([QQtf;'~ I (x) + Qt,b~(x) + Q¢~(x) 

+ QX¢o(x) + t/r1(X)]tf;'- I (x) + [Qtf;'- I (x) + ¢o(x)] 

X[Qtf;'~ I (x) + tl'~(x)]} (4.12) 

or 

Po = 2QQ f dx tf;'- I (x)tf;'~ I (x) + Q f dx {¢~(x)tf;,_ I (x) 

+ ¢o(x)tf;'~ I (x)} + Q f dx {t,b~(x)tf;'- I (x) + x¢o(X)tf;'_1 (x) 

+ t,b~(x)tf;'_ I (x)} + f dx {t/rI(X)tf;'- I (x) + ¢o(x)t,b~(x)}. (4.13) 

Using the field equation for tf;o(x) and integrating by parts 
reduces Eq. (4.13) to 

Po = Po = f dx[t/ro(x)t,b~(x) + ¢1(X)tf;'_ I (x)], (4.14) 

where Pn = Pn with Q = Q = 0, that is 

Pn = f dx ~t~¢[(X)t,b~ _[(x). (4.15) 

Combining Eqs. (2.13), (3.7), (3.13), and (4.10) results in 

PI = Q 3 f dx {x tf;'~ I (x)tf;'_ I (x) + tf;'- I (x)tf;'- I (x)} + Q 2 f dx {xt,b~ (X)tf;'_ I (x) + t/ro(X)tf;,- I (x) + !xt/rb tf;'- I (x) 

+ !X2¢o(X)tf;'_ I (x) - ~t~o(X)tf;'_ I (x) - !¢o(X)tf;'- I (x) + ¢o(X)tf;,- 1 (x) + X¢~(X)tf;,_ 1 (x) + ~t/rO(X)tf;'~ 1 (x) 

+ !¢o(X)tf;'- I (x)} + Q f dx {X~I(X)tf;'_ I (x) + t,b; (X)t,b'_l (X)t,b~(X)t,b~(X) + X¢o(X)t,b~(X) + tf;'- 1 (X)t,b; (x) 

+ ¢o(X)¢o(X) + Xt/ro(X)¢~(X)} + f dx {¢2(X)tf;'- 1 (x) + ¢1(X)t,b~(X) + ¢O(X)t,b; (x)}. (4.16) 

Here the terms containing Q without time derivatives are 
dropped automatically, since the space integration of 
(x + Q) in Eq. (4.1) guarantees the disappearance of Q in p;., 
This can also be checked by explicit calculation, as was done 
for Eq. (4.13). 

Use of the free field Eq. (2.12) for t,bo(x) and tf;'- I (x), the 
orthogonality of tf;'- I (x) and t,bo(x) and integration by parts 
reduces Eq. (4.16) to 

PI = ~ Q 3 + Q f dx {x¢dx)tf;'_ I (x) + 2t,b; (x)tf;'_ I (x) 

+ t,bb (x)t,bb (x) + x¢o(x)t,bb(x) + !¢o(x)¢o(x)} + PI' (4.17) 

The field equation (3.1) for tl'dx) leads to 

fdx X¢I(X)tf;'_I(X) = fdX {X(:X22 -m 2 +F1 [tf;_dX)]) 

X t,bdx)t/!'_ dx) + XF2 [t/! _I(X)] t/!'- dx)(t,bo(X))2/2!} 

= f dx {x [t,b;'(x)t/!'_ dx) - t,b1(X)tf;'"- dx)] 

- F, [tf;-I(X)] [t,bo(X)]2/2! - xF, [tf;-I(X)]t,bO(x)t,b~(x)} 

= f dx {- 2t,b; (x)tf;'_ I (x) - ~¢o(x)t,bo(x) 

- x¢o(x)t,bb(x) + t,bb'(x)t,bo(x)}, (4.18) 

and, upon substituting Eq. (4.18) into (4.17), 

PI = (M /2)Q3 + (Q/2)Ho + PI' (4.19) 

where 
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Ho = !f dx {¢o(x)¢o(x) - ¢o(x)t,bo(x)}. (4.20) 

The structure of the quantities Pn is closely related to 
the dynamical maps of t,bn' which obey the equation 

{a 2 + m 2 
- F, [tf;-dx)]}t,bn(x) 

1 --
= "-F[ [tf;-I(X)]tf;a (x) ... tf;a (x), (4.21) 

L../! " 

where a l + ... + a[ + I = m + 1; n>O; 1>2; al, .. ,a[>O. 

Equation (4.21) can be integrated formally using the 
Green's function 

g(x,y) = fdW eiw(x" -Y"I[~ t/!'- I (x)t/!'_ I (y) 
21T M _w2 

, "ui(x)u;(Y) fdk UdX)U~(y)]. 
T L.. 2 ? + 2? 

i Wi - W- 21T Wk - W-
(4.22) 

Though no eigenfunctions of the homogeneous equation 
(2.12) appear in the right-hand side of Eq. (4.21), the exis
tence of the zero mode leads to possible nonoscillating terms 
in the right-hand side ofEq. (4.21). Therefore one needs spe
cial care for the component proportional to t/!'- I (x). More
over, the operator t,b" can have additional homogeneous 
terms which are proportional to the eigenfunctions of Eq. 
(2.12). The renormalization of wavefunctions with nonzero 
frequency is not considered because the tree approximation 
is used. Therefore we are concerned only with the zero-mode 
wave function. 
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We write If" (x), by extracting the t/!'- 1 (x)-component, 
as 

If" (x,t) = an _ 1 (t )t/!'.~ I (x) + ¢n (x,t), 

where 

and 

If -an - I (t) = M dx t/!'- I (x)t/!n(x). 

Equation (4.21) can be rewritten as 

~ 00 I 
{a 2 + m 2 -FI[t/!-dx)]}lfn(x) = 2: -F,[t/!_I(X)] ,= 2l! 

X Ifn, (x)···lfa,(x) - al! _ 1 (t w- 1 (x). 

When a" _ I (t ) is chosen as 

a" - dt) = ~f dx t/!'- I (x) t *F, [t/!-I(x)]lfa, ... lfa, 
'~2 . 

(4.23) 

(4.24) 

(4.25) 

(4.26) 

If 00 1 - - -
= - M dx '~2(1- I)t'- I [t/!-dx)]t/!a, ... t/!", ,tb,;" 

(4.27) 

the right-hand side ofEq. (4.26) contains no t/!'- I (x) compo
nent. Equation (4.26) can be integrated for ¢n using the 
Green's function 

(4.28) 

Using Eq. (2.9) in Eq. (4.27) leads to 

an - I (t) = - ~f dx 2:(a 2 + m 2 )lfdx)If;(x) 

or 

I as ~-an - dx) = - Mat dx I,t/!dx)t/!;(x), (4.29) 

where k + 1= n - 1; k, 1>0. Thus 

a".~ I (t ) = - ~ f dx 2:¢k (x)¢;(x) + Pn _ I' (4.30) 

where 

/in =0. (4.31) 

Now consider the cases n = 1 and n = 2 of Eq. (4.30). 

ao(t) = - ~J dx ¢o(x)¢b(x) + Po, (4.32) 

al(t) = - ~SdX {¢o(x)t/!;(x) + ¢dx)¢b(x)}+Pl' 

(4.33) 

Using the identity 

{a 2 + m2 - FI [t/!- dx)]h¢o(x) = - 2¢b(x), 

Eq. (4.32) can be written as 
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(4.34) 

ao(t) = 2~f dx ¢o(x){a Z + m2 
- FI [t/!_I(X)]}X¢o(X) + Po 

(4.35) 

or 

= :t 2~ f dx x{tbo(x)tbo(x) - Ifo(x)~o(x)} + Po, (4.36) 

ao(t) = 2~ f dx x{¢o(x)J,o(x) - ¢o(X)¢o(x)} + 130 , 

(4.37) 

Similarly, using the identity 

{a 2 + m 2 - FI [t/!_I(x)]}x¢dx) 

1 - -
=x2IF2[t/!-I(x)](t/!o(xW - 2t/!;(x) (4.38) 

and Eq. (4.34), Eq. (4.33) can be written as 

a I(t) = J... ~fdX I xl ¢O(X)¢I(X) - ~~O(X)¢I(X) 
Mat . 

- ~¢o(x)lfl(xll -!¢b(X)¢I(xll + PI (4.39) 

or 

al(t) = ~f Sdx [xl ¢O(X)¢I(X) - ~¢O(X)¢I(X) 

- ~¢o(x)¢I(xll - !lfb(x)lfl(x)] + 131' (4.40) 

The quantities f3n must be constructed from the operators 
{ai' ai, a k , an defined in Eq. (2.14). As will be shown in the 
following, the choice of /3" depends on the choice of the 
boundary conditions. Equation (4.31) leads to 

{a 2 + m2 
- FI [t/!-I(X)]}f3n t/!'- I (x) = 0, (4.41) 

that is, fin t/!'- I (x) is a solution of the homogeneous free field 
equation. Therefore fin _ 1 t/!_I(X) appears in Ifn (x) in the 
same way as any solution of the homogeneous free field 
equation which may be added when integrating Eq. (4.21). In 
this way, all ambiguities arising from the presence of the so
called zero mode have been reduced to the choice of bound
ary conditions. These boundary conditions must be chosen 
in a way which is consistent with the solution that we are 
seeking. This solution corresponds to an expression for the 
Heisenberg field t/!(x) in terms of the physical field ¢o(x) and 
the operators Q and P such that the comrputation relations 
between members of the set {Q, P,¢o(x), Ifo(x)} lead to the 
canonical commutation relation of Eq. (2.2). 

The only comm).ltation relations between members of 
the set {Q, P, ¢o(x), ¢o(x)} which have so far been specified 
are those in Eqs. (4.5) and (4.6). Physical considerations dic
tate one more requirement. The states of the system corre
sponding to Ifo(x) should be particlelike. That is, we require 
that 

and 

[a"a)] = [ak,a,] =0. (4.42) 

Equations (4.42), and (2.14) and the completeness of the 
set of functions {t,b' I (x), ui(x), udx)} lead to 
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[¢o(x).¢o(Y)L,,=y" =+5(X- Y)- ~t/!'-dX)t/!'-I(y)} (4.43) H). = fdX {H¢{(xlP+H~(xlP 

and 

[¢o(x). ¢o(Y))x"=y" = [¢o(x). ¢o(Y)L,,=y" = O. (4.44) 

Using the free field Eq. (2.12). it is possible to show that 

k) = O. (4.45) 

where Ho is given in Eq. (4.20). This fact. together with Eqs. 
(4.43) and (4.44) leads to 

[¢o(x). Ho] = i¢o(x) (4.46) 

and 

(4.47) 

Thus H 0 generates the time translation of the fields ifJo(x) and 
$o(x). 

Equation (4.15) leads to 

Pn = f dx {I¢dX)¢;(X) + ¢n + dx)t/!'_ I (X)}. (4.48) 

which. using Eqs. (4.25) and (4.30). reduces to 

Pn = MPn· (4.49) 

This shows that appearance of Pn is directly related to the 
boundary conditions. 

We have now determined the canonical momentum to 
the first order as 

p= (1/..1, )MQ +MPo+A(M 12)Q3 + MjHo + AMP I + .... 

(4.50) 

In Sec. V the Hamiltonian will be calculated. The Ha
miltonian must generate the time translation of the Heisen
berg fields. This is a result of the field equation and the ca
nonical commutation relations for the Heisenberg fields. 
This places certain requirements on f3 n and the commutation 
relations for the physical fields with Q. 

V. THE HAMILTONIAN 

Consider the quantity 

H = J dx {Htif(xjp + H¢I'(xW 

+ !m2[¢I(xJF + V [¢I(x)]}. (5.1) 

where V [¢I(x)] is a local function of ¢I(x) such that 

VI [¢I(x)] = - F [¢I(x)] (5.2) 

and V[t/! _ dx)]--+O as x--+ ± 00. Using the Heisenberg field 
equation (2.1). it is possible to show that 

if = O. (5.3) 

Then. using the commutation relation of Eq. (2.2) leads to 

[t/!(x). H] = i ¢(x). (5.4) 

[¢(x). H] = i ¢(x). (5.5) 

and H is the canonical Hamiltonian. 
When the power-counting parameter is included. Eq. 

(5.1) becomes 
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+ !m2[¢{(x)]2 +..1, -2V[A¢{(x)]}. (5.6) 

The interaction term V [A¢I(x)] can be expanded about the 
classical solution of the Heisenberg equation to get 

Hn = f dx {I [~¢dx)¢I(x) + ~t/!k(X)t/!;(X) 

+ ~m2t/!dx)t/!I(X)] + II\ VI [t/!-I(X))t/!a, ... t/!at(X)}.(5.7) 

where k + I = n in the first summation and 
a l + ... + al + 1= n + 2. al .. ··.al>Oin the second summa
tion. Equation (5.7) leads to the following relations: 

H -2 = f dx {!t/!'-I (X)t/!'_I (X) + !m2
[t/!_dxlf 

+ V [t/!-I(X)]). (5.8) 

H_I = fdX {t/!b(x)t/!'_I(x) + m2t/!O(x)t/!_I(X) 

- F [t/!_I(X)]t/!O(x)}. (5.9) 

Ho = f dx {H¢o(XW + t/!'-I (x)t/!;(x) + !t/!b(x)t/!b(x) 

m 2 

+ m2 t/!_I(X)t/!I(X) + T[t/!o(xW 

- F[t/!_I(x)]t/!I(x) - FI[t/! _1(x)][t/!o(xlf/2!j. (5.10) 

HI = f dx {¢O(X)¢I(X) + t/!'- I (x)t/!; (x) + t/!b(x)t/!; (x) 

+ m2t/!_I(x)t/!2(X) + m2t/!o(x)t/!dx ) - F[t/!_dx )]t/!2(X) 

- FI [t/! _1(X)]t/!O(X)t/!I(X) - F2[ t/!-I(X)] [t/!o(X)] 3 131}. (5.11) 

H2 = f dx {¢O(X)¢2(X) + H ¢I(XW + t/!'- dx)t/!; (x) 

+ t/!b(x)t/!~(x) + !t/!;(x)t/!;(x) + m2t/!_I(x)t/!3(X) 

+ m2t/!O(x)t/!2(X) + !m2t/!I(x)t/!I(X) - F[t/!_I(X)]t/!3(X) 

- F I[t/!-I(X)](t/!O(X)t/!2(X) + [t/!I(xjf/21) 

- F2[t/! _1(x)][t/!o(xjf/21t/!1(X) - F3 [t/!_1(X)][t/!O(X)]4/4!j 

(5.12) 

Use of Eqs. (2.12). (2.13). (3.1). and (3.2) leads to 

H -2 = M. (5.13) 

H _ 1 = O. (5.14) 

Ho = f dx {!¢o(x)¢o(x) - !¢o(x)t/!o(x)}. (5.15) 

HI = f dx I ¢O(X)¢l(X) - tt/!O(X)¢l(X) -i¢O(X)t/!l(X)). (5.16) 

H2 = f dx {¢2(X)¢O(x) - !¢2(X)t/!O(x) - ~t/!2(X)¢O(x) 
+ !¢l(X)¢I(X) - !t/!l(X)¢l(X)}. (5.17) 

Equations (2.12) and (4.20) lead to 

Ho = !MQ2 + Ho. (5.18) 

Upon substitution of Eqs. (2.13) and (3.7). Eq. (5.16) becomes 
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- !t/!"- I (x)¢o(x) - !xt/!'_ I (x)¢o(x)) 

+ Q f dx {t/!'- I (X)¢I(X) + ¢o(x)¢~(x) + x¢o(x)¢o(x) 

- i$o(x)¢~(x) -lx¢o(x)¢o(x) - ix¢o(x)¢o(x)) 

+ f dx (¢O(X)¢I(X) - i¢o(x)¢I(x) - i¢o(X)¢I(x)j . (S.19) 

culation. Use of Eqs. (2.12), (2.13), (3.1), and (3.2) leads to 

(S.20) 

We define it by fIn = H n, when Q = Q = O. Since ¢n 
satisfies the field equation, fIn can be shown to satisfy 

Here terms containing Q are automatically dropped, since 
the space integration in Eq. (S.l) guarantees the disappear
ance of Q. They are also shown to disappear by explicit cal-

fIn contains zero-frequency components only; the latter 
components for n"> 1 originate from an __ I (t )t/!'- I (x) (n"> 1). 
The aot/!'_ I (x) in the last term in Eq. (S.19) drops out because 
of the orthogonality of t/!'- I (x) and ¢o' 

A combination of Eqs. (2.13), (3.7), (3.13), and (S.17) 
leads to 

I 

H2 = (! f dx {!Xt/!'~ I (x)t/!'_ I (x) + !t/!'- I (x)t/!'_ I (x) - !xt/!'~ I (x)t/!'_ I (x)} + Q 3 I dx {!Xt/!'~ I (X)¢o(X) + !t/!'- I (X)¢o(X) 

+ x¢o(x)t/!,_ I (x) + ¢o(x)t/!,_ I (x) + !X¢~(x)t/!'_ I (x) + !x2¢~(X)t/!'_ I (x) - !¢o(x)t/!'_ I (x) - !t¢o(x)t/!'_ I (x) 

- ~xt/!'~ I (X)¢o(X) - !X¢~ (x)t/!'_ I (x) - !X2~~(X)t/!'_ I (x)} + Q 2 f dx {X¢b (x)¢o(x) + ¢o(x)¢o(x) + !X¢~ (x)¢o(x) 

+ !xzJ;~(x)¢o(x) - !¢o(x)¢o(x) - !t¢o(x)¢o(x) + X¢I(X)t/!'_ I (x) + J;; (x)t/!'_ I (x) - !¢b'(x)¢o(x) - !X¢~(x)¢o(x) 
- ~¢o(x)¢o(x) - tx¢~ (x)¢o(x) - Ax2¢~(X)¢o(x) + !~o(x)¢o(x) + ~t~~(x)¢o(x) - ~x¢b (x)¢o(x) 

- ~Xz¢o(x)¢o(x) + ~t¢o(x)¢o(x) + ~¢b(x)¢b(x) + !xz¢o(x)¢o(x) + X¢b(x)¢o(x) - !t/!'~ I (x)¢dx) - x¢b(x)¢o(x) 

- !Xz~~(x)¢o(x) - !X¢I(X)t/!'_ I (x)} + Q r dx {X¢I(X)¢O(x) + ¢; (x)¢o(x) + ¢2(X)t/!'_ I (x) - !X¢'I(X)¢O(x) 

- ~x¢dx)¢o(x) + ¢~(X)¢I(X) + x¢O(X)¢I(X) - ¢b(x)¢I(x) - !x¢o(X)¢dx) - ~X¢I(X)¢O(x) - !¢; (x)¢o(x)} 

+ f dx {¢z(x)¢o(x) - !¢z(x)¢o(x) - ~¢z(x)¢o(x) + !¢I(X)¢I(X) - !¢I(X)¢I(X)}. 

This expression can be reduced to 
. . z . . -

Hz = ~MQ4 +!Q H o + MQfJl + Hz(fJo)' 

The last term in Eq. (S.21) cannot be concluded to be zero immediately because of the terms 13o(t ) t/! _ I (x) in ¢I (x) and 

(S.21) 

(S.22) 

13 I (t) t/!'- I (x) in ¢2(X). The13l(t) t/!'- I (x) terms drop out because of the orthogonality oft/!'_ I (x) and ¢o(x). The Hamiltonian to 
second order is 

(S.23) 

When Q and P are chosen as independent dynamical variables, Q is a dependent variable and may be determined from a 
formal inversion ofEq. (4.S0), 

Q = P 1M - A{3o - A Z{!(P3IM 3
) + (P IM2)Ho + PI} + "', (S.24) 

/"0- /"0-

where P = API.' Note that P is independent of A. 
Combining Eqs. (S.23) and (S.24) leads to 

"'z '" 4 "'z } [ M{3 z ] 
HI. = ~{1+!'P;2-AA4;4}+{I-!AZ~zfIo+AZfIz(fJo)-T + .... (S.2S) 

Combining Eqs. (2.13), (3.7), (3.13), (3.14), and (S.24) leads to 

1 - { Q 2 1 pz - P ~ -} 
¢;;(x) = Tt/!-dx ) + {Qt/!'-I (x) + t/!o(x)} + A 21t/!':"1 (x) + 2! Mzxt/!'-I (x) + Qt/!~(x) + Mxt/!o(x) + t/!I(X) 

{ 
Q 3 1 pz 1 p2 P . Q 2 _ pcp ! 

+ A z -t/!"'- dx) + - Q -2Xt/!'~ I (x) + ,Q -zt/!'- I (x) - ':"'-BoXt/!'_ 1 (x) + -, t/!;;(x) + QMxt/!~ (x) + Q Mt/!o(x) 
3! 2 M 2. M M 2. 

1 p2 - 1 pz _ 1 p2.:. - .:. p .:. _ _ } 
+ - -xt/!~ (x) + - x 2-t/!b'(x) - - t-2t/!o(x) - x13ot/!o(x) + x-t/!dx) + Qt/!; (x) + t/!2(X) + ... , (S.26) 

2 M Z 2 M Z 2 M M 
and 

n{ (x) = {~t/!'- I (x) + ¢o(X)} + A {Q~t/!''- I (x) - (30t/!'-1 (x) + ~¢b(X) + Q¢~(x) + X~¢o(X) + ¢dX)} 
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+ A 2{+ Q2~tP"~ dx) + ~ X~:tP"_1 (x) - :/iotP'_ dx) - PltP'-1 (x) - Qt3otP''-- I (x) + ~!\t;(X) + Q~¢;(X) 
p 2 ~ p~. p2 !. p" 1 p2 ~ 1 p2 .:. 1 p2 ~ 

+ M2XtP~(X) + xQ-tP~(x) + M2tPO(x) + Q-tPo(x) + -X-2tP~(X) + -x2
- ztPo(x) - --ztPo(x) 

M M 2 M 2 M 2M -+ t~22¢O(X) -Po¢~{x) - xPo~o{x) +X~¢I{X) + ~¢;(X) + Q~;(x) + ~2(X)} + "', (5.27) 

where II{(x) = ~(x). 
Equations (5.25), (5.26), and (5.27) must together satisfy 

Eq. (5.4) 

iII{(x) = [~(x),H.d. (5.28) 

Equation (5.28) leads to the following conditions: 

Po = PI = fl2(f30) = 0 (5.29) 

and 

[Q, flo] = O. 

These conditions are also sufficient to yield 

i tf/'(x) = [t/'(x), P], 

i IIi'{x) = [IIi{x), P]. 

(5.30) 

(5.31) 

(5.32) 

Combining Eqs (5.24), (5.25), (5.29), and (5.30) leads to 

i Q = [Q, H]. (5.33) 

Thus, in contrast to the case of ¢o(x) in Eqs. (4.46) and (4.47), 
the time derivative of Q is generated by the full Hamiltonian. 

In summary, we have now arrived at the following 
results: 

(5.34) 

(5.35) 

1 {Q 2 

~ (x) = ;:tP -I(X) + {QtP'- I (x) + ¢o(x)} + A 2itP"- I (x) 

~2 " 
P - P ~ -} 

+ 2!M2XtP'-dx)+QtP~(x)+ MXtPo(x) + tPI(X) +,12 

{
Q3 p2 "2 2 

X 3!tP"~ I (x) + ;M 2 xtP'~ dx) + ;; 2 tP'- I (x) + ~! ¢b'(x) 
A A A A 

QP ~ QP L P 2 _ P 2 '" 

+ M xtPb (x) + ftjtPo(x) + 2!M2 xtPb (x) + 2!M2X2tPo(X) 

- 2~zt¢0(X) + ~xt$t!X) + Q¢;(x) + ¢z(X)} + 0(,1 3), 

(5.36) 

II{(x) = {~tP'-1 (x) + ¢o(X)} +,1 {~ tP'~ I (x) + Q¢b(x) 

+ M
P 

¢b(x) + P x¢o(x) + ¢t!X)} + A 2{Q 2
P

tP", I (x) 
M 2!M -

p3 P '" Q2 . 
t 2!M3XtP''-1 (x) - M2HOtP'- I (x) + T!¢o'(x) 
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r 
QP", QP ~ 3p2 '" QP -.: 

+ _.I,"(X) + -x·I,' (x) + --xtP' (x) + _.1, (x) M '1-'0 M '1-'0 2!M 20M '1-'0 

p2 .: pZ:':' p2:.: p:.: 
+ --2 tPo(x) + _-

l
X2 tPO{X) - --2 ttPo(x) + -XtPI(X) 

2!M 2!M 21M M 

+ Q¢i(x) + :¢; (x) + ¢2{X)} + O{A \ (5.37) 

[Q, P] = i, (5.38) 

[¢o(x), ¢o(y)] x" ~ y" 

= i{8 (x - y) - [tP'- I (x)tP'_ I (y) ]1 M}, 

[P, ¢o(x)] = [P, ¢o(x)] = [¢o(x),¢o(y)]x"~Y" 
= [¢o(x), ¢o(y)]x"~y" = [Q,Ho] = 0, 

[Q, H] = iQ, 

(5.39) 

(5.40) 

(5.41) 

(5.42) 

In Sec. VI, we will use the information from Eqs. (5.34) 
to (5.42) to compute the commutation relation for the Hei
senberg fields. This will impose further requirements on the 
commutation relations between the set of operators 
{Q, p. ¢o(x), ¢o(x)}. We notice, finally, that the expansions 
of Q and H in Eqs. (5.34) and (5.35) are consistent with ex
pansions of 

Q = P I[P2 + (M + HO)2] liZ or 
P=[Q{M +Ho)]/{I-Q2)'/2 (5.43) 

and 

H = [P2 + (M + Ho)2]1/2 = (M + Ho)!(1 _ (2)1/2, (5.44) 

which can also be derived from general arguments using the 
Lorentz symmetry. I I 

VI. THE CANONICAL COMMUTATION RELATIONS 

In this section we investigate the canonical equal time 
commutation relation 

[~(x), /I{(y)lx"~y" = i 8{x - y). (6.1) 

In the course of the calculation, we will obtain the condition 
imposed on the commutation relation between Q and ¢o{x) 
by Eq. (6.1). It is shown that Qo can be chosen independently 
of ¢o(x) as the canonical conjugate of fi. 

We separate the spatial component of tP' .. I (x) as 
follows: 

~(x) = (l/M)VI ... (t)tP'_ dx) + ¢:;(x); 

II{ (x) = (l/M)IIA(t )tP'- dx) + fi{(x). 

The condition (6.1) leads to 

[VlA(t),IIA(t)] =iM. 
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The operators I{/). (t ) and H;. (t) are expanded as 

I{/;. (t) = QM + A I{/l + A 21{/2 + "', (6.4a) 

JI;.(t)=P+AH1+A 2/12+···. (6.4b) 

From the dynamical maps ofrjlin Eq. (5.36) and JIfin Eq. 
(5.37), we have 

[ 

"'2 

1/11 = f dx !/J'- I (x) 2: 2X!/J'-1 (x) 

+ Q¢h(x) + ;X~o(X) + ¢dX)}, (6.5) 

3 "2 Q2 
1/12 = J dx t/J'-l (X)[ ~! t/J'~ I (x) + i;2t/J'- I (x) + T!¢h'(X) 

QP 3 p2 _ P _ _ 
+ -x¢b(x) - --2xt/Jb(x) + -xt/JJ(x) + Qt/Ji(x) 

M 2 M M 

+ ¢ziX )), 

(6.6) 

HI = f dx t/J'- J (X)( Qtfb(x) - ;¢o(X) + ¢J(X)), (6.7) 

H2 = JdX t/J'_J(x) 
" A A 

[ 
Q 2 P"' ( P 3 .1." () P H- .1.' () X --t/J _ I x) + --3Xo/ - \ X - M2 00/ - J x 
2M }M . A 

Q 2 QP .. p2 .. 

+ -¢o'(x) + -(¢b'(x) + x¢b(x)) - M 2xt/Jb (x) 
2 M 2 

+ ~X¢I(Xl + Q¢i(X) + ;¢;{X) + ¢2(X)]. (6.8) 

To get Eqs. (6.5)~(6.8), the following relations are used: 

f dx xt/J·_ \ (x)tb'~ I (x) = - ~ f dx t/J'- \ (x)!/J'_ I (x), (6.9) 

f dx x2tb'_ J (x)¢o(x) = - 4f dx xt/J'_ dx)¢b(x), (6.10) 

f dx x 2t/J'_ I (x)¢'o(x) = - 4f dx xt/J'_ dx)~b(X), (6,11) 

f dx xtb'_ 1 (x)¢o(X) = - 2 f dx w'_ 1 (x)¢b(x). (6.12) 

The derivation of Eqs, (6.9)-(6,12) uses Eqs. (2.12), (3.4), and 
(3.5). Equation (6,3) leads to 

[MQ, P] = iM, (6,13) 

[MQ, HI] + [lJI I , P] = 0, 

[MQ, H21 + [lJI 11 J1 1] + [1{/2' P] = o. 
(6,14) 

(6.15) 

From Eq. (5.38) we see that Eq. (6.13) is satisfied. In 
order to evaluate the left-hand side of Eq, (6.14), we need 
some informatioq about the commutation relation between 
Q and 0o(x) and ¢o(x). We will proceed with the assumption 
that 

[Q, 0o(x)] = 0 (A 2), 

[Q, 0o(X)] = 0 (A 2), (6,16) 

at equal times, This assumption has already been used in 
obtaining Eg. (6.15). IfEgs. (6,14) and (6.15) can be reduced 
to identities, assumption (6.16) will be justified, 
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Equation (6.14) is also satisfied with the assumption 
(6.16). Since Eq. (6.14) contains [Q, ¢o(x)] and [Q, ¢o(x)] inde
pendently, Eg. (6.16) is, in fact, a sufficient condition for Eq. 
(6.14). 

Using Eqs. (5.38), (5.39), (6.16), and (4.18), Eg. (6.15) is 
reduced to 

Q {2 f dx t/J'- 1 (x) [¢b'(x) + x¢o(x)] 

+ f dx dy t/J'-l (X)!/J'-l lv{+[¢O(X),¢IIY)] 

++[¢l(X),¢OIY)])} + ;fdX dy 1/I'-I(X)t/J'-llv) 

X {~[¢o(X)'¢JIY)] - ~[¢I(X),¢blv)] 
I I 

- ~1/I'_dX)¢hlv)} -MHo-~JdX [¢o(x)¢o(x) 

+ 2x¢o(xj¢b(x) - 2¢b'(x)¢O(x) 1 

+ f dx dy !/J'- 1 (x)t/J'_ I lvl{ - ~¢b(X)~blv) 

=0. (6.17) 

It is necessary to consiqer the commutation relations be
tween (¢o' ¢.l and (¢J, ¢d. Fromt3o = 0 [See Egs. (5.29) and 
(4.30)) we have 

f dx !/J'- 1 (x) ¢l(xl = - f dx ¢o(x)¢b (x) (6.18) 

and from the definition of a o, we have [See Eqs. (4.25) and 
(4.32)] 

f dx t/J'- I (X)¢l(X) 

=Mf3()+~fdX x[¢o(x)¢o(x)-0o(x)~o(x)J. (6.19) 

Then the following commutation relations are obtained: 

f 1 - L 

dx dy t/J'- 1 (x)!/J'_ J lv)i[!/Jb (x),!/JJlv)] 

= fdX t/J" I (x)¢b(x), (6.20) 

fdx dy xt/J'_ dX)!/J'_llv)+[¢o(X),¢llv)] 

= - f dx xt/J'_ J (x)¢b(x), (6.21) 

fdX t/J'- 1 (x)~[ 01(X),~olv) J = ~ [f3o,¢olv) J 
I I 

- y~olv) - ¢bIY) + ~tb' 1 lvlf dx 1/1"- I (x) ¢o(x), (6.22) 

J 1 - - M-
dx !/J' I (x)-:-[tbl(x),!/Jolv)) = -:-[,Boot/Jolv)J 

I I 

(6.23) 
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and 

+ ~f dx l/J' -, (x)l/J'_, (y)[~~(x) ~b(Y) + x ¢o(x)¢b(Y)]. 

(6.24) 

[QM, il,iy)] + (IP" ¢o(yl] = 0, 

[QM, il2(y)] + [IP" filly)] 

+ [1P2' Jo(y)] + [QM, ¢o(Y)L = 0, 

(6.27\ 

(6.28) 

where IJI, and 1J12 are given in Eqs. (6.5) and (6.6) and fii(y) is 

fii(y) = fdz .9(y, Z)[fi(Z), 

Il{(x) = IAnIln(x), 
n=O 

(6.29) 

(6.30) 

When these equations are substituted in Eq. (6.17) and the 
definition (4.20) of Ho is used, we arrive at the two conditions with 

J dx 1/;' ,(x) [130 , Jb (x)] = 0, 

f dx l/J'-, (x) [13(),~~(x)] = 0. (6.25) 

.9(y, z) = b (y - z) - (l/M)l/J'_, (y)l/J'-, (z). (6.31) 

lIn (x) is given by Eq. (5.37). The last term in Eq. (6.28) ap
pears because [Q, ~()(x)] = 0(,1 2). The subscript 2 on the last 
term denotes the second order part of that commutator. 
Equation (6.27) reduces to 

We also see that the assumption (6.16) is justified. 
Now we turn our attention to the commutation relation JdY 9(z, Y){¢6 (y) + Y¢o(y)} 

between IJIA (t) and li.{ (x) 

between IJIA (t) and ll{ (x) 

(6.26) 

This leads to the equations 

which, using Eq. (6.22), gives the condition 

[/30' Jo(z)] = 0. 

Equation (6.28) can be reduced to 

(6.32) 

(6.33) 

Q f dy 9(z,y) [iJ,b'(Y) + Y¢b(Y) + ¢o(y) + f dx l/J'-, (X){+[iJ,; (x), ¢o(y)] + ~ ~b(x)l/J'~ 1 (y) + + [iJ,b (x), ¢1(Y)] 

+ +[~,(X)' ¢b(Y)]}] + !f dy .9 (z,y) [ 3y ¢b(Y) + ¢o(y) + y2 ¢~(y) - t¢o(y) + f dXl/J'_, (X){ 7- [~,(x), ¢o(Y)l 

+ ~ [~o(x),¢,(y)] + +[~,(X)' ~6(Y)] +~[~,(X), ¢()(y)] - ~X¢o(X)l/J'~' (y) - ~x~,_, (X)~b(Y)}] 

+ fdY 9(z,y) [y¢,(y)+~;(y)+dX fl/J'-'(X){+[~2(X)'~O(y)] + ~~b(X)"'b(Y)+ ~iJ,b(x)y¢o(y)- ~¢o(X)~b(Y) 

Using Eq. (6.22), it can be shown that the term proportional 
to Q in Eq. (6.34) reduces to 

f dy !?(Z,y)f dx l/J"-, (X)+{[~l(X)'¢O(y)] 
+ [iJ,o(x), ¢,(y)]} = 0. (6.35) 

Since ~,(x) is given by 

~,(x) = J d 2Yg(X,y)F2 [l/J _ ,(y)] [iJ,o(y)] 2/2!, 

Eq. (6.35) can be written as 

JdY ;'J?(z,y)JdX d 2u l/J'-'dx)F2[l/J_,(U)]~0(u) 
X {i(x, u) j (u, y) + g(y, u).1 (x, u)} = 0, 
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(6.36) 

(6.37) 

where 

i.:l (x, y) = [~o(x), ~o(y)]· 
If we choose, say, a retarded Green's function 

g(x, y) = e (xo - yO).:l (x, Y), 

(6.34) 

(6.38) 

(6.39) 

then Eq. (6.37) is satisfied immediately. By similar methods, 
the term of Eq. (6.34) which is proportional to P can be re
duced to 

~ f dy .9 (z, y) { - t¢o(y) + yM+ [130, ¢o(y) 1 

+ M+[/3o, ~b(Y)]}. (6.40) 

This term can be made consistent by the following 
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requirements: 

[/30' ¢()(v)] = 0 (6.41) 

and 

[Q, ~o(x)] = i A 2t (P IM2)¢()(X) + .... (6.42) 

Equations (6.33) and (6.41) together with the fact that,8o 
must be constructed from operators from the set 
{ai' aT. a k , at }imply that,8o is a c number, which we set 
equal to zero. 

In order to calculate the second and third terms on the 
left-hand side ofEq. (6.28) we need to evaluate the following 
commutator. Using Eqs. (4.37) and (4.40), we may write 

f dx ¢'- I (X)+{[¢2(X), ¢o(v)) + [¢.(x), ~I(v)]} 

= + f dxx{[¢o(x)¢o(x) - ¢o(x)¢o(X)'~¢I(v)] 

+ [¢o(X)~.(X) - ~ ¢O(X)¢I(X) 

- +¢O(X)¢I(X), ~o(v)]} 

- + f dx [¢b(x)¢I(x), ¢o(v)] + ~[,81' ~o(v)]. 
(6.43) 

Equation (6.43) together with Eq. (6.36), (6.38), and (6.39) 
leads to 

f dx ¢'- I (X)+{[¢2(X), ~o(v)] + [¢I(X), ~I(v)]} 

= ¢b(v)~f dX¢'_1 (x)'¢'o(x) - {y ¢o(v) + ¢b(V)} 

X ~f dx¢'_ I (x)¢b(x) - Y¢I(v) - ¢; (v) 

M ~ 

+ i[,8I' ¢o(v)], (6.44) 

which together with the last term ofEq. (6.34) leads to 

[/3p ~o(v)] = O. (6.45) 

We have thus shown that Eqs. (6.27) and (6.28) lead to the 
requirements of Eqs. (6.33), (6.41), (6.42),~nd (6.45). 

The commutation relation between l/f(x) and fl (t) is 

[¢%(x), flA(t)] = 0, 

which leads to the relations 

(6.46) 

[¢o(x), fl l ] + [~.(x), P] = 0, (6.47) 

[¢o(x), fl2] + [~I(X), III] + [~2(X), P] = O. (6.48) 

Here III and 1/2 are given in Eqs. (6.7) and (6.8) and 

~A(X) = f dy &'(X,Y)¢A(Y)' 

[See Eqs. (6.2) and (6.31)] 
Equation (6.47) can immediately be shown to be satis

fied. Equation (6.48) can be reduced to 

f dZ .9(x,Z){Q{¢b'(Z) + fdY ¢'-I(vl( - ~¢'-'-dZ)¢b(V) 
- i[ ¢b(z), ¢I(v)] - i[ ¢o(z), ¢; (v)] 

2220 J. Math. Phys .• Vol. 22. NO.1 O. October 1981 

- i[¢I(z), ¢b(V)])} + ~{Z¢b(Z) 

+ f dy¢'_ I (vi( - 2~z¢'- I (z)¢b (v) 

- zi[¢o(z), ¢I(v)] - yi[¢o(z), ~I(v)] 

- i[ ¢o(z), ¢; (v)] + i[¢I(z), ¢b(V)])} + {¢; (z) 

+ f dy ¢'- I (vl( - ~¢b(Z)¢b(V) - ~Z~o(Z)¢b(V) 

- i[¢o(z), $2(v)] - i[¢I(z), ¢.I(v)])}} = 0. (6.49) 

the terms proportional to Q in Eq. (6.49) are easily shown to 
cancel. Using the identity 

f dy y¢'- I (v)+[¢o(z), ¢I(v)] 

(6.50) 

the terms proportional to Pin Eq. (6.49) can also be easily 
shown to cancel. The remaining expression can then be 
shown to be identically zero. In this way, Eq. (6.46) is 
satisfied. 

Finally, from Eq. (6.1) it is possible to derive the identity 

[t/!(x), jJf(v)] = i9(x,y). (6.51) 

It is possible but tedious to show that this relation is satisfied. 
The details are not written here as they are very long and 
yield no new information. In summary, we have shown that 
the commutation relation of Eq. (6.1) requires the following 
conditions: 

[/31' ¢o(v)] = 0, 

,80 = 0, 

[Q, ¢o(x)] = i A 2t (P IM 2 )¢o(x) + .... 
Since,r31 = 0, Eq. (6.52) leads to 

,81 = 0. 

From Eqs. (5.24) and (5.42), we can derive 

[Q, '¢'o(x)] = iA 2(P IM2)¢0(X) + .. , 
and 

[Q, ¢o(x)] = iA 2(P IM2)~o(X) + .... 
Equations (6.54) and (6.57) lead to 

[Q,¢(x)] = iA 2t (P Im2)¢~(x) + .. , 

(6.52) 

(6.53) 

(6.54) 

(6.55) 

(6.56) 

(6.57) 

(6.58) 

which using the field equation for ¢o(x) and the fact that ¢o(x) 
is orthogonal to ¢'_ I (x), leads to 

(6.59) 

From the above results. we can see that the set ofphys
ical operators {p, Q, ¢o(x), t/to(x)} obey the algebra 

[Q, P] = i (6.60) 

[¢o(x), ¢o(v)] x" ~ y" = i{8 (x - y) - ¢'_ I (x)¢'_ I (v)/ M}, 
(6.61) 
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(6.63) 

where all other equal-time commutation relations vanish. If 
we construct the Schrodinger picture operator, q, by 

q = e ~ iHtQ (t )eiHt = Q (t ) - tQ, 

then Eqs. (6.52) and (6.56) lead to 

[q, t,bo(x)] = 0 

and 

[q, ¢o(x)] = O. 

Also, since [P,H] = 0, 

[q, P] = i. 

(6.64) 

(6.65) 

(6.66) 

(6.67) 

Thus we see th!J.t the set of operators {P, q} commute 
with the set {t,bo(x), t,bo(x)}. The Hilbert space of the system is 
now constructed in the following way: take the direct prod
uct of the quantum-mechanical realization of the operators 
{q, P = (l/i)(a laq)} in the Schrodinger picture and the 
Fock representation of the operators {t,bo(x), t,bo(x)} con
structed cyclically by operations of the creation operators 
{aT, at} on the vacuum defined by ai 10) = ak 10) = o. 

VII. DISCUSSION AND CONCLUSIONS 

In this paper we have thus found a consistent quantum
field-theoretical picture of a quantum system with an ex
tended object. In this picture we have constructed the quan
tal Hilbert space and performed a perturbative calculation of 
the dynamical map. In the course of the calculation the zero
mode problem was avoided by using certain integral rela
tions. Also, ambiguities arising in the choice of boundary 
conditions were resolved by requiring that the Heisenberg 
fields satisfy the canonical commutation relations. 

We have seen that, to the order of approximation con
sidered, the presence of q and P in the dynamical map in
duces only the following replacements of the explicit space
time variables: 

x---+x + q + (P IM)t + (P 21M 2)(X + q) - (P IM2)Ho + ''', 
t---+t + (P IM)(x + q) + (P 2/2!M 2)t + "', 

which are the lower terms of a Taylor expansion of X and T 
given in Eqs. (2.38) and (2.39). The quantum coordinate q 
and the spatial coordinate x always appear in the combina
tion (x + q). 

The operator quantity tf2(X) describes particle-particle 
and particle-extended object scattering. When a particle 
scatters from the extended object, the object recoils. That is, 
its velocity Q changes. However, the total momentum of the 
system is conserved. Therefore Q depends on both the total 
momentum and the particle number. This is seen in Eq. 
(5.24). This gives rise to the non commutativity of Q with the 
physical field tfo(x) seen in Eqs. (6.62) and (6.63). The pertur
bative results for Q and Hare consistent with the expansions 
of the expressions 
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Q = P I[P 2 + (M + Hof]I/2 or 

P = [(M + Ho)Q ]1(1 _ Q 2)1/2, 

H = [P 2 + (M + Hof] I /2 or 

H = (M + Ho)/(1 _ (2)1/2, 

which can also be derived by general arguments using Lo
rentz symmetry. I I The extended objects' position can, how
ever, be specified without interference from the particle 
number at one particular time. This necessitates the use of 
the Schrodinger picture in describing the quantum state of 
the extended object. The quantum expectation value of the 
position at any given time can be found using Eq. (6.64). 

We have shown in the tree approximation how the pres
ence of the quantum coordinate leads simply to a replace
ment of the space-time variables (t, x) by some combination 
of these and the quantum-mechanical operators. This makes 
contact with the collective coordinate method. The con
straint and gauge condition used in that method may corre
spond to the choice of boundary conditions in our formal
ism. However, this comparison needs further study. 

All results presented here are in the tree approximation. 
A method for inserting the quantum corrections was partial
ly given in Refs. 8 and 12. However, a more careful treat
ment of the ordering of the operators Q, Q, t,bo(x), and ¢o(x) 
appears to be necessary. Work in this direction is in progress. 

Certain (1 + 1 )-dimensional classical nonlinear field 
theories, such as the sine-Gordon theory, are exactly inte
grable and possess an infinite number of conservation laws. 
These theories have been studied in the collective coordinate 
formalism. 4 An analysis of the role of the conservation laws 
in these theories in the formalism presented in this paper 
would be interesting. 
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A formalism of continuous media in general relativity is given and the concept of shock waves is 
defined using manifolds with boundary and the transversality theory of submanifolds. A 
definition of relativistic incompressibility is proposed and one gets that the shock waves are 
longitudinal with the speed of light. 

PACS numbers: 04.20. - q, 04.40. + c 

1. INTRODUCTION 

In this paper we propose to study the concept of inc om
pressibility in General Relativity. This topic has been stud
ied for perfect fluids (Eddington, I Lichnerowicz, 2 B. Coll,3 
Olivert4

), but it has not been treated with whole generality. 
Our aim is to extend the concept of dynamic volume 

given in3.4 and require that its spatial projection does not 
vary along the stream lines. Then we shall examine the rela
tivistic waves in continuous media. 

When one deals with extended bodies in General Rela
tivity, it is usual to avoid possible definitions of such bodies. 
Nevertheless, in the scientific literature, one finds some sug
gestions in order to structure them; for instance, Cattane05 

with his "ideal state," Choquet-Bruhat and Lamoureux
Brousseo with the "frame state," Beiglbock,7 and so on. 

In this paper, we start with the idea of scheme given by 
Lichnerowicz.x We introduce the concept of local scheme 
which, intersecting with the Landau manifold of an observ
er,4 allows a possible definition of a relativistic continuous 
medium. 

According to the notations used in this paper, let us 
consider the space-time as a connected pseudo-Riemannian 
manifold X, of Hausdorff type and four dimensions, in which 
a metric tensor field of hyperbolic signature (3,1) has been 
defined. The coordinate X4 of a point, belonging to a coordi
nate neighborhood of a given local chart F, coincides with 
the coordinate time in the system described by F. It is as
sumed that the measure units have been chosen such that the 
constant light velocity in the vacuum has the value 1. 

We notice that the indices represented by latin letters 
take values I to 4 and the Greeck indices are restricted the 
the values 1,2, 3. 

Finally, we represent by TpXthe tangent space of X atp, 
and by dJ*m the derived linear function at mEX of a differen
tiable function <fJ defined in X. We write MrtN to say that the 
two submanifolds M and N are transverse. 

2. LOCAL DOMAINS AND SIMULTANEITY IN THE 
SPACE-TIME 

Let D be a domain of the space-time X. Being D an open 
manifold, D is a locally compact and connected manifold 
with boundary V. This manifold of dimension 4 is called a 
local domain. 

The study of the local domain in the Minkowski space 
allows us to give, in Theorem 2.1, a structure for certain sets 
of simultaneous points, which are subsets of a domain D. 

A local domain V of Minkowski space X is called a 
transversally spatial domain if its boundary a V cuts trans
versally'O with the whole spacelike hyperplane which con
tains a point of IntV (interior of V). 

Lemma 2.1: For each p of an open set D of Minkowski 
space, there is a transversally spatial and convex local do
main V C D such that pEIntV. 

Proof It is easy to prove that a closed ball of center p is a 
local domain satisfying the adequate conditions. 

Lemma 2.2: Let D be an open set and 1T a spacelike 
hyperplane of Minkowski space X. Then there is a local do
main VCD such that M = Vn1T is a compact and convex 
manifold with boundary of 3 dimensions immersed in R3. 

Proof As the dimensions of V and X are the same, 

Tx V + Tx1T = TxX, 'VxE1TnV. 

That is, 
Vm1T. (1.1 ) 

Therefore, as V is transversally spatial, 1T spacelike, and 
pEIntVn1T, we get 

(1.2) 

From (2.1) and (2.2), one derives 10 that M = Vn1T is a 
manifold with boundary of dimension 3. 

Finally, as V is compact and 1T is closed, M is compact 
into 1T=R3 and it is connected, inasmuch as V and 1T are 
convex. 

Theorem 2.1: Let D be a domain and C an observer (a 
differentiable timelike curve) of the space-time X. For each 
PEC such that L p nD =f <fJ (L p being the Landau manifold of p), 
there is a local domain VC D so that M = L n V is a com-p p 

pact connected Riemannian manifold with boundary of di
mension 3. 

Proof LetpECbe such that LpnD =f<fJ. As the space
time is a linear connected manifold, at each point pEX there 
exist a neighborhood B p diffeomorphic to a neighborhood of 
OETpX = Xbythemapexpp' Then Dp = expp I (BpnD) isan 
open set of Minkowski space which satisfies 

EpnDp = expp- '(LpnD )7'=<fJ, 

where Ep is the physical space of Cat p. Ep is a spacelike 
hyperplane. 

Then we can apply Lemma 2.2. There is a local domain 
V C Dp so that Mp = VnEp is a compact connected Rieman
nian manifold with boundary of 3 dimensions. 

Let us consider the local domain V = expp V CD. Then 
Mp = VnLp is a compact connected manifold with bound-
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ary of 3 dimensions, as it is the image of Mp by expp. 
Therefore, we can restrict Mp to the positive definite 

metric of the Landau manifold: yo = i*g, where i is the natu
ral injection of Lp in X. 

3. ALMOST-THERMODYNAMIC MATERIAL SCHEMES 

Following Lichernowicz,8 a scheme is a domain D of 
the space-time in which one has defined a tensor field of 
second order which is called the energy-momentum tensor 
T. We say that D is normal is T is symmetric and has a 
timelike eigenvector; that is, there exist a scalar field r and a 
unitary timelike vector field ii so that 

T(ii) = -rii. (3.1) 

Let us now solve the following question: As a physical 
body with a material distribution has a density, is it possible 
to endow a material density to a point set of a scheme D (i. e., 
the Mp of Theorem 2.1)? In this case, Mp would generalize 
the concept of continuous medium; we take it as a compact 
connected manifold with boundary of 3 dimensions im
mersed in R\ on which a scalar field 0"> 0 is defined as the 
density of medium. 

Theorem 3.1: Let D be a normal scheme with energy
momentum tensor T such that r> 0; and C an observer of 
space-time. ForeachpECsuch that Lp nD i=r/J, there is a local 
scheme V(local domain ofascheme) ofDsothatMp = LpnV 
is a compact connected Riemannian manifold endowed with 
a scalar field 0" > O. 

Proof Due to Theorem 2.1, it only remains to show the 
existence of the field 0". But r = T(ii,ii) > 0, by hypothesis. 
Then, if i is the injection from Mp in D, 

0" = i*r = rOi> 0 

is a positive scalar field on Mp. 
The schemes which satisfy the hypotheses of Theorem 

3.1 with unique unitary timelike eigenvector ii are called 
material schemes and the sets Mp are relativistic continuous 
media (diffeomorphic, on the other hand, to a continuous 
medium, according to the construction made in Theorem 
2.1). The scalar field r is the so-called proper mass-energy 
density of the scheme. The tensor field :r = i* T is a symmet
ric tensor field of second order on Mp which generalizes the 
classic stress tensor. The stream lines of the scheme are inte
gral curves of the field ii. This field, which by definition of 
material scheme is unique, is a so-called 4-velocity of the 
scheme. 

The relativistic stress tensor tis defined as the spatial 
projection (by means of Eckart tensor y = g + ii ® ii) of the 
energy-momentum tensor. The spatial components of tin 
the local inertial proper system of point pEl) (event of a 
stream line or observer) coincides at P with the components 
of 1- in the chart induced in ~p • 

From the definition of t, one derives that the energy
momentum tensor takes the expression 

(3.2) 

where we have adopted the Taub hypothesis II over the de
composition of the proper mass-energy density in two 
terms:p is the mass-energy density and E is the specific inter
nal energy. This introduction of the thermodynamic variable 
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E leads us to say that an almost-thermodynamic material 
scheme is such that its energy-momentum tensor takes the 
expression (3.2). 

Let us assume that there is matter conservation in an 
almost-thermodynamic material scheme, a condition which 
can be expressed by the continuity equation 

(3.3) 

where d = 1Luyis the deformation tensor of the scheme and 
Lu is the Lie derivative. The tensor dhas the components 

(3.4) 

The time and space components of the conservation 
equations Vi T; = 0 can be written as 

PUiViE + t ijdij = 0, 

P/jUkVku' + r~r1Vktlj = 0, 

wherel= (1 + E)Y + (lIp)tis the tensor index l2 of the 
scheme (below we shall give its physical significance). 

4. INCOMPRESSIBILITY OF AN ALMOST
THERMODYNAMIC MATERIAL SCHEME 

(3.5) 

(3.6) 

Let us recall that in perfect fluids one has characterized 
the incompressibility for isoentropic processes by 

V"k=O, 

k being the dynamic volume defined by 

k=//p 

(4.1) 

(4.2) 

and/the fluid index2 which, at once, is given as a function of 
the pressure, the specific internal energy, and the material 
density according to the expression 

/= 1 +E+p/p. (4.3) 

The generalization of these concepts is suggested by the 
definition of the tensor index, which is given by Maugin 12 for 
elastic media, and we extend it to almost-thermodynamic 
material schemes: 

1= (1 + E)Y + (lip)!. (4.4) 

From (4.4), we propose the following. 
Definition 4.1: We call dynamic volume of an almost

thermodynamic material scheme to the 2-tensor 

f = vf, 

where u is the specific volume. 
From this definition and (4.4), one derives 

f = vy + vi? (4.5) 

and i? = EY + utis called the tensor enthalpy, according to 
the analogy with classical thermodynamics. 

Formula (4.5) hints that the dynamic volume is the sum 
of a term which stands for the specific volume and another 
term, a function of the enthalpy, which is called enthalpic 
volume. This enthalpic volume reduces to zero in classical 
physics (c-+ 00 ), as one can prove if we correct the above 
mentioned formulas in order to make them homogeneous. 

Definition 4.2: We say that an almost-thermodynamic 
material scheme D is incompressible if the spatial change of 
dynamic volume along the stream lines is null, i. e., 
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(4.6) 

Let us see that this idea of incompressibility generalizes 
the one which is given by (4.1) for perfect fluids. For them, 
the relativistic stress tensor is given by t = py; therefore, Eq. 
(4.4) can be written asl = ir. and therefore 

k = kY. (4.7) 

Transporting (4.7) in the definition of incompressibility (4.6), 
one gets 

yIVfik=O, (4.8) 

hence (4.1) is obviously satisfied. 
Theorem 4.1: The condition of incompressibility (4.6) 

leads to the expression 

y;yjukv kt ij + (2t rl + p(l + €)yl)r7V kUi 
= yrlt kidki . 

Proof Ifwe develop the covariant derivative of the dy
namic volume using v = 1/p, we obtain 

V fik ij = 1/p2{pyijV fi€ + p(l + €)(uiV fi~ + ~V fiU i) 

+ Vfit ij - ([2/pltij + (1 + €)yij)Vfi p}. (4.9) 

From this expression, by virtue of (4.6), one derives 

py1ukV k€ + y;yjukv kt ij 

- ([2/plt rl + (1 + €)yl)UkVk P = 0. (4.10) 

Using Eqs. (3.3) and (3.5), we eliminate the derivatives 
of € and p, and the theorem is proved. 

5. RELATIVISTIC WAVES IN THE INCOMPRESSIBLE 
ALMOST-THERMODYNAMIC SCHEMES 

In order to study the relativistic waves for incompress
ible almost-thermodynamic schemes, we introduce some 
properties of the timelike characteristic hypersurfaces. 

Theorem 5.1: Let Wbe a timelike hypersurface ofa 
material scheme D, and p a point of D such that LpnD #¢' 
Then Hp = WnLp is a regular submanifold of dimension 
two. 

Proof It is easy to see that the tangent vectors to Lp are 
spacelike. Then, as W is timelike, one has that, in each 
q€WnLp' there is a timelike vector tangent to Wwhich will 
not be tangent to Lp. This, together with the fact that Wand 
L pare submanifolds of three dimensions and D of four di
mensions, leads to the transversality condition 

TqLp + Tq W = TqD 

and it tells us that Hp is a regular submanifold of dimension 
two. 

Definition: We call shock waves of a timelike character
istic hypersurface W, of an observer e, the submanifolds 

Hp = LpnW, PEe. 

IfBp isthedomainofexpp-I, then Wp = expp-I (WnBp) 
is a hypersurface into the Minkowski space TpX associated 
with W at p. Thereby, we can consider the set 

Hp = WpnEp = expp-IHp, (5.1) 

which is a submanifold of dimension two in TpX, and it will 
be called a "spacelike shock wave" of the observer e. 

Once the shock waves are defined, let us introduce their 
speed. This leads us to the well-known expression given by 
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Lichnerowicz2•
R and Pham Mau Quan. 13 Hereby we proceed 

to derive from the definitions some properties which attempt 
to fill a vacuum existing in this respect in the scientific 
literature. 

Let p be a point of timelike hypersurface Wand e the 
stream line of the scheme which contains p. In order to asso
ciate a speed to the shock waves Hp, pEe, let us take a vector 
w tangent to W at p orthogonal to Hp. Let us see that w is 
timelike. As 

TpHp = EpnTp W, (5.2) 

then ! hi, h2, W 1 will be a basis of Tp W if ! hi' h2l is a basis of 
TpHp, because w is orthogonal to Hp. Therefore, w is time
like, inasmuch as W. Ifwe consider that w is unitary, it is 
called a four-velocity of Hp. _ 

By virtue of(5.2), there is a unitary vector AEEp orthog
onal to Hp. This vector gives us the direction of the observed 
propagation. Hereafter we shal! express TpHp by H" . _ 

Theorem 5.2: The vectors I (orthogonal to Watp), W, A, 
and ii (four-velocity of the observer atp) are in the same two
plane; that is, rand w can be written as linear combinations of 
X and ii. 

Proof Let us define the vector 

I, = r - aii with a = - §Iii,!). (5.3) 

This vector belongs to the physical space Ep, inasmuch as 

g(ii,L) = 0. (5.4) 

But by virtue of (5.2), ~l vEH" i~ in Ep and in Tp W; h~nce it 
will be orthogonal to L. Thus, L has the direction of A. This 
implies 

r = Ill, IIX + aii. (5.5) 

With b = - g(w, ii), w - bii belongs to the physical 
space Ep. Moreover, as w is orthogonal to Hp' it will be 
orthogonal to all vectors of H", and so 

g(V,w - bii) = 0, 'v'vEH". 

That is, ifw - bii#O, it will have the direction of X and there 
will be a eER such that eX = w - bii, and hence 

w = bii + ei. (5.6) 

If w - bii = 0, it is enough to take e = ° so that (5.6) is 
satisfied. 

The expressions (5.5) and (5.6) prove the theorem. 
The speed U of propagation of the shock wave is the 

relative in the Minkowski space between the moving point of 
four-velocity wand the observer of four-velocity ii, where 

ii = (expp- I). ii, w = (expp- I). W. (5.7) 

As expp conserves the metric at p, 

b = - WiU i = - WiUi = 1/(1 _ U 2)1I2. (5.8) 

From (5.6) and (5.8), we get 

(5.9) 

On the other hand, as w and rare orthogonal, the expressions 
(5.5) and (5.6) lead to 

a/Ill, II = c/b. (5.10) 

Substituting (5.8) and (5.9) into (5.10), we arrive at 

U = a/Ill, II. (5.11) 

J. J. Ferrando and J. Olivert 2225 



                                                                                                                                    

[We have taken the positive root in (5.9). One would arrive at 
the same final result taking the negative root.] 

Now, as W is a characteristic hypersurface, we may 
apply the Hadamard discontinuities, so that if ¢' is one of the 
tensor components, of any type, with discontinuities at the 
first derivatives, one satisfies 14 

[¢,,;] = b¢"i' 

As the Christoffel symbols are continuous, one gets 

[Vi¢' ] = b¢"i' 

Furthermore, using (5.5), we obtain 

(5.12) 

(5.13) 

[yJV i ¢, ] = IlL IIAjb¢', (5.14) 

and keeping in mind (5.3) and (5.11), we derive 

[uiV,¢,] = - UIILllb¢'. (5.15) 

It is easy to verify that the components b¢' yield to the lower
ing and raising of indices, because g is continuous in X. 

If the W is a characteristic hypersurface by the discon
tinuities of the first derivatives of the four-velocity, by virtue 
of (5.12) it leads us for each component to 

[Jju l
] = bU"j' (5.16) 

With theses discontinuities, we define the vector bii = (bu i), 
which will be called "infinitesimal discontinuity of the four
velocity ii". 

It is easy to prove that 

ujbui = 0, (5.17) 

and hence bii is a vector of the physical space. 
With the decomposition made by Maugin,12 

bii = biil + Ibu ll , (5.18) 

where bUll = Aibui, bui = S Jbui, S = r - I ® I, we come to 
formulate the following 

Theorem 5.3: Let l' be a space like symmetric tensor of 
second order (Piju i = 0). The discontinuity system of bii, 

P'ibui = 0, 

may be written in the form 

Pl'ibu~ + p,bull = 0, 

Pibu~ + P II bUll = 0, 

Pi' p, P II are defined as 

P1r, = S~S~Pk" 

P II = Pk,A kA " 

P, =,1, kpk'S~, 

Proof The use of (5.22) leads to 

1'= Pi +p®I +A®P + PilI ®I 

and from (5.24) to 

(5.19) 

(5.20) 

(5.21) 

(5.22) 

(5.23) 

(5.24) 

(5.25) 

Pi = P'kA k - PIIA,. (5.26) 

Placing (5.25) and (5.18) into (5.19), one gets 

P"bu~ + Prbull + A,Pibu' + PIIA,bu ll = 0. (5.27) 

The substitution of (5.26) into (5.27) leads to (5.20). Fi
nally, by means of the contraction of (5.19), one obtains 
(5.21). 
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Let us study the relativistic waves in the incompressible 
almost-thermodynamic scheme. For it, we analyze the equa
tions by virtue of which the Cauchy problem is established. 

As we are not going to study the gravitational waves, we 
assume that the second derivatives of g'j are continuous, and 
thus the use of either the Einstein field equations or material 
waves will not be necessary, so that U ';fO. 

Infinitesimal discontinuities can exist at the derivatives 
of the four-velocity components, of the relativistic stress ten
sor, of the material mass density, and of the specific internal 
energy; i. e., 

bu', btij' bp, be. (5.28) 

Nevertheless, from the conservation equations (3.5) and 
(3.6), the continuity equation (3.3), and the equation given by 
Theorem 4.1, one has that not all these discontinuites are 
independent; but they satisfy the following. 

Theorem 5.4: The study of discon tin uities ( 5.28) reduces 
to the system 

with 

P'i = pU2/r, + A,Akt 7 - (2t ~Ak + p(1 + elA,lAi' 
Proof Calculating discontinuities in the formula of 

Theorem 4.1, keeping in mind (5.14), (5.15), and (3.4), one has 

- r~rjUbtij = y't7Ak - (2t'l +p(1 + e)Y'lA,bui, 
(5.29) 

and from (3.6) we obtain 

- p/;Ubu' + ~Ajbt ij = 0. (5.30) 

Equations (5.29) and (5.30) lead us to the statement of the 
theorem. 

Let us restrict the principal shock waves. We use the 
following definition given by Maugin 12: We say that a shock 
wave is principal if I (propagation direction) is the eigenvec
tor of the relativistic stress tensor t: 

tijAi=tIlA,. (5.31) 
Theorem 5.5: In a principal shock wave, one satisfies 

Pl'itJU~ = 0, PII tJull = 0, 

where 

PI'i =pU2S~SiJ.o;j' 

PII = (U2 
- 1)(p(1 + e) + til)' 

(5.32) 

(5.33) 

(5.34) 

Proof Due to (5.31), Pis symmetric and takes the form 

l' =pU2J- (p(1 + e) + tll)i ®X (5.35) 

Then, we may apply Theorem 5.3 to Theorem 5.4, and hence 
one obtains straightforwardly the expressions (5.32), because 
of 

Pj = SjP,iA ' = ° 
by virtue of(5.35). Further, (5.33) and (5.34) are derived from 
the definition given in Theorem 5.3. 

Theorem 5.6: In an incompressible almost-thermody
namic scheme the principal shock waves are longitudinal 
and their speeds are U = 1. 

Proof Due to the uniqueness of the four-velocity of a 
material scheme 
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p(1 + E) + fa #0, a = 1,2,3. (5.36) 

From (5.32) and (5.33) one derives, by virtue ofU #0, 
{jUl EH", 

P/n{jui = O. (5.37) 

But from (5.36), the system (5.37) leads to OUl. = 0; that is, to 
the longitudinal shock waves 

{ju = {juliA, {ju ll #0. 

This condition carries us with (5.32) to 

P II = O. (5.38) 

Finally, the expression (5.34) of PII , with (5.36) and (5.38), 
implies the unity value for the speed U of shock waves. 

6. DISCUSSION 

In this paper we have studied what we can understand 
as a relativistic continuous medium in General Relativity. 
For it, we have made use of the theory of manifolds with 
boundary and use them to satisfy some topologic properties 
in order to verify the integrability conditions in these mani
folds. The integration is essential to definition in these con
tinuous media; for instance, their mass, center-of-mass, and 
so on. 

Nevertheless, our exposition must be considered as a 
first order approximation to the reality, because the bound
aries of the natural extended bodies are not always differen
tiable at all points. It is suggestive to extend our definition to 
the manifolds with corners; but these mathematical struc
tures have not been deeply studied so very few properties are 
known to be applied to this topic. 

Once the material schemes have been defined, we have 
restricted the discussion to the so-called almost-thermody
namic material schemes, in order to avoid introducing in this 
paper the concepts of enthropy and temperature. 

We have obtained an incompressibility condition for 
the almost-thermodynamic schemes, following the line la
belled by Lichnerowicz. 2 With it, the transversal shock 
waves disappear (at most, they are material: U = 0), and the 
longitudinal shock waves speed takes the value 1. 

Therefore, if the almost-thermodynamic scheme is a 
perfect fluid, the incompressibility condition reduces to the 
known one in B. Co1I3 and J. Olivert4 for isoenthropic 
processes. 

Likewise, it is easy to prove that the incompressibility 
condition, in the hypoelastic media, 12 leads us to consistent 
results: 

2227 J. Math. Phys .. Vol. 22. No. 10, October 1981 

ptA + 2J-l) + 2tll = p(1 + E), (6.1) 

PJ-l + fa = 0, a = 2,3, (6.2) 

where A, J-l are the Lame coefficients. With it, one gets the 
same results for the speeds for shock waves as this paper. 

The expressions (6.1) and (6.2) are obtained establishing 
the equations for the Hadamard discontinuity described in 
Sec. 5, by replacing the space component of conservation 
equation (3.6) by the relativistic Hooke law given by Cho
quet-Bruhat and Lamoureux-Brouse,6 equivalent to the one 
proposed by Maugin 12 when the continuity equation is 
satisfied. 
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We describe an algorithm to solve the classical equations of super gravity for the coupled fields of 
helicity 2 and 3/2. The algorithm depends on an expansion in the associated Grassman algebra 
and leads to a sequence of coupled equations that may be solved in a step by step manner. The 
procedure begins with solutions of the usual empty Space Einstein equations but the subsequent 
equations are all linear differential equations. To complete the method, it is necessary to 
generalize the supplementary conditions on the vector spinor field from flat to curved space. The 
algorithm also permits a classification of the complete solutions in terms of the associated 
gravitational fields. It is shown that vanishing curvature implies Minkowski space and does not 
permit other conceivable possibilities such as a Clifford space. Generalizations of the vanishing 
curvature space are suggested. 

PACS numbers: 04.20.Cv, 04.20.Jb 

I. INTRODUCTION 

Almost nothing is now known about classical solutions 
of the equations of supergravity. In fact the only exact solu
tion, to our knowledge, is a generalization of the parallel 
plane waves that solve the vacuum Einstein equations'; this 
is a "true" solution in the sense that it cannot be reduced by a 
gauge transformation to a solution of the simple gravity 
equations. We are here interested in searching for a wider 
class of exact solutions of the supergravity equations that 
also have the essential property that they cannot be reduced 
to simple gravity by a gauge transformation. 

The additional structure of supergravity stems not only 
from the coupling of the 3/2 field to the gravitational field 
but also from the anticommuting character of the fermion 
field. It turns out that the anticommuting property is a sim
plifying feature, since an expansion in the related Grass
mann algebra reveals that the field equations decompose 
into a set of coupled equations that may be solved sequential
ly rather than simultaneously. The algorithm for the solu
tion begins with the usual Einstein equation with no source 
and a corresponding Rarita-Schwinger equation for the 3/2 
field in the same background gravitational field that solves 
the Einstein equation. The only nonlinear equation that 
needs to be solved is the Einstein equation itself, while the 
rest of the coupled set of equations are all linear in the un
known functions. Since the algorithm always starts from a 
solution of the empty space Einstein equations, the solutions 
of the supergravity equations may themselves be classified 
by a classification of the parent empty space gravitational 
fields. 

II. NOTATION AND FIELD EQUATIONS 

We introduce the following I-forms' 

Ea = Ea"dx", 

UJ\ = UJ
" 

abdx", 

¢ = ¢"dx", 

Y = y"dx", 

where E a", UJ" a b' ¢", and Y
" 

are the tetrad field, coefficients 

of rotation, Rarita-Schwinger field, and Oirac matrices, re
spectively. In terms of these we define torsion and curvature 
2-forms 

e a b = dUJa b + UJa c 1\ UJ\ . 

These equations imply 

dS a + UJah I\Sb = e a
b I\Eh. 

In this notation the field equations are 

yI\D¢= 0, 

*eab I\Eh = - (i/2)¢TCyy~ I\D¢, 

sa = (i/2)¢TCy 1\ ¢, 

where 

(2.1) 

(2.2) 

(2.3) 

(A) 

(B) 

(C) 

D = d + ¥Uaba"b 1\, (2.4) 

and *e is the dual curvature. 
In addition, the vector-spinor field is subject to the sup

plementary conditions 

(0) 

(E) 

Urrutia has noted that if(C) is substituted into (2.3), one finds 

e a h 1\ E b = - (i/2)¢T Cy 1\ Dl/!, *(B) 

which is dual to (B). In this way supergravity preserves the 
usual duality between the field equations and the cyclic iden
tities of simple gravity.2 

The component forms of (A) and (B) are 

E',).afJy).D" y'il/![i = 0, (A') 

( R P a - !REai') e = - (i/2JE',;Ca/3¢). rCYaDa y'l/![i' (B') 

where R Ita is the Ricci contraction of the curvature and e is 
the determinant IE ai' .1. It follows from (A') and (B') that 

R = ° (2.5) 

III. EXPANSION IN GRASSMANN ALGEBRA 

Let us make the preceding formulation more precise by 
assuming that all the above forms lie in a Grassmann alge-
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bra. Then for the vector-spinor form we assume 
I 3 

l/J = 'Ll/Jj€j + 'Ll/J;jk€i€j€k + "', 
I 3 

= 'Ll/Jl'i€;dxl' + 'Ll/JI';jk€;€j€kdxl' + "', (3.1) 

where 

€i€j + €j€i = O. (3.2) 

Then the commuting forms Ea, ufb, sa, and e a
b may be 

expanded in even elements of the algebra. Let us first consid
er the simplest case: 

l/J1L = l/JI'I€I + l/J1'2€2' (3.3) 

Then 
o 2 

Ea = E a + E a(i€1€2)' (3.4) 

o 2 

UJa b = UJa b + UJa b (i€ 1€2)' (3.5) 

2 

sa = sa(i€I€2)' (3.6) 

o 2 

e a
b = e a

b + e a
b(i€I€2)' (3.7) 

Equations (A), (B), and *(B) now imply in lowest order 
of the Grassmann algebra 

o 0 

yADl/J=O, (3.8) 

(3.9) 

(3.10) 

where 

(3.11) 

o 0 

D = d + ¥Uaba"b A . (3.12) 

Equations (3.9) and (3.10) may be expressed in the familiar 
forms 

o 0 0 

R a fJ - !R oa fJ = R a fJ = 0 (3.9') 

by (2.5), and 
o 0 0 

R ,!.afJr + R ,!.fJra + R \afJ = 0, (3.10') 

o 
where R afJ is the Ricci contraction of the curvature 

The equations (3.9') are differential equations for the 
o 0 

UJI' a band (3.10') are identities. By (2.1) the forms UJa b may be 
o 

related to the E Q: 

o 0 0 

dEa + UJab AEb = O. (3.13) 
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o 0 

The connection between E and UJ is thus Riemannian. These 
o 

equations may be solved for the UJ '!'Pl' : 
o 

=![ - E Q,!.( al'E a
p - apEQI') + E al'(apE

a
,!. - a,!.E

a
p) 

+ E ap (a,!.E Q/i - aI'EQ,!.)]. (3.14) 

After substitution of(3.14) into (3.9') the set (3.9') contains 10 
o 

equations for the 16E a a' The remaining six degrees of free-

dom correspond to the arbitrariness in orienting the tetrad. 
The important simplification in (3.8) is that the torsion 

o 
does not appear in D and therefore the equation for l/J is 

linear. That fact not only makes the solution of(3.8) tractable 
but also permits one to build up linear superpositions to sat
isfy additional constraints. Equation (3.8) is, of course, the 
usual Rarita-Schwinger equation in a given gravitational 

o 0 

field UJltab , where UJ/iab is a solution of the field equations 

(3.9'). Therefore, the general problem defined by (3.8) and 
(3.9) is to determine l/J in a given gravitational background. 
This has in fact already been carried out for a class of solu
tions in the Kerr-Newman background. 3 

The fact that the lowest order equations (3.8)-(3.10) 
split off from the remaining equations implies also that the 
supergravity solutions may be partially classified with the 

o 
aid of the associated solution UJ of the simple gravity equa-

tion. For example, one might classify the gravitational com
ponents according to the Pirani-Petrov scheme, or in some 
other way such as the Bianchi classification. The supergra
vity solutions would then divide into classes distinguished by 
the label of the parent gravitational class. 

IV. THE SECOND ORDER EQUATIONS 

Equations (A), (B), and (B') then imply in the next order 
o 2 2 0 0 

*e a
b AEb + *e a

b AEb = - (i/2)l/JTCY'D y~l/J, (4.1) 

o 2 2 0 0 

eabAEb+e\AE b = _(i/2)l/JTCY'ADl/J. (4.2) 

Let 

(4.3) 

then 

(4.4) 

2 

where e is the following determinant: 

2 0 002 
- Ea Eb Ee Ed e€afJ,!.1' - €abcd a fJ ,\ 1" 

By (3.9') however the left side of (4.4) vanishes and 
therefore tp a also vanishes. Hence the first term of (4.1) 

(4.5) 
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drops out and (4.1) becomes 
200 

*e a
b I\E b = - (i/2)lrCy I\Dr~1/; (4.6) 

or 
2 0 0 

RJLa = -(i/2)e-l~Aa(3(1/;ATCraDar1/;(3)' (4.6') 

2 2 

where R is the Ricci contraction of e and (2.5) has again 

been used. 
In contrast to the first term of(4.1) the first term of(4.2) 

is not required to vanish. This term then brings the second 
2 

order tetrad field E a into the problem. That is because (4.2) 

incorporates the second order part of (2.1). 
One now has to solve (4.6) for the second order tetrad 

2 

E a where 

2 2 2 0 0 2 

e a b = do}" b + OJQ c 1\ OJC b + OJQ c 1\ OJC b (4.7) 

2 2 

and OJ is related to E by 

2 0 2 2 0 2 

dE
Q + OJ\ I\E b + OJ\ I\E b 

= sa. (4.8) 

2 

This last equation may be solved for the components of OJ: 

2 

OJJLaA = H {uaA } + {Aa,u} + {a,uA } 1, (4.9) 

where 

(4.9a) 

After (4.7) is substituted into (4.6) the resulting equations are 
2 0 0 

linear in OJ, while all other functions (1/;, OJ, E) in these equa-

tions are already determined by the lowest order problem. In 
2 

addition according to (4.9) the OJal'A are themselves linear 
2 

functions of theE Q JL and its first derivatives. Therefore, after 

substitution of(4.9) into (4.6), (4.6) becomes a set oflinear 
2 

second order differential equations for the E a;,. There are 16 
2 

equations for the 16 unknown functions E Q A . All other func-

tions in these equations are again known from the solution to 
the lowest order problem. 

The problem always divides into two tractable parts. In 
the first part one finds a 1/;JL field in a background gravitation
al field, which itself is an arbitrary solution of the empty 

o 0 

space Einstein equations. Having determined the E, OJ, and 

1/; in this way, one can then go into the second order equation 
and solve 16 linear partial differential equations for the 16 

2 

functions E Q ex • 
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Since this procedure incorporates (2.1) as well as the 
structure of the torsion (C) via (4.8) or (4.9) it is guaranteed to 
preserve the identities (*B) and (4.2). The exact solution ob
tained in this way has the property that 1/;1' and E Q (l are 
mutuaUy codetermined but the expansion in the Grassmann 
algebra permits a procedure that separates the total problem 
into two linear problems which can be solved in sequence 
rather than simultaneously. 

V. CONSTRAINTS ON THE VECTOR SPINOR FIELD 

In Minkowski space the irreducible representation of 
the spin-3/2 field is totally symmetric in the spin or indices. 
The irreducibility condition may also be expressed by 
imposing 

(5.1) 

Since the y' are independent of position in flat space, (5.1) 
reduces the Rarita-Schwinger equations to the following set 
of four Dirac equations: 

y'a
l
,1/;A = o. 

Then contraction of (5.2) with V yields 

iJI'1/;" =0 

(5.2) 

(5.3) 

so that there are altogether eight conditions, (5.1) and (5.3), 
exclusive of the Majorana constraints, that limit the solu
tions of 16 equations (5.2). That leaves eight independent 
components, the proper number for a massive 3/2 field. In 
addition the massless equation is invariant under the gauge 
transformation 

1/;1" = 1/;1' + ai' E. (5.4) 

In this case the number of independent components may be 
reduced to four. 

Let us now see how these conditions generalize to solu
tions of (3.8). We begin as before by imposing 

() 

(5.5) 

To pass from flat to curved space, we need the formula 

y',D;, = tA if (

0 0 ) () 
(5.6) 

and the Rarita-Schwinger equation in the following form: 

o (0 0) 
y' D"w;, -D;.1/;" =0. (5.7) 

It follows from (5.5), (5.6), and (5.7) that 
o 0 

y'V
I
,1/;A =0, (5.8) 

where 
o 0 

V1,1/;A =D"w;, - -UI,}r,v,,· (5.9) 

o 
Then VI' is the "complete" covariant derivative and (5.8) is 

the analog of(5.2). 
o 

Now contract (5.8) with V· Then 
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o 0 0 '(0 0) 
V/'-tP/'- + tY"Y" V/'-tPA - V).tP/,- = 0 

and by (5.7) 

(5.10) 

which is the analog of(5.3). Just as in flat space the diver
gence condition (5.10) is a consequence of the preceding two 
conditions (5.5) and (5.8,. Therefore, one has the same num
ber (eight) of independent components as in the flat case. 
Moreover, these three constraints are invariant under the 
following gauge transformation: 

(5.11 ) 

where € satisfies the Dirac equation 
o 0 

Y"D A€ = O. (5.12) 

Proof The preceding statement is immediately obvious 
for the first of these constraints, (5.5) in view of (5.12). 

Next consider 
o 0 0 0 0 

y"V/,-tP/ = y"V/,-D).€ 

o 0 0 0 0 

= y"D /,-D A€ - Y"t/,-}D ,,€ 

o (0 0) 
=Y" D/,-,DA € 

again by (5.12). Then 

0(00) 0(0 ) Y" D I' ,D A € = Y" !R ab/,-A ff1b € 

o 0 0 0 

= !R afJ/,-A y']/'yP€ 

=0 

by (3.9/) and (3.10/). Then 

by (5.6) 

(5.13) 

(5.14) 

(5.15) 

(5.16) 

so that (5.8) is invariant under (5.11). But if(5.5) and (5.8) are 
invariant so also is (5.10) since it follows from the two earlier 
equations. 

VI. GENERALIZATION TO ARBITRARY GRASSMANN 
ALGEBRA 

The limitation to the simplest Grassmann algebra is in
essential, and the preceding procedure goes through exactly 
the same for a Grassmann algebra of dimension 2d. The low
est order problem is again to determine tP in a given gravita
tional background which is in turn a solution of the empty 
space Einstein equations. One may then proceed to higher 

2231 J. Math. Phys., Vol. 22, No.1 0, October 1981 

order equations as before. In going from the nth order to the 
(n + 2) order the solution of the nth order problem may be 
assumed to be known. Then there are always only linear 
equations to be solved for the terms of order n + 2. 

One may illustrate the general procedure by going to 
the next order. In the third order Eq. (A) is 

o 03 2 01 0 21 

r 1\ D tP + r 1\ D tP + r 1\ D tP = o. (6.1) 

3 

This is a linear equation for tP. Everything else in this equa-
3 

tion is known from the second order calculation. After tP is 

determined from (6.1), one may go on to the fourth order 
forms ofEq. (B): 

o 4 2 2 4 0 

*e a
b I\E b + *e a

b I\E b + *e a
b I\E b 

(

1 2 1 1 03 3 0 1) 

= -(i/2) tPTC~I\DtP+tPTC~I\DtP+tPTC~I\DtP. 

(6.2) 
The right side of (6.2) is now known from the solution to 
(6.1). The first term on the left will vanish as it did in second 

4 

order. The only unknown is then e which is 
4 4402204 

e a
b = dufb + Wac I\w\ + Wac I\wc

b + Wac I\ wcb .(6.3) 

After (6.3) is incorporated into (6.2), the latter becomes a 
4 

first order linear differential equation for w, where again ev-

erything else in (6.2) is known. Instead of a first order equa-
4 

tion for w, however, we may write a second order linear dif-
4 

ferential equation for E if we solve 

44022044 

dEa + w\ I\E b + wa
b I\E b + wa

b I\Eh = Sb (6.4) 

4 

for wand substitute in (6.2). [See Eqs. (4.8) and (4.9)]. The 

procedure is obviously general and may be continued to any 
order. 

All the higher Grassmann algebras introduced in this 
section are permitted within the bounds of simple supergra
vity. (Increasing the order of the Grassmann algebra does 
not, for example, imply generalizations to extended 
supergravity.) 

Although the subject of this paper is classical supergra
vity, a similar Grassmann expansion may be introduced 
whenever the total field contains both commuting and anti
commuting parts.4 Since no quantization is attempted, how
ever, there is no relation between our use of the Grassmann 
algebra and the usual absorption and emission operators of a 
quantized Fermi field. 

VII. SPECIAL GEOMETRIES 

By imposing suitable constraints on supergravity one 
must, of course, recover simple gravity. By imposing weaker 
constraints one may explore field structures intermediate be
tween simple gravity and the full complexity ofsupergravity. 
For example, a simple possible constraint is vanishing total 
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curvature. In general relativity this condition implies Min
kowskian space-time; but in a non-Riemannian theory, like 
supergravity, vanishing total curvature, and therefore dis
tant parallelism, does not exclude a nontrivial metric struc
ture. Physical theories based on geometries exhibiting dis
tant parallelism have had a long history4 and it is natural to 
ask whether supergravity has similar properties. In fact, it 
does not since, in the case of supergravity, vanishing total 
curvature again implies Minkowskian spacetime. On the 
other hand, similar but weaker conditions may lead to an 
interesting class of solutions. 

VIII. VANISHING CURVATURE 

The condition of vanishing curvature reads 
o 2 

e\ = e a
b + e a

b (iE.E2 ) = 0 (8.1) 

or 

(8.la) 

Let R,,).a{3 be the curvature tensor formed from the symmet
ric part of the affine connection r "(a{31 and let 

e ,,).a{3 = R I,Aa{3 + S "Aa{3 . 

Then 

S"Aa{3 =S"A{3la -S"Aal{3 +S"u{3Su).a 

- SI'a{3SU).{3 + 2S
" uA S

u
a{3' 

(8.2) 

(8.3) 

Here the solidus denotes the covariant derivative with reo 
spect to the total connection r" a{3' Then (8.1) implies 

R
"

Aa(3 = - S"Aa(3 (8.4) 
o 2 

for both e and e . 
The full affinity and its symmetric part are related to the 

Christoffel connection by 

F" = JI' } + K I' a(3 ~{3 a(3' 

where K I' a(3 is the contortion, and 

F"(a{31 = ~{3} + Sa(3" + S(3a", 

(8.Sa) 

(8.Sb) 

where Sa{31' is antisymmetric in the second and third indices. 
By (8.la), (8.4), and (8.Sb) 

o 0 

R I,Aa(3 = - S ,,).a(3 = 0, (8.6) 

2 2 

- R "Aa(3 = S"Aa(3 = S").(3la - S"Aal(3' (8.7) 

and 
o 

F l'(a(31 = ~{3}' (8.8) 

2 

F"(a(31 = Sa(3" + S(3a " • (8.9) 

By (8.6) and (8.8) 
o 
R l').a{3 [ ~{3} ] = o. (8.10) 

Therefore, vanishing total curvature as expressed in (8.1) im
plies vanishing Riemannian curvature. This result differs 
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from the corresponding statement for Clifford space, for 
example. 

One slight difference remains: By (8.1) it follows that up 
o 2 

to a gauge transformation both w" and w" vanish. Therefore, 

by (4.8) 

(8.11 ) 

or 
2 2 

ai' E a A - a A E ai' = S a"A . (8.l1a) 

Since there is no necessity for the t/J" to vanish there is in 
general the possibility of a torsion and therefore a nontrivial 

2 

second-order tetrad field: E a

"

• 

The remaining field equations to be satisfied are (4.1) 
which now read 

(8.12) 

or 

(8.12a) 

These are nonlinear conditions on the solutions of the 
linear equations 

() 

yAdt/J = 0 (8.13) 

or 

(8.13a) 

Solutions of this set have been found and are described 
in the Appendix. These solutions lead, however, to vanishing 
torsion. This may not be surprising since dS a = 0 by (2.3). 
Therefore if the total curvature vanishes, the resultant struc
ture is entirely Minkowskian. 

IX. VANISHING SECOND ORDER CURVATURE 

Since (8.1) removes all non-Minkowskian features, let 
us try the weaker condition 

(9.1 ) 

while 

(9.2) 

Then 
o 0 

e "Aa(3 = R I,Aa(3 [ ~(3 } ] =1= 0 (9.3) 

but 

(9.4) 

or 

R I' Aa{3 = S I' Aa;f3 - S" Af3;a , (9.5) 

where the covariant derivative is taken with respect to ~p}. 
In this case 
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2 

L R /l).af3 = 2 L S/l).a;f3· (9.6) 
[).af3 I [).af3 I 

By (9.3) this space is not metrically fiat. This case is therefore 
not trivial and at the same time it is greatly simplified by (9.1) 
or (9.4). We have 

2 2 2 0 0 2 

e a b = dof b + (1)ac 1\ (1)c b + (1)ac I\(1)Cb = O. 

Equation (9.7) may also be satisfied by 
2 

(1)a b = 0 

while in general 
o 

(1)ab ¥O. 

(9.7) 

(9.8) 

(9.9) 

In viewof(9.9) there are, of course, solutions other than (9.8). 
Let us choose the simplest solution, (9.8). Then 

2 0 2 

sa = dEa + (1)ab I\Eb. (9.10) 

2 0 

The E all fields are not trivial since (1)a b no longer vanishes. 

We also have the identities 
002 

ds a + (1)ab I\Sb = e a
b I\E b 

, (9.11) 

(9.12) 

The lowest order field equations (3.8)-(3.10) are un
changed by the restrictions (9.1) and (9.8). From these equa

o 0 

tions one may choose a solution (t/J, E a, (1)ab). The second 

order equations are (9.10) and 

(9.13) 

where 
o 0 

D = d + ¥Uaba"b 1\ . 

In component form one must choose solutions of the lowest 
order problem that satisfy 

€", ila f3t/JT). eyc r( aa + ;aaba"b )¢f3 = O. (9.14) 

If a ¢ a can be found that satisfies these conditions, one may 
2 

then solve the linear Eqs. (9.10) for Ea). 

2 2 0 2 0 2 

~E~-~E~+~~E~-~uE~=S~. 
(9.15) 

Equations (9.14) may be reduced by use of the following 
expansion 

i€",).aPys = ~~ (;a~ -;af3 ) +~). (;ap - ;a~ ) 
(

0 0 0 0 0 0) (0 0 0 0 0 0 ) + gl'ayilyf3 _ gl'f3yilya + gAPyilya _ gAayllyf3 

+ (~f3~a _ ~a~(3). (9.16) 

The contracted form of the Rarita-Schwinger equations is 
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(9.17) 

Therefore, the first four terms of(9.16), when substituted in 
(9.14), cancel in pairs, as shown. Likewise the next four terms 
also cancel in pairs in view of(5.5) and the related equation 

o 0 

yaD a ¢f3 = {Palf¢a' (9.18) 

Hence (9.14) may be reduced to 

(~)TeYa(Da¢/l -D/l¢a) =0. (9.19) 

By imposing the ansatz (9.1) and in particular (9.8) one 
2 

replaces linear differential equations for E a by the nonlinear 

constraints (9.13) or (9.19). It is possible that Eqs. (3.8) and 
(9.19) have common solutions that do not reduce to the pre
vious case of totally vanishing curvature. 
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APPENDIX 

We solve the Rarita-Schwinger equation in the fiat 
space with the nonlinear constraint (8.12a). Since (1)/l is zero, 
the Rarita-Schwinger equation reduces to (5.2) with the con
straints (5.1) and (5.3). The general solution of these equa
tions isS 

f 
d3k 

= 2k o [A (k )U/l(k, + )e- ik
.
x + B(k )U/l(k, _ )e- ik

.x 

+ A *(k )V/l(k, + )eik
.
x + B *(k )V/l(k, - )eik

.
x

], (AI) 

where A (k ), B (k ), A *(k ), and B *(k ) are odd elements of 
Grassmann algebra and 

Up(k, +) ~ [ _a;~~ikl (Ala) 

Up(k, -) ~ [::~~l (A2b) 

V/l(k, +) = [ _ ~(k)] , (A2c) 

-a/l*(k) 

V/l(k, -) = [ .jk) ], (A2d) 

- b/l*(k) 

R. J. Finkelstein and J. Kim 2233 



                                                                                                                                    

ao(k) = 0, 

a Ilk ) = [I - (I - cosO )el</> coS¢ ] 

X [cos(O 12) - i cosO sin(O 12)] , 

a2(k) = i[ I + i(1 - cosO )el</> sint,6 ] 

X [cos(O 12) - i cosO sin(O 12)] , 

a3(k) = - sinOel</> [cos(O 12) - i cosOsin(O 12)J , (A2e) 

balk) = 0, 

bIlk) = - i[ I - (1 - cosO)e - i</>cost,6 ]sinO sin(O 12)e - i</>, 

b2(k) = - [I - i(l - cosO)e - i</>sint,6 ]sinO sin(O 12)e - i<P, 

b3(k) = isin20sin(O 12)e - 2i<P, (A2i) 

k I" = k O( 1 ,sinO cost,6,sinO sint,6,cosO). (A2g) 

Substituting this solution into (8.12a), we obtain six con
straints on (A (k ), B (k ), A *(k ) and B *(k ). 
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A (k /)A (k ) = 0, 

A (k ')B (k ) = 0, 

A (k /)A *(k ) = 0, 

A (k ')B *(k ) = 0, 
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(A3a) 

(A3b) 

(A3c) 

(A3d) 

A *(k ')B (k ) = 0, 

B *(k ')B (k ) = o. 
(A3e) 

(A3i) 

Since k and k / are arbitrary, the only non-trivial solution is 

A (k ) = A '(k )E, 

B (k ) = B '(k )E, 

(A4a) 

(A4b) 

whereA '(k) and B '(k) are pure numbers and E is an odd ele
ment of Grassmann algebra. Since ¢I'(x) contains only one 
odd element of Grassmann algebra, the torsion tensor van-

2 

ishes and the second order tetrad field E a Ii also vanishes by 

(8.11a). 

'P. C. Aiche1burg and T. Dere1i, Phys. Rev. 0 18, 1754 (1978). 
'L. F. Urrutia (private communication). 
'So Einstein and R. Finkelstein, J. Math. Phys. 20, 1972 (1979). 
4A. Einstein, Preuss. Akad. Wiss. Berlin 217, 224 (1928). 
sp. A. Carruthers, Spin and Isospin in Particle Physics (Gordon and Breach, 
New York, 1971). 

R. J. Finkelstein and J. Kim 2234 



                                                                                                                                    

Charged Demianski metric 
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A solution of Einstein-Maxwell equations is presented. This solution is the charged version of the 
Demianski metric. 

P ACS numbers: 04.20.Jb 

I. INTRODUCTION 

Kerr l and Newman et aU have solved the Einstein 
field equations and presented two different metrics which 
are respectively known as the Kerr metric and the NUT 
metric. Later Demianski3 presented a solution of the Ein
stein field equations from which the Kerr and NUT solu
tions may be obtained as special cases. On the other hand, 
Newman et al.4 obtained a solution of Einstein-Maxwell 
equations which is the charged version of the Kerr solution. 
We have recently solved Einstein-Maxwell equations and 
found a solution which is the charged version of the NUT 
metric. 5 

In this paper we solve the Einstein-Maxwell equations 
and obtain a solution which is the charged Demianski met
ric. The interesting feature of our result is the straightfor
ward recovery of the charged Kerr field or the charged 
NUT-like field by suitable adjustment of the values of the 
associated parameters. 

II. FIELD EQUATIONS AND THEIR SOLUTION 

Let us consider the line-element 

ds2 = eZa(du - HdcjJ )2 + 2(du - Hd¢J )(dr + Gd¢; ) 

_ e2/3 (dO 2 + sin20d¢J 2), (1) 

where a and /3 are functions of rand 0, and G and Hare 
functions of 0 alone. The field equations for a source-free 
electromagnetic field are 

Rij = - 81TTij' 

Fij:k + Fjk:; + Fkl;j = 0, 

FYj = 0, 

with 

(2) 

(3) 

(4) 

(5) 

where Tij is the energy momentum tensor due to the source
free electromagnetic field. 

The components of the electromagnetic field tensors 
may be given by6 

FI'" = ( - gt I/2e',vAA,A' (6) 

~=~, m 
where e"vA is the alternating three-index symbol and a com
ma indicates ordinary differentiation. p, v, A may take the 
values I, 2, 3, and A and B are scalar potentials. The nonvan
ishing components of electromagnetic fields are Fo I' F02' F 31 
and F23; they are given by 

(8) 

F02 = B,2' 

F 31 = e- 2/3cscOA,2' 

(9) 

(10) 

F23 = e -Z/3cscOA,I, (11) 

where the suffixes 1 and 2 indicate derivatives with respect to 
rand 0 respectively. 
The field equations (2) for the line-element (1) are 

(e4a + G 2e2a - Z{JCSC 20 )(a, II + 2a~1 ) + e2a - 2t3 

X(a,22 + 2a~2 + cotOa.2) + 2e4aa,I/3,1 

- e2a - 4/3cscZOH,2 G z +!e - 4/3csc20G ~2 

+ le4a - 4/3cscZOH 2 
2 ,2 

= (e2a + G 2e - 2/3CSC20 ) 

X(A~I +B~I)+e-2/3(A~2 +B~2)' (12) 

2/3,11 + 2(J~1 - !e-4/3csc20H~l 

= 2e - 4a - Z/3 [2GcscO (A,I B,2 - A,2B ,I) 

_ G 2CSCZO (A z + B 2 ) _ (A 2 + B 2 )] .1 ,I ,2 ,2' 

(13) 

/3.12 - Ge - Z/3csc20/3, I H,2 = 2e - za(A, I A ,z + B, I B,z h. 
(14) 

(eza + 2/3 + G 2csc20)fJ + /3 + 2eZa + 2/3 (a f3 + /3 z ) ,II ,2Z ,I ,I ,I 

+ cotO/3,z + (G,2 - !e2a H,2 )e - 2/3CSC20H,z - 1 

= e - 2a(A:2 + B:2 ) - (e2/3 + G 2e - 2aCSC20) 

X(A ~I + B~I)' (15) 

4GHe2aa, 1/3,1 + 2G2/3~1 - 2He2a-Z/3a,2H.2 - (HeZa - G) 

Xe- 2/3(H,22 - 2(J,2H,2 - COtOH,2) 

+ He - 2/3 (G,22 - 2/3,2 G,2 - COtOG,2) 

+ GHe - 4/3CSC20 (ela H:l - G,l H,l) 

G2 
_ --e - 4/3CSC20H z 

2 ,1 

= 2(1 + G2e-2a-Zt3csclOj(Ge-la -H) 

X [2sinO (A,I B,2 - A,lB,I) - G (A ~I + B:1 )] 

+ 2(GHe - la - 1/3 _ e - lasinlO _ G 2e - 4a - Z/3) 

X(A:z +B:2)' (16) 

Solving the field equations (12)-(16) and the Maxwell equa
tions (3) and (4) one gets 

eZa = 1 - (2mr + 2bF - e2 )1(r + F2), 

el/3 = r + Fl, 

G = asin20 - c cosO + csin20 In tan(O 12), 

(17) 

(18) 

(19) 
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H = G - 2bcosB, 

A.I = 2Ferl(r + F2)2, 

B.t = (F2 - r)el(r + F2)2, 

A.2 = [(r - F2)/(r + F2)2] GecscB, 

B.2 = [2FGerl(r + F2)2]cscB, 

(20) 

(21) 

(22) 

(23) 

(24) 

where 

F = acosB + b + c + ccosB In tan(B 12); (25) 

and a, b, c, e and m are constants. The constants m and e can 
be identified as mass and charge ofthe object under consider
ation, while a, b, c can be identified as the parameters occur
ring in the Demianski metric. 

and 

2236 

Using Eqs. (17)-(25) in Eqs. (8)-(11) we get, 

Fot = - e(r - F2)/(r + F2)2, 

F02 = 2FGerl(r + F2)2, 

F3t = eH(r - F2)/(r + F2)2, 

(26) 

(27) 

(28) 

F23 = [(r + F2)sinB + GHcscB ]2Fer/(r + F2)2. 
(29) 

J. Math. Phys., Vol. 22, No. 10, October 1981 

III. DISCUSSION 

Putting e = 0 in our solution, one gets the Demianski 
metric. If one substitutes b = c = 0 in our solution one gets 
the Kerr-Newman solution. On the other hand, putting a 
and c equal to zero one gets a charged NUT-like solution. 
Finally if one puts c = 0, one gets the charged version of 
combined Kerr and NUT-like fields. 
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As observed by Tupper, if the Ricci tensor satisfies the Rainich conditions for a nonnull 
electromagnetic field, the energy stress tensor may sometimes be interpreted as due to a viscous 
fluid (apparently Tupper believed this to be possible for all electrovac solutions). The present 
paper shows that for such an interpretation to be possible, there must be an additional symmetry 
property. Even then in some cases the interpretation may not work due to unacceptable behavior 
of the fluid velocity vector. 

PACS numbers: 04.20.Jb 

1. INTRODUCTION 

In the international General Relativity and Gravitation 
conference, 1977, Tupper 1 reported that many metrics satis
fying the Einstein-Maxwell equations could be as well inter
preted as due to a viscous fluid. He found that for nonnull 
electromagnetic fields, all the cases of electrovac solutions he 
studied admitted such an interpretation although he could 
not offer any proof for the general validity of this alternative 
possibility. 

In this paper we first make an investigation of the Tup
per problem and are led to the conclusion that the viscous 
fluid interpretation is possible only if the electrovac solution 
possesses a certain symmetry property. This result allows us 
to cite a counterexample to Tupper's idea from known elec
trovac solutions. 

However, as noted by Novello,2 Tupper's interpreta
tion allows one to discover some cosmological solutions hav
ing somewhat unusual properties. We here make a study of 
the viscous fluid universe represented by two already known 
electrovac metrics. Again we find that in the second case the 
interpretation cannot be accepted owing to the peculiar ve
locity vector that is obtained. 
2. THE VISCOUS FLUID INTERPRETATION FOR THE 
ELECTROVAC CASE 

In the following we use the signature convention + 

In an electovac universe, the Ricci tensor components 
satisfy the Rainich algebraic conditions: 

R~: = 0 

R ~R ~ =!OJ: [Ra(3R a(3], 

with 

( 1) 

(2) 

Ra(3R a(3;;;;.o. (3) 

The equality in (3) occurs for null fields. Tupper's idea is 
to satisfy the following equation: 

- R ~ = 81T[(P + p)t'JP-{fy - pOJ: + 21]cr:], (4) 
where p andp should be positive, {fP- a unit timelike vector, 
and 1] a scalar (not necessarily constant). The shear tensor 
up-v corresponding to the vector {fP- is given by 

u!"v-{ft,p;v) -t8(g!"v -{f!"{fv)-{ft,pJy). (5) 

Tupper introduces in (4) a bulk viscosity term as well. 
However this simply alters the value of pressure and in this 
purely formal discussion does not play an important part. 
Also, except under rather stringent conditions; bulk viscos
ity effect may be neglected in comparison with shear 
viscosity. 

Equation (5) requires u!"y{f!" = 0 and hence from (4) 

(6) 

From (6) and (2), 

(7) 

Equation (6) shows that {f!" is an eigenvector of R ~ while (7) 
shows that the eigenvalues of R ~ are degenerate having the 
values 

+ 8~p = + l(R R a(3 )112. - - 2 a(3 

The reality condition for the electromagnetic field 

Rp-y {fP-{f y < 0 

indicates that for the timelike eigenvector, the eigenvalue is 
negative, I.e., p is positive as is indeed demanded by the Tup
per interpretation. The degeneracy of the eigenvalue means 
that even the normalization condition {fP-{f" = + 1 would 
not determine the eigenvector {f!" uniquely. 

Again Eq. (5) requires 

~=O 

and hence from (4) and (I), 

p =p/3. 

(8) 

(9) 

As is evident from (4) any eigenvector of Rp-y normal to 
{f!" is an eigenvector of up-vas well. In particular, corre
sponding to the degenerate eigenvalue + 81Tp of R ~, the 
eigenvalue of u!-'v is also degenerate and p.qual to - p/31]. 
Remembering that {fl' is an eigenvector, If U with the ei-

.ltV 

genvalue zero, we have the eigenvalues of u
llV 

as 0, - p/31], 
- p/3TJ, 2p/31]. 

To proceed further, we introduce the electric and the 
magnetic field vectors by the relations 

E(3=Fa(3{fa, B(3=!TJa(3rt!{faF y t!. (10) 

One has then, for the energy stress tensor of the field, 
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41TTaf3 = (~af3 - {}a{}(3) (E/LE/L + B/LB/L) 

- (Ea Ef3 + Ba Bf3 ) - (Sa {} f3 + Sf3{} a), (11) 

with 

Sa = 17apA/LEPB).{}/L. (12) 

Einstein's equations for the electrovac universe 

81TTa {3 = - Raf3 

show that the vector {} /L will be an eigenvector of R/LY iff Sa 
vanishes and in that case, one can consider the field to be 
purely electric (or magnetic) so that, in the electrical case (the 
reasoning is identical in the magnetic case) 

- Raf3 = 81TTaf3 = (gaf3 - 2{}a{}(3)E/LE/L - 2EaEf3' 
(13) 

If the viscous fluid interpretation is to work, we must 
have, comparing (13) and (4) 

81Tp = - EaEa = E2, (14) 

217CT/LY = (2p/3)({}/L {}y - g/LY) - E/LEy /(41T). (15) 

Equation (13) shows that E/L and {}/L are eigenvectors of Raf3 
belonging to the same eigenvalue and the corresponding ei
genvalues of CT/LY are 2p/317 and O. 

The situation thus appears to be as follows: for a given 
electrovac solution, {} /L and E /L are arbitrary to the extent 
that we can change to J /L and E /L defined by 

J I' = a{} Ii + f3E I", 

E/L = F~JY = aE/L + f3E2{}/L, 

with 

a 2 _ f32E2 = 1, 

E 2 
= - E/LEli >0. 

The Tupper type of interpretation is then possible if at 
least for some a,/3 (i) E/L is an eigenvector of the correspond
ing shear tensor aliY (cases may occur where this condition is 
satisfied for any a,f3), (ii) the section ofthe al"Y ellipsoid by a 
plane orthogonal to J/L,E/L is a circle. Of these, the first con
dition seems to be not very critical owing to the freedom in 
our choice of a,f3 while the second condition demands some 
symmetry of the solution-in particular a local rotational 
symmetry about E /L as obtained in the cases investigated by 
Tupper is sufficient for (ii). We shall cite an example where 
this symmetry is lacking and the viscous fluid interpretation 
cannot be given. 

However, before that we deduce a formal relation 
which would be useful in our later discussion. 

From Eq. (6), we get 

R /L"{} V;li = - 81TP./L {} /L - 81Tp(}, 

Also from (5) and (6) 

R liVCT = R /LY{}. - (81Tp() /3) 
ILV V,I-L 

= _ 81Tp {}/L - (321Tp() /3) . . /L 

From Eq. (4) we then get, remembering (9) and (2), 
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(16) 

3. A COUNTEREXAMPLE 

As an example of an electrovac universe where the vis
cous fluid interpretation fails, consider the following 
metric3.4: 

with 

C = A = D -I = In2( (K~)/). (18) 

B = (K')2In2( (~)l). 

with I and a arbitrary constants. In this case, 

R: =Rg= -R~= -R~ ( 19) 

so that the vectors {} /L and E /L (i.e. the eigenvectors of R ~ for 
the eigenvalue - 81Tp) are in the KO,K 1 space. As however 
B i= C, there is no rotational symmetry in the orthogonal 2-
space. 

With 

{}/L = a~ + B8~, 
where 

Da 2 
- Af3 2 = 1, 

we get for the shear tensor components 

~2 = l{} 1 ~ (InB ) _ I(} 
2 JKI 3 ' 

~ = l{} 1 ~(lnC) _I(} 
-' 2 JKI 3 ' 

o-i = CT~ = ~ = ~ = cr6 = CT~ = CT6 = CT~ = O. (20) 

Thus ~ i=CT~ and the eigenvalues are not degenerate as 
required for the viscous fluid interpretation. 

4. A DISCUSSION OF TWO CASES 

We shall work out the details of the viscous fluid motion 
in two particular cases. In the first case, we have the metric 
with plane symmetry5: 

ds2 = eCXKdt 2 _ e - 2UKdK2 _ e - aK(dy2 + dz2), (21) 

where a is a constant. 
The vectors {}/L,E/L are again in the (K,t) space and the 

isotropy of the orthogonal 2-space is apparent. Taking {} () 
and {} 1 functions of K alone, we find that the field equations 
are all satisfied if we take, 

o 
_<1. I a- 2all: 

17u .1 = --e 
321T 

with {} I, {} 0 functions of K alone. If 17 is assumed to be constant 

{} 1 = (a/641T17)e2aK (22) 

and 

(23) 

One may describe the situation as a laminar, irrota
tional flow of a viscous fluid with the fluid velocity increas
ing as K increases, all the physical variables blowing up as 
K---+oo. As the metric (21) admits a timelike Killing vector, 
the flow may be called stationary, but the expansion and the 
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shear do not vanish. The situation seems rather remarkable 
and the authors have not come across any example in the 
published literature where a stationary metric is associated 
with an expanding velocity field. 

Again here the shear tensor components 

~ = ~ = -!11 1,1> 

~=~=~=~=~=~=~=~=O 
indicates that the eigenvalues are degenerate as needed for a 
viscous fluid interpretation. 

The second case that we take up is rather complicated: 
The cylindrically symmetric metric 

ds2 = dt 2 _ ea'r'(dr + dz2 ) 

- (r - a2"1)d¢ 2 + 2ard¢dt (24) 

represents a distribution of massless charges6 with the non
vanishing Ricci tensor components 

R : = - R ~ = R ~ = - R g = 2a2e - a'r', (25) 

R ~ = _ 4a3re - a'r' 

and a charge density u given by 

41Tlul = 2a2e - a'r'. (26) 

The solution is singularity free but has closed timelike 
lines for r > a - 2. The electromagnetic field was described as 
a simple magnetic field in the z direction with 

IHI2= _HzHz=2a2e- a2r'. (27) 

From Eq. (25), the eigenvectors 111-' and HI-' can have 
only t, z components. The requirement that HI-' must be an 
eigenvector of the shear tensor u I-'V gives, 

W 2f = I1(A - ea'r'), (28) 

(29) 

where A is a function of z alone. In the above we have num
bered the coordinates t, y, z, ¢ by the indices 0, 1,2,3, respec
tively. We might have imagined that as the metric tensor 
components are independent of z and t, the velocity compo
nents would also be independent of these coordinates-but 
then the expansion () would vanish and asp is independent of 
z and t, Eg. (16) would makep vanish. The field equations are 
all satisfied if 

(30) 
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Obviously in this case we can not have 'TJ a constant. 
Although the situation is stationary in the sense that the 
metric as well as the fluid velocity field are independent of 
the time (the killing vector field is in this case not hypersur
face orthogonal), the expansion and the shear do not vanish. 

The shear tensor at:, has the form 

0 2 3 

0 1(1 - 11~) 0 - ~112110 ¥Zr + ~r(1 - 11~) 

0 _1 0 0 x() 3 

2 -111 2110 0 111 ~ _ ~r11011 2 

3 0 0 0 _1 
3 

(31) 

An intriguing point about the solution under discussion 
is that while there is no geometric singularity [the metric (24) 
gives an asymptotically Euclidean geometry as y-oo], the 
velocity vector 11 I-' has a singularity at a finite y given by 
y = a- 1ln1/2A and has imaginary components beyond that, 
however the coordinate velocity dz/ dt remains regular and 
non vanishing. One should therefore apparently reject the 
viscous field interpretations in the present case-alternative
ly one can consider the fluid distribution to be limited within 
the surface where the velocity becomes singular. 
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Reduced gravitational field equations are obtained for space-times with geodesic, shear-free, 
twist-free, and non expanding rays. No restrictions are imposed on either the Weyl tensor or the 
Ricci tensor, and a further restriction made previously that the spin coefficient 1" vanish is also 
dropped. Special cases of Einstein-Maxwell space-times are investigated further. 

PACS numbers: 04.50. + h, 04.20.Cv 

I. INTRODUCTION 

In a previous paper I the present author derived reduced 
gravitational field equations for space-times with geodesic, 
shear-free, twist-free, nonexpanding rays. The (implicit) so
lutions obtained generalized the Kunde class of space-times 
to arbitrary trace-free Ricci tensors. They were solutions in 
the sense that the radial dependence had been found but the 
reduced gravitational field eqnations together with the equa
tions governing the source still had to be solved before ex
plicit solutions would be obtained. In general, such equa
tions are quite difficult to deal with. 

In deriving these implicit solutions the following addi
tional assumptions were made. First, space-time was as
sumed to be algebraically special with the repeated principal 
null vector of the Weyl tensor being tangential to the ray 
congruence. Second, the Ricci scalar was assumed to be 
zero, and third, the spin-coefficient 1" also was to vanish. In 
this paper we remove all three of these conditions, assuming 
only that the space-times under investigation possess a geo
desic null congruence free of shear, twist, and expansion. In 
Sec. II, we use Penrose's method of conformal rescaling3 to 
find the spin-coefficients, the metric coefficients, the metric, 
and the tetrad components (relative to a suitable tetrad) of 
the Weyl and Ricci tensors for such space-times. The advan
tages of the conformal method have been discussed previous
ly.1 In Sec. III, we specialize to the Einstein-Maxwell case, 
obtaining more explicit solutions for some special cases. The 
notation of this paper is that of Ref. 1. 

II. THE SOLUTION 

Again I we consider a space-time which has as (part of) 
its conformal boundary a line N on which the conformal 
factor n vanishes, and on which Va n #0. Corresponding 
to each ~odesic ~rriving a! a point S on N, we choose a null 
tetrad t ka' rna' rna' na J, ka tangent to the geodesic, such 
that 

VA ok" (2 1) an !f1=o=K a-na . 

for some function K ° also depending on the geodesic. This 
time, however, for reasons to become clear later, rather than 
propagating the null tetrad parallelly along the geodesic, we 
arrange only that 

K=E= O. (2.2) 

Since the geodesics are to be hypersurface-orthogonal, we 

know that 

p=p, (2.3) 

and ka is proportional to the gradient of some function u. 
Using the (partial) arbitrariness in the choice of tetrad and 
conformal factor we choose the proportionality constant to 
be one, so that 

ka = Vau 
and 

f=~+fj 
The parameter u labeling the null hypersurfaces and the 

conformal factor n will again be our first two coordinates. 
On a two-surface of intersection of a hypersurface 
fl = const#O and a hypersurface u = const, we select two 
coordinates x and y, or; = - x + iy, such that t; = 0, and 
propagate these along the geodesic. Therefore, our coordi
nates are 

Cta) = (u,n,x,y) (a = 1,2,3,4). 

Again, 

'" A a, a A. a 
D = f an ,8 = (J an + s' ax; 

A a A a A. a 
.d = -+ U _+X'_. (i= 3,4), au an ax' 

with 
A A 0 
f--+ - I, {;)->o, U-K as fl-O. 

Having kept track, at each stage, of the remaining free
dom in the choice of frame (i.e., of tetrad, conformal factor, 
and coordinate system) we find that we can 

(i) relabel the null hypersurfaces u = const by means of 
a transformation 

u' =y(u), 

provided we follow this by a conformal rescaling with con
formal factor (3 = y, and by a scale change with parameter 
a=(3II1; 

(ii) make spatial rotations with parameter ¢ depending 
on u, x, andy; 

(iii) make a conformal change and a null rotation about 
ka such that parameters (3 and c approach 1 and 0, respec
tively, as fl--.O; 

(iv) change the x and y coordinates by a transformation 

S" = S"(u,S'). 
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We shall assume that the null geodesics are not only 
geodesic and hypersurface orthogonal but also shear-free 
and expansion-free, i.e., 

a= 0, 

p= -fn-I. 
Note that Eq. (NP4.2b) [i.e., Eq. (4.2b) of Ref. 4] then implies 
that 

'" 1[/0 = 0. 

These conditions are invariant under freedoms (i)-(iv). How
ever, under freedom (iii) the metric variablefchanges and we 
can arrange that 

f= -1, 
and hence, 

p=n- I
• 

This imposes the condition that in (iii) the conformal factor e 
must have the form 

e = (1 + Rn ) - I, 

where R = R (u,x,y) is arbitrary. If f is finite this can now be 
used to make 

imposing the additional restriction on freedom (iii) that the 
parameter c for the null rotation satisfy 

ae = 28e _ en -Ie. 
an 

Proceeding as in Ref. 1 we can show that 

ill = 0, 

where P defined by 

P(u,x,y) = f30 = _ if40, 

K = E = ;. = ill = Wo = $00 = 0, 

'-n-I !::.- '-n- I('O-2A"') p- ,11"-7- 7 , 

a = n -1(aO -,1\ fj=n -I@O_A), 
i = - !VXo + 2n -IV(P?) + 4V(PB), 

(2.4) 

can be made real by means of freedom (iii), and where 

V= -2 ~ = ~ +i~. a; ax3 ax4 
Equation (2.4) can be solved for the parameter c; we find 

c= -p(VR)n(l +nR)-I. (2.5) 

In summary, we have 

K = E = ;. = ill = Wo = 0, p = n - I, if = f = a + Ii. 
'" '" a /= -1,5 i

-. =n -IPV,U---+Koasn-o. 
ax' 

The remaining freedom in the choice of frame is 
(i) a relabeling u' = y(u) of the null hypersurfaces, ac

companied by a conformal change with () = r and a scale 
change with a2 = e; 

(ii) a change of coordinates;' =; '(u,;), and a phase 
change with parameter ¢> (u,;) subject to 

ar ' 
e2i

</> -~- = real, a; , 
(iii) a conformal change with conformal factor 

e = (1 + Rn ) - I followed by a null rotation with parameter c 
given by Eq. (2.5), where R (U,X3,X4

) is arbitrary. 
The remaining metric equations 

SO = r +~, SXi = 2ft; + 2ffi
, 

SO = $, j1 = ft, 
SX i -ifi ="i[ + ~ - r+ flfi, 
Eti - Sfi = @ - 8J{i + (a _!f)fi, 

are now solved together with the transformation equation I 
for the Ricci scalar and the Ricci identities4 [Eqs. (NP4.2)]. 
The calculation is tedious but straightforward. The results 
are: 

v = pn -IVKO - PVaO - npvuo - J'vfi + !p(n ~vfi + n -Iviij, 
an 
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A A A_~ 

Y = !aO + uOn +!H + k(VX O 
- VX O

) 

+ ~n -I [V(PfO) - VIP?)] + v(pfi) - v(Pif), 

/i=KOn- l - uOn-fi+ln afi +In-1F+/;* 
r- 2 an 2 r- ' 

X i ~ = (_ I yO + 2pn -I? + 4Pif)V + (_lYO + 2pn -1,pG + 4Pfii"v, ax' 2"'". 2'. 

$01 = WI - n -2fo + 2n -2A, 

$02 = n -2[ - 2PVA - V(PfO) - W)2 + zA(2,pG - zA - VP)] + n -IHvxo - 4v(Pfi)], 
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cPII = - ~n -I,a* + 3An -2 +!fl -Iii -! :~ + p2n -2[V(P-IA) + V(P-IA)] 

- ~p2n -2[V(P- lfo) + V(P -11'0)] + n -2[ 4f<)A + 4fO% - 8ll- 2fO?)], 

A _ I ~ '" A afj A. arJ A A A ~ 
(/>12=n PVy-{3- U--X'- -/If+{3(y--y-/J)-aA 

~ ~ ~ ~, 

A 

~ n-IpV~ '" UA a(l XAia/-t ~2 AA ~~ A""" A 

'.1'22 = J" V - /-t - an - aii - /-t - AA - /-t(Y + Yl + 1'v + 2v{3, 

A = n -2A + U O +!n -I(ii -11*), 
$2 = n -2[ - 2A - 2p 2V(P -IA) + 2foA + 2fO% - 4A% _ fOfo + p2V(p -tfO)], 

A _I _A ~ A aCi A. aa I A A A A ~ 
Vi3=n PVy-a- U an -X' aii +n- V-A(f+{3)+a(Y-,u)-ya, 

A I - '" A ai A. ai ~ A A ~ 
Vi4 = n - PV v - A - U an - X' aii - 2A.11 + A (y - 3y) + v(2a + 7), 

where 
. A_A 

11* = - aD - PP -I - !(VX O + VXo) 

+ ~oVlnP + iov~ A 

y + y = 2K Or - aO + f F dr, 

y - y = !(V XO 
- V £0) + 2P2[V(P-IJr) + V(P-IB)] 

+ n -Ip 2[V(p -Ifo) + V(P -lfOn, + r[V(pfD) - V(Pfo)] + 2[V(PB) - V(Pii)], 

K O = P2[V(P -1;0) + V(P -1fo) + VVlnP] + fOfo, 

aO = !(fo + VP), fjo =!W - VP), 

XO = _ X30 + iX40, 

A (u,n,i'j = nViI dn, B (u,n,ii) = n -2Adn, A f A A f A 

F(u,n,ii) = -4p 2 [V(P-IA)+V(p-IA)] +8A% 

- 4fo A - 41'°% - 12A, 
2A A 

a H _ n -2 aF 
an 2 - - an' 

The integration constants are so chosen that, for example A 
vanishes when $1 does. 

The variables P .io,ao,fo, UO are functions of u,x, andy, 
whereas A and $1 are functions of all four coordinates. The 

A A A A 

quantities (/>12' (/>22' Vi3, and Vi4 are not given explicitly since 
the resultant expressions are rather lengthy. 

The nonphysical metric is given by 

d§2 = [2U - IP -2n 2((X 3f + (X 4f)] du 2 

2 A A 

_ 2 du dn + P -2n 2[X 3du di3 + X 4du di4 

_ !((di3)2 + (di4)")], (2.7) 

with the metric variables U and Xi given by Eq. (2.6). 
The solution in physical space-time is now readily ob

tained. We adopt coordinates (xQ) = (u, r, x,y), wherexQ = i Q 

for a = 1,3,4 and r = n - I. The results are as follows. 

K = a = p = E = (j) = Vio = 0, a = aO 
- A, 

A 

(3={3°-A, iT=1'=fo-2A, 

A = - !VX o + 2rV(P?») + 4V(Pii), 

v = P,zVKo - PrVao - PVUo - p,zV f Hr- 2 dr, 
A 

/-t = - P -Ip - !(VXO + VXO) + ~oVlnP + ~oVlnP 
+ 2P 2[V(P -Iii) + V(P - IB)] 

+ rP 2[V(P -I?') + V(P -11'0)], 
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and 

s'~=PV, 
ax' 

u= -K°,z+aor+ UO+,zfHr-2dr, 

. a A A _ 

X'-. =( - ~o+ 2rpr> +4PB)V 
ax' 

+ ( - ~o + 2rPfO + 4PB IV, 
Vi2 = - 2A - 2p 2V(P -IA ) + P2V(P -11'0) 

+ 2foA + 2foA - 4AA - fo?', 

"1 P-v . U aa Xi aa Y')= y-a- -- -
- ar axi 

- A (1' + (3) + a(y - y - ,17), 

Vi
4 

= PVv - A - U all. _ Xi all. 
ar axi 

- 2A./-t + A (y - 3y) + v(2a + T), 

(/>00 = 0, (/>01 = ViI' 

(/>02 = V(PfO) - Wf - 2V(PA ) + 4foA - 4A 2, 

(/>11 = p 2VVlnP + !P 2[V(P -If<') + V(P -11'0)] 

- iO?) + 2fDA + 2?'A - 4AA, 

(/> = PVy - P - U a{3 _ Xi a{3 
12 ar ax i 

- 1'/-t + {3 (y - y - /-t) - aI, 

(/>22 = PVv - it - U a/-t - x' a/-t 
ar ax' 

(2.8) 

- /-t 2 
- AI - /-t(y + y) + 1'v + 2v{3, (2.9) 

where 

aD = !(?' + VP), fjo =!W - VP), 

A (u,r,x') = - f Vii dr, B (u,r,xi) = - f A dr, 
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K (l = fOfsi + P 2[V(P - IfO) + VIP - Ifsi) + VVlnP], 

F(u,r,x') = - 4p2[V(P -IA) + VIP -IA)] 

+ 8AA - 4fsiA - 4foA - 12A, 

H(u,r,x') = fCdr, C(U,r,x')=r- 2fr a:; dr. 

Again, the integration constants are chosen so tha"t, for ex
ample, A vanishes when CJlI does; the variables P, X O

, an, fO, 
UO are functions of u, x, andy, whereas the variables A and 
CJlI are arbitrary functions of all four coordinates. The frame 
is not parallelly propagated since 1T ¥=-O. Parallel propagation 
could be achieved by means of a null rotation with 
C = - rfsi - iii, but most expressions would then become 
more complicated. 

Since gab = fl2gab the metric is easily derived from Eq. 
(2.7). It is 

- ds2 = [2U +!P -2((X 3f + (X 4 f)] du2 - 2 du dr 

_ P -2[X3 du dx3 + X 4 dy dx4 
- !((dX3

)2 + (dx4 f)] , 

where U and X' are given in Eq. (2.8). 
The tetrad-coordinate freedom under which the above 

solution is invariant is given by 

(i) u' = y(u), r' = y-I r 

accompanied by a scale change with parameter a = y I; 
(ii) t' = t '(u, t) 

accompanied by a phase change with parameter ¢> (u, t,~) 
subject to e2'''' at ' /-t being real; 

(iii) r' = r + R (u, x 3
, x 4

) 

followed by a null rotation with parameter c = - PVR. 

III. EINSTEIN-MAXWELL FIELDS 

To get explicit solutions the reduced gravitational field 
equations must be solved together with the equations of the 
source. The former are obtained by equating the components 
of the Ricci tensor, as given by A and Eqs. (2.9), to the appro
priate components of the energy-momentum tensor for the 
source. In the case of Einstein-Maxwell fields these reduced 
equations are 

A = 0, (/>mn = ¢>min (m, n = 0,1,2), (3.1) 

where the ¢>m and (/> mn are the tetrad components of the 
electromagnetic field and the trace-free Ricci tensor, respec
tively. The source equations are Maxwell's equations, 
namely 

D¢>, = 0, 

Dcb2 = p¢. + 21)¢>1 , (3.2) 

PV¢>I = 2f(l¢>1 , 

PV¢>2=¢1 +X'¢>1.l +2f-l¢>1 +(VP)¢>2' 

From Eqs. (2.9) and (3.1) it can be seen that ¢>o and CJlI 
vanish. This means that the Maxwell tensor is "aligned" 
with the Weyl tensor and that the latter is algebraically spe
cial. The radial Maxwell equations, i.e., the first two of Eqs. 
(3.2), are readily integrated and give 

¢>I = ¢> ~(u, t, ~), 
¢>z = ¢> ~(u, t,~) + r[PV¢> ~ + 2fD¢> n . 
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Apart from a redundant equation, the last two of Eqs. (3.2) 
become 

PV¢>~ = f°¢>~ , 
2 -1-1,0)_;:0 _lX-O-V-I,O -P-IfOX°-l,o. (3.3) P V(P 'f' 2 - 'f' I 2 'f' I 'f' I 

These two equations, together with the reduced gravitation
al field equations 

V(PfO) - W)2 = 0, 

p2VV InP + !P 2[V(P -I .f<» + V(P -lfO)] - fOfo = ¢> ~i? , 

(3.4) 
° ",0;:0 ",,(I) _ -I, ° (PV;:o + 2'0;:0) (/>12 ='f'1 'f'2' '#'12 -'f'1 'f'1 1''f'1' 

(/>~2 = ¢>~i~ 
(/> iii = 2Re [¢> ~ (pvi~ + 2foi~ ], 

(/> fd = IPV¢> ~ + 2fsi¢> ~ 1
2 , 

where (/>12 and (/>,A,,2 are given by Eqs. (2.9), just be solved for 
the variables P, Xo, an, ro, and Un. 

We can reduce the complexity of these equations con
siderably if we assume that fO vanishes. In this case we have 
seen I that by means of freedom (iii) we can arrange for the 
spin-coefficient f-l to vanish. Freedom (iii) is now restricted 
by VVR = 0, and there is an additional equation that must 
be satisfied, namely 

p= -1P(Vio+vXO)+~oVP+!i°VP. (3.5) 

The Weyl tensor is now of type III (or N or 0) since CJl2 van
ishesaswell CJloand CJlI. From Eqs. (3.3) and (3.4) we find that 
¢>I = ¢>I(u,f) is independent of t and that the followingequa
tions hold: 

p2V(P-I¢>~) = ¢~ - ~oV¢>~, 

p 2VVInP = ¢> ~i~, 
o -VXAO (-VP)VXAO -1,0;:0 - !PVa - 1PV + ! = 'f' I 'f' 2 , 

p 2VVUO + !IViOI2 = - ¢> ~¢;~, 

- P 2VVaO = ¢;~PV¢> ~ + ¢> ~PV¢;~. 

Redundant equations have been discarded. 

(3.6) 

If we assume further that the Maxwell field is null, i.e., 
that ¢> ~ = 0, Eqs. (3.6) become 

VIP -I¢>~) = 0, VVlnP = 0, VVau = 0, 

PVaO + W3V(P -2VXO) = 0, 

p2VVUo+!IVioI2= -¢>~¢)~. 

The solution to Eqs. (3.5) and (3.7) is given by 

- ah (ul) 
P = const, X = - h (u,t) + t-~-'-

at 
° ah (ul) aii(u,t) 

a = at + at 

(3.7) 

ak(ul) 
+-....!.....;::::....!.. 

at 

_ 1_ aii 12 1 ak 12 - 4p 2 UO = 1 (/>2(U, tW + h - t ad + 1 a~ 

+ ~~ (~~~ -k)+ ~~ (t ~~ -f), 
where 

¢>~(ul) = a(/>2(ul). 
at 
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The functions h, k, and cJ>2 are arbitrary functions of the 
coordinates u and f The Weyl tensor component 1/13 is given 
by 

J 2h 
1/11 = - 2P-_-. 

. J~2 

Therefore, if we are looking for a type N solution, the vari
ableh {ul)musthavetheformh (ul) = d (u)[ + e(u).Wecan 
use the remaining freedom to make d (u) and X vanish. 

Hence, the type N solution is determined by 

P = const, X = aO = 0, 
- 4p 2UO = 1cJ>2(ulW + Ih (u)I"· 

Since the remaining Weyl tensor component is 

1/1 = iP (u <- )Jr/>2(U l ) 
4 2,i, J~ , 

we see that for a vacuum space-time the solution becomes 
flat. 

In conclusion we note the following Goldberg-Sachs5 

type 
Theorem: Assume that an Einstein-Maxwell space

time has a geodesic, expansion-free, and twist-free null con-
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gruence. This congruence is shear-free if and only ifthe Weyl 
tensor is algebraically special. 

The proof is simple. We have already seen above that 
the vanishing of the shear (I implies that the space-time is 
algebraically special. Conversely, if 1/10 = 1/11 = 0 (and 
p = c = K = 0) it follows from Eg. (NP4. 2a) that 

(Ia + cJ>('A) = O. 

Since the second term is nonnegative for an Einstein-Max
well field, the shear (I must vanish. 
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The Palatini variational principle for the general Bergmann-Wagoner
Nordtvedt theory of gravitation 
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The Hilbert variational principle for the Bergmann-Wagoner-Nordtvedt scalar-tensor theory of 
gravitation is presented in a general form, yielding the field equations in arbitrary units. Applying 
then the Palatini method of variation to this action integral, the connection can be shown to be an 
integrable Weyl connection, even if the matter part contains explicitly the connection coefficients. 
However, the resulting field equations always appear in the wrong unit system, or turn out to be 
wrong in a general gauge. 

PACS numbers: 04.50. + h, 04.20.Cv 

I. INTRODUCTION 

It is well known that the field equations of the general 
theory of relativity may be obtained in two different ways. 
According to the Hilbert method of variation, one requires 
that the action integral 

(1 ) 

is stationary under arbitrary variations of the symmetric 
metric g,j' Hereby is Rij the Ricci tensor of the correspond
ing Levi-Civita connection, i. e., one assumes a priori that the 
connection is symmetric and that 

gij;k = O. (2) 

In the Palatini method of variation, on the other hand, 
one varies, in (1), gij and r ~ independently, with Rij the 
Ricci tensor of r ~. Taking the connection to be a symmetric 
one, one deduces the metricity condition (2), as well as the 
correct set offield equations if, and only if, 1-3 the connection 
coefficients r ~ do not appear explicitly in L M' 

Both variational principles have also been analyzed4 for 
the Brans-Dicke scalar-tensor theory of gravitation, which 
has been for a long time the standard alternative for general 
relativity. Applying the Palatini method to the Brans-Dicke 
action integral5 (with the Brans-Dicke q; replaced by ¢ 2) 

1= I( -¢ 2gijRij - 4uJgij¢i¢j + 161TLM)~ - g d 4x (3) 

it was found that 

(4) 

and that the correct set of field equations (up to another 
coupling constant 0)) only resulted when all covariant deriva
tives were written with respect to the Levi-Civita connection 
[ ~ J g' The same result was obtained for slightly more general 
scalar-tensor theories with a particular power-law 
coupling. 6

•
7 

Now we observe that (4) precisely states that the r ~ are 
the Christoffel symbols [~J u with respect to the metric 

uij = ¢ 2gij . (5) 

Hence, taking into account that, in (3), Rij = RjjlU) is the 
Ricci tensor for r~, one can rewrite (3) as 

1= J ( -uijRijlU) - 4uJuij¢j¢j/¢ 2 + 161T¢ -4LM ) 

x~ - u d 4x. (6) 

But this is precisely the action integral in Brans and Dicke's5 
"unit-transformed version" of the theory, in which the 
gravitational constant is effectively constant and rest masses 
are varying. We shall refer to these units henceforth as 
Planck units. For this version it is no wonder that the Hil
bert-Palatini methods both yield the same answer! In fact, 
(6) can be looked at as the standard general relativity action 
(1) with interacting matterfields ¢ and M, and in which-for 
the case of Palatini variation-the matter part does not ex
plicitly depends upon the connection coefficients. 3 One is left 
now with the problem that Hilbert-variation of (3) gives the 
correct field equations, with Rij the Ricci tensor for the con
nection in particle units, whereas Palatini variation requires 
Rij to be the Ricci tensor for the connection in Planck units. 
Both methods are thus clearly inequivalent for the Brans
Dicke theory. Apart from this, it looks strange that the 
Planck unit system acquires here a peculiar status (being the 
unit system in which the two methods yield the same an
swer), whereas at first sight there is nothing fundamental 
about the connection in Planck units. On the contrary, in the 
axiomatic approach towards the structure of space-time,8.9 
the fundamental object one first constructs, is the Weyl con
nection V (with coefficients r ~) whose geodesics are the 
paths of freely falling particles and light rays. If V is assumed 

to be an integrable connection, there i~ unique metric gij 

(up to a constant factor) for which V gij = 0; this metric 
determines the geometry in geodesic units or in particle 
units. When the gravitational constant is observed to depend 
on the space-time coordinates in this geometry, according to 

G-¢ -2 (7) 

with ¢ = ¢ (XU), one defines the geometry in Planck units 
gijlP) through the conformal transformation 

gijlPI = ¢ 2 gij. (8) 

As the gravitational "constant" is a coscalar of power + 2 in 
the Dirac definition of a cotensor, 10 it follows from (7) and (8) 
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that G IPI is effectively constant. One has then ~\gi/PI 
= 2gijIPI(logtP)k and V k IPlgi/PI = O. 

It would be preferable then to derive from a single vari
ational principle the field equations of the corresponding 
scalar-tensor theory, as well as the integrable Weyl charac
ter of the T~-rather than that of the r tiP), which can only 
be constructed if the properties of the former are already 
known. Our plan is now as follows: In (2), we present the 
action integral for the general Bergmann-Wagoner-Nordt
vedt scalar-tensor theory in a unit-independent (conformal
ly invariant) form. Applying the Hilbert method of variation 
gives conformally invariant field equations, which reduce to 
the standard equations in particle units or to the unit-trans
formed equations in Planck units, according to the choices 
A. = const or (3 = const (A. and(3being two coscalars of power 
- 1). In (3) we generalize this action integral to include ex

plicitly T ~ -dependent terms in the matter part, but such that 
one reobtains the Hilbert integral when T t = l ~ Lr' It is 
shown then that, even with this generalization, the Palatini 
method always gives the field equations in the wrong unit 
system or gives the wrong equations, when a general gauge is 
used. 

II. THE HILBERT METHOD 

In particle units the Lagrangian density for the Berg
mann-Wagoner-Nordtvedt scalar-tensor theory is given 
by ll-13 

x IO! = 1'0+ 161T X M 

= - ( - g)I/2tP 2 [i + 4w(tP) gij tPitP/tP 2] + 161TX M' 
(9) 

Here tP is an in-scalar, 10 as it describes the behavior of the 
gravitational constant in a fixed unit system. We have put 
the cosmological term equal to zero, as it is of no relevance in 
the present investigations. A conform ally invariant general
ization of (9) is obtained by replacing all covariant deriva
tives by cocovariant derivatives. 10 These are constructed 
through the introduction of a coscalar A. of power - 1 and 
the definition of the Weyl vector 

K;= -A.,!A.=H~ilg-H~ilg. (10) 

The Weyl geometry (gij,Ki ) is then related to the Riemann 

geometry in particle units gij by 

gij =A. 2gij. (11) 

Hence, from (9) one obtains 

.Y
IOI 

= _~_gtP2A.2[R·+4w(tP)glj¢itP/tP2] 

+ 161T'Y'M' (12) 

in which now ,Y M depends on A. through its coupling with 
the metric. 

ASIO 

R • R 6 il +6
ij 

= - g Ki;j g KiKJ' 
we can rewrite (12) as 

2246 

.f lol = - ~ - gt/! 2A. 2 [R + 4w(tP )gUtPitPJ/dJ 2 

- 6gUA.iA./A. 2 - 12tJA.itP/A.t/! ] 

+ 161T,Y M (+ divergence). 
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(13) 

(14) 

Varying independently the variables gij' t/!, and A., one ob
tains the conform ally invariant field equations 14 

and 

0: _ (1 _ tP dw ) tPnt/i" + 2 tPn(3n 
'I' 2w(t/! ) + 3 dtP tP 2 t/!(3 

41TGT 

2w(t/!) + 3 ' 
( 16) 

where we have written 

G = const·(3 -2 and (3 = A..t/!. ( 17) 

These equations are easily seen to reduce to the standard 
Bergmann-Wagoner-Nordtvedt equations in the gauge 
A. = const (particle units), whereas in the gauge (3 = const 
one obtains the Planck unit version of the same theory. 5 

III. THE PALATINI METHOD 

Introducing the metric gu IPI in Planck units and the 
corresponding Christoffel symbols r ~ IP I, one rewrites (14) 

as 

.Y'IOI = - ~ - g(P) G - I 

X {gijIP)RijIP) + [4w(tP) + 6]gUIP)tPitPJ/tP 2} 
+ 161TX M (+ divergence) (IS) 

with G - I a constant and 

IR IP) - r" IP) + rm IP)r~ IP) (19) 
'2 ij - illlJI iln 11m' 

When .:I'M does not depend on the r~IP), it is obvious3 that 
Palatini variation of (IS)-with gij (PI and r ~IPI as indepen
dent field variables-yields the correct set of field equations 
in Planck units and the metricity condition 

rt IP
)= ltlg,,'r. (20) 

Let us see now whether it is possible to use as indepen
dent field variables other connection coefficients, such as 
T k which are of a more fundamental significance. 

y' --

Using the fact 10 that R t is the Ricci tensor Ru for the 
T k we will take the action density (12) 

'.I' 
f

lol 
= _,j - gt/! 2A. 2 [gU Rij + 4w(dJ )gilt/!it/!j/t/! 2] 

+ 161T'YM (21) 

with 

I R -r- n +Tm Til 
2: ii - i\IIJI rln J1m" 

(22) 

Palatini variation would then be supposed to give us the 
result 

,.- 0 d r- A (Al gij = /l - gij an iJ = (iJ Ii . (23) 

This would make then A.*i = A.; + A.Ki identically zero [cf. 
(10)]. Hence we are free to include in (21) terms of the form 
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gij</J)".J and gijA.iA.J, where A.i is defined now as 

A.i =Ai +AKi 

with 

- lIn J Ir- n 
K j - 4 ni g - 4 ni* 

(24) 

(25) 

The most general conformaUy invariant first-order Lagran
gian density, which reduces to (21) if(23) is valid, reads then 
as (with c and d arbitrary functions of </J ) 

Y'tot = - ~ - g</J 2A 2 [gijRij + 4w(</J )gij</Ji</J/</J 2 

+ 6cgij</JiA.J1</JA + 3dgijA.iA./A 2] + 161T2' M' 
(26) 

Varying gij yields the field equations (with 
G = A -2</J -2) 

- (</Ji</Jj 1 </In</J
n

) 
Gij = - 81TGTij - 4w 7 - T gij---;J2 

_ 6c( </JliA.j) _..!.. .. </J nA.n ) 
</JA ' 2 g'j </JA 

_ 3d (A.iA.j _..!.. .. A onA.n ) 
A 2 2 glj A 2 • 

Variation of r ~, on the other hand, using 

b(A. i ), = AbKi = - lAbr~;t 

gives 

0= J~-gd4XIA2</J2gij[(br7n)u - (brij)ln] 

_ 3A.A 2CA. mbr m _ 3A. 2AdA ombr n J 
~ 0/ nm ~ nm 

= J d 4x [ - (A 2</J 2gij~ -g )ubr7" 

+ (A2</J2gij~-g)lnbrij 

- ~~ - gA 2</J 2 (ct/J"I</J + dA On fA )Dr ;;:n] 

Writing f§ ij = ~ - ggij and f3 = A</J, this yields 

(f3 2 f§ ij)lk - (f3 2 ,C§ nl') In Dik 

- ¥3 2(C</Jnl</J + dA.nlA ).fjn(ibi) = O. 

Contraction over j and k gives 

(f32f§in)ln = - Hc</Jnl</J + dA.nlA )f§in, 

which, when substituted in (29), yields (with uij = f3 2gij) 
-- --

(1!~ - U )(~ - U U'j)lk + (c</Jnl</J + dA.nlA )unUbi) 
=0. 

Now 

(1!~ -u)(~ -U)lk =(log~ -Uk-r~k 

= (Iog~ - g)k + 4(lOgB)k - r ~k 
=4[Kk + (JOgB)k] 

such that (31) becomes 

2247 

Utjlk = 4uij [Kk + (logB)k ] + c(log</J )UUj)k 

+ d (logA lu Uj)k + dKu Uj)k • 

Hence, using the identity 
r n J _ r- n _ 1 mn 
tin u in -"2U Umn1i , 

J. Math. Phys., Vol. 22, NO.1 0, October 1981 

(27) 

(28) 

(29) 

(30) 

(31) 

(32) 

(33) 

(34) 

one has 

= umnUmnli 

= 16 [Ki + (10gB )i ] + c(log</J)i + d (logA )i 

+dK;t 

from which one solves 

Ki = - (logA)i - [(8 + c)/(8 + d )](log</J )i' (35) 

This shows that K i , and hence also r ~i' is a gradient. Are r ~ 
now the coefficients of a Weyl connection (and hence of an 
integrable Weyl connection)? 

Take therefore the substitution of (35) in (33): One 
obtains 

d-c 
Uijlk = 4 -- [utj(log</J h - uidlog</J)j - ujdlog</J),.], 

8+d 
which must take the form JO 

(36) 

with 1/1 some function of </J. This is clearly only possible (for 
nonconstant </J ) if c = d. 

But then 

or 

and thus 

But uij = f3 2 gij' so one would conclude 

a -2 gij =fJ gij (37) 

instead of (23)! 
Note that in the particular case c = d = - 8 the con

clusion (35) is invalid. But then (33) takes the form 

with 

I/Ii = 4[Ki + (logB)i]' 

This is only of the form (36) if Ki = - (logB)i' from which 
one obtains again 

Now, if (37) is valid, one can rewrite (26) as 

2"tot = -~-g( gij Rij +4w lj</Ji</J/</J2+ ... ) 

+ 1 61T2'M , (38) 

which is clearly wrong if r ~ is taken to be the connection in 
particle units. Variation of (38) would only give the correct 

field-equations if the gij was the metric in Planck units! 
From these considerations we conclude that the Pala

tini method is not able to generate the field equations of the 
general scalar-tensor theory in an arbitrarily chosen unit 
system (e. g., the particle units), when the method is applied 
to an action integral similar to the one used in the Hilbert 
method. 
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More precisely, the use of the Palatini method forces 
one necessarily to take the connection coefficients r ~ (P) in 
Planck units as the relevant field variables. Repeating then 
the above reasoning with A.; replaced by (3.;, one can indeed 
obtain (3.; = 0 and gij = gij (PI as desired, but the resulting 
field equations will turn out to be wrong. For any choice of c 
and d, the last terms in (27) will drop out, and what is left are 
the field equations (15) in Planck units, with 4w(¢) + 6 re
placed by 4w(¢ ). The only way to obtain the same equations 
for both Hilbert method and Palatini method, is to take a 
priori the gauge (3 = const and to use the action integral (18); 
the identity of the two results then becoming a trivial 
matter. 3 
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A study is given of the stochastic properties of a system of classical harmonic oscillators, driven by 
a Gaussian fluctuation and with a periodically modulated frequency. It is shown that, when the 
condition for the parameter amplification is almost satisfied, a phase locking occurs between the 
modulation and oscillation, leading to a coherent motion of the system as a whole. The difference 
between this type of coherent motion and the one excited by a periodic external force is pointed 
out. The distribution function for the process is defined and is shown to satisfy a generalized 
Fokker-Planck equation. A discussion is also given of the conditional probability, and some of its 
characteristic properties are specified in connection with the phase-locking effects. 

PACS numbers: 05.40. + j, 02.50.Ey, 02.50.Fz 

I. INTRODUCTION 

Many previous works have contributed to studying 
how a coherence of motion is lost by random frequency mod
ulations, 1-10 but, to the author's knowledge, no work appears 
to have studied systematically how a coherence of motion is 
gained by coherent frequency modulations. 

damping factor, and h (t ) a small dimensionless function 
whose form depends on the conditions of the modulation. In 
terms of the two-component vector X (t) = (x l,x2) with 

The fact that a coherent external force, exerted on a 
system of identical harmonic oscillators, undergoing inde
pendent motions with random initial phases, leads to a co
herent motion of the system as a whole is, needless to say, 
due to the fact that the phase of the forced oscillation is 
uniquely related to that of the external force. The purpose of 
the present paper is to show that a coherent external frequen
cy modulation also provides a method of exciting a coherent 
motion of such a system. I t is well known that a proper fre
quency modulation leads to amplification of oscillation (the 
parametric amplification), II but it seems to be less well 
known that, at the same time, a definite phase relationship 
appears between oscillation and modulation. This phase
locking effect, as it were, plays an essential role in exciting a 
coherent motion by frequency modulations. 

In Sec. II we derive basic equations of the problem, 
which are applied in Sec. III, to the analysis of the paramet
ric amplification and phase locking. Section IV is devoted to 
the discussion of a frequency-modulated harmonic oscilla
tor, driven by a Gaussian fluctuation, and the distribution 
function describing the statistical properties of the oscillator 
will be derived. Then in Sec. V we show that this function 
satisfies a generalized Fokker-Planck equation. Finally in 
Sec. VI it is shown that the effect of phase locking reveals 
itself most clearly in the form of the conditional probability. 
No nonlinear effects are considered throughout. 

II. BASIC EQUATIONS 

A harmonic oscillator with a modulated frequency is 
described typically by 

x+2Ax+w~[1 +h(t)]x=O, (2.1) 

where Wo is the frequency of the free oscillation, A a small 

L I (t ) = _ h (t )wo ( sinh2k - cosh2k sin2yt 
2 cosh2k + cos2yt - sinh2k sin2yt 

XI = WoX and X 2 = X, we have 

i - ( _Owo :~A )X -h (t )wo(~ ~)x. (2.2) 

It is convenient to change the variable from X (t) to Y(t) 
through 

X= ( coshk 
- sinhk 

where we have put 

- sinhk) _ ~K 
hk 

Y=e Y, 
cos 

(2.3) 

The authors in Ref. to used a somewhat different transfor
mation, but the one in the present paper is more convenient. 
With (2.3) substituted into (2.2) and writing 
W = (w6 - A 2)1/2, we have 

. (-A Y= 
-w 

For later use, we further introduce the transformation 

n ( 0 Y=e V, T= 
-y ~) 

to derive 

V(t) = LoV(t) + LIlt) V(t) (2_5) 

with 

(
-A 

Lo= 
y-w 

-(y-W)) 
-A 

and 

(2.6) 

The parameter y may be determined in a suitable way rel
evant to the form of h (t). The full expression for L ,(t) can be 
easily calculated to be 

- cosh2k + cos2yt + sinh2k sin2yt) 
- sinh2k + cosh2k sin2yt . 
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For very weak damping Wo>A we can put k~O, and hence 

L,(tj~h(t)wo( sin2yt 1-~OS2yt). 
2 - I - cos2yt - sm2yt (2.7) 

In the absence of modulation, h (t ) = 0, we can put y = W without losing generality to derive V = - A V with the obvious 
solution V(t) = exp( - At )V (0). In the original representation, this leads to the damped oscillation 

{ (1 0) . ( - sinh2k COSh2k)} X=e-Ate-KeTteKX(O)=e-At co&ut 0 +smwt X(O). 
I - cosh2k sinh2k 

III. PERIODIC MODULATION 

The form h (t) = h cos2yt, Ih 1.( I, corresponds to a co
herent and periodic modulation, in which case (2.7) is divid
ed into two parts: 

I) hwo +-o 4 

( 
sin4yt 

X _ 2 cos2yt - cos4yt 
2 cos2yt. - cOS4yt). 

- sm4yt 

The first term is time-independent and gives rise to a secular 
effect on the mechanical state of oscillation. Hence it is natu
ral to redefine Lo and L,(t lin (2.5) in the following way (the 
renormalization of Lo): 

Lo= (
-A 

-E+ (y-w) 

L,(t) =E ( 
sin4yt 

- 2 cos2yt - cos4yt 
2 cos2yt - cOS4yt) 

. . (3.2) 
- sm4yt 

With this redefinition, (2.5) can be solved by successive 
approximations: 

V(t) = eLot {I + L dt 'L fit ') 

+ (' dt' (' dt" L fIt ')L fIt ") + ... } VIOl (3.3) Jo Jo 
with 

L f(t) = e" L'''L,(t )eI-ot. (3.4) 

The secular term exp(Lll ) plays the most important role. The 
two eigenvalues of L o' denoted by s ± ' can be easily evaluat
ed to be 

s" = -A± (E2_(Y_E)2)'12. 

The oscillation evidently amplifies when s ± is real and 
positive: 

E2 > A 2 + (y - w f. (3.5) 

This is the condition for the parametric amplification of the 
lowest order." 

The term linear inL f(t) in (3.3) yields small corrections 
to the fundamental oscillation as well as small higher har
monics. This can be shown by considering the simplest case 
y = wand A = O. The operator exp(Lll ) then simplifies to 

eLot = ( coshEt 
- sinhEt 

yielding 

- sinhEt) 
coshEt ' 
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L f(t) = - E cos4yt (~ ~) 
+ E(cosh2Et sin4yt - sinh2Et cos2yt) 

X(~ ~ J 
. h . ( 0 - E(sm 2Et sm4yt - cosh2Et cos2yt) 

-1 

When substituted into (3.3), the first term of L f(t) gives 

eLol it L fit ') dt '= E sin4yt ( sinhEt 
o 4y - coshEt 

- cOShEt) 
sinhEt . 

In the original representation, this is written as 

E [ ( sinhEt X (t) = - (sin3yt + sin5yt ) 
2y - coshEt 

( 
- COShEt 

+ (cos3yt - cos5yt ) . h 
sm Et 

- cOShEt) 
sinhEt 

sinhEt )].x (0). 
- COShEt 

The term retained th us yields higher harmonics of 3y and 5y 
of order h. In the same way, the terms proportional to sin2yt 
and cos2yt in L f(t) are shown to yield corrections to the 
fundamental oscillation as well as higher harmonics, each of 
order h. On the other hand, the terms nonlinear in L fit) 
involve, in addition to still higher harmonics of order h ", 
n> 2, higher-order secular effects (details are shown in Ap
pendix A), which, however, do not affect the qualitative fea
tures of the following arguments. 

The fundamental oscillation in the original representa
tion is written as 

(3.6) 

This expression enables us to study the phase relationship 
between the modulation and oscillation. Take A .(wo and 
y = w, for simplicity. Then exp(K) can be approximated by a 
unit matrix and exp(Lot ) reduces to 

eL"t = e' At ( cosha - sinhEt). 
- sinhEt coshEt 

If E is positive (modification for E < 0 is trivial), we have for 
Et> 1 

eL"t~_I_el<- Alt( 1 -1) 
yl2 - 1 l' 

and (3.6) simplifies to 

X(t)~_I_e(" AII(X,(O)-X2(O))( CO~(wt +1T/4) ). 
)/2 - sm(wt + 1T/4) 

(3.7) 

Clearly, in this limit, the phase of oscillation is uniquely re
lated to that of the modulation. Note that the relationship is 
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independent of the sign of lei - A; i.e., it is the same whether 
the oscillation amplifies or damps. 

The physical significance of this result can be visualized 
most easily, if we consider the motion of a simple pendulum 
of mass m and length I, whose point of support oscillates 
vertically according to the law a cos2yt, lal <,1. If the angle 
between the string and vertical is taken to be x, then the 
equation of motion for this pendulum for small Ix I and for 
woc::::::y is given by 

x + 2Ax + w6(1 + h cos2yt)x = 0, 

where w;) = gil, h = 4a11, and we have introduced the 
damping proportional to X. For the particular case y = w 

and wo>A, the solution of this equation for Ih Iw(l> 1 ap
proaches (3.7). The correspondence between the position of 
the point of support and that of the mass is shown in Fig. 1 in 
the case e> 0 and x I (0) > X2(0). Three positions of the mass, 
A, B, and 0, correspond to the neutral point N. To position 
A corresponds the phase wt = 71T/4 mod21T, and to B the 
phase 31T 14, whereas to the origin correspond the two phases 
1T/4 and S1T/4. 

This phase-locking property of the modulation leads to 
the following remarkable consequence. Consider a system of 
a large number of identical harmonic oscillators, each un
dergoing independent oscillation. If the initial phases of the 
oscillators are random, the motion of the system as a whole 
is, of course, incoherent. Now, let the frequency of the oscil
lators be modulated coherently. It is clear that a proper mod
ulation would lead to a coherent motion of the system as a 
whole. However, the resultant coherent motion is not such 
that all oscillators in the system move in unison with the 
same amplitude and phase. According to (3.7), the amplitude 
of an individual oscillator, even after a sufficient time, still 
depends on the initial condition of motion, and the phase 
also depends on the initial conditions, but the dependence is 
only upon the sign of x 1(0) - x 2(0), i.e., the modulation deter-

p 

N 

B A 

FIG. I. A simple pendulum with the point of support oscillating vertically 
according to the law a COs2WI, a > O. The sign has been fixed, so that Q may 
be its position at wi = O,mod1T. After a sufficient time, a definite correspon
dence appears between the phase of the mass and that of the point of sup
port, as shown in the figure. 
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mines the phase of oscillation within ± 1T. These properties 
of the parametric amplification are in remarkable contrast 
with those of the coherent motion excited by a periodic ex
ternal force, in which case, after a sufficient time, all oscilla
tors move in unison independently of the initial conditions. 
It will be shown in Sec. VI that these features of the periodic 
frequency modulation have salient effects on the statistical 
properties of a harmonic oscillator, driven by a fluctuating 
force. 

IV. MODULATION OF A HARMONIC OSCILLATOR 
DRIVEN BY A GAUSSIAN FLUCTUATION 

Let a frequency-modulated harmonic oscillator be driv
en by a fluctuating force/(t) with the stochastic properties 

(/(t) = 0, (/(t )/(t ') = F(t - t '), (4.1) 

where ( ) denotes stochastic averaging. It is assumed that 
the stochastic process is stationary and Gaussian. 

When the stochastic force is added, (2.2) is extended to 

X(t)=(_OW() :~}X(t) 
- hwo cos2yt (~ ~}X (t ) + I(t )(~). 

The transformation X (t) = e - Kert . V(t) yields 

V(t) = Lo·V(t) + LI(t ).V(t) + I(t)e - rteK{~), (4.2) 

whereLo andLI(t) are defined by (3.1) and (3.2), respectively. 
If the nonsecular effects are ignored, the solution including 
the lowest order secular effects is 

V(!) = eLo' [V(O) + Sa' dt' I(t ')e - Lo"e - rt'eK (~) l (4.3) 

In the original representation, this is written as 

X(t) =(3(t )-[X(O) + A (t)), 

where (3 (t ) is defined by (3.6), and 

A (t) = Sa' dt' I(t ')(3 - I (t ').(~). 

(4.4) 

(4.5) 

If the initial value X (0) is also a random variable with 
the probability distribution P (X (0),0), then the average value 
of a quantity Q (X (t)) is given by 

«Q(x(t)))) = J dX(O) (P(X(O),O)Q(X(t))). (4.6) 

Note that two averaging processes are involved in this ex
pression. Change of the variable from X (0) to 
X (t ) = (3 (t )·[X (0) + A (t )) leads to 

«Q(X(t)))) = 11(311- 1 J dX(t) 

X (P(j3 -IX(t) - A (t ),O)Q (X(t ))). 

Now define 

P(X,t) = 11(3 11-I(P(j3 -IX(t) - A (t ),0). (4.7) 

Then we have 

«Q(X(t)))) = J dX P(X,t)Q(X). (4.8) 
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Equation (4.8) permits the interpretation that P(X,t) repre
sents the distribution at t. The initial form (4.6) is based on 
the picture in which the dynamical variable X (t) changes in 
time but the distribution function remains unchanged, 
whereas the final form (4.8) is based on the picture in which 
the converse is the case. Such a change of picture is intro
duced whenever a Fokker-Planck type of equation for the 
distribution function is derived from the Langevin equation. 

v. A GENERALIZED FOKKER-PLANCK EQUATION 

In this section, the differential equation for P (X,t ) will 
be derived for the 8-correlated case: F(t - t ') = 2Fo8(t - t '). 
Extension to general cases is treated in Appendix B. In terms 
of the Fourier transform 

P(X,t) = (21T)~2 f d 2k eik,X¢(k), 

(4.7) takes the form 

(5.1) 

P(X,t) = 11/311 ~ 1(21T)~2 f d 2k (exp[ik.(J3 ~ I·X - A )])¢(k). 

(5.2) 

Being a linear combination of the Gaussian variable, A is also 
Gaussian, so that 

(exp[ik.A (t)]) = exp! - !k.(A (t)A(t).k j, 

where ~ denotes transposing a vector or matrix. Now define 
a matrix D (t ) by 

D(t) = (A (t)A(t) 

= 2 Sa' dt' /3 -I(t'{~ 0) -1 /3 ~ I (t '). (5.3) 

Evidently D (t) is symmetric and positive-definite. 
With these expressions substituted into (5.2), we obtain 

P(X,t) = 11/311~1(21T)~2 f d2kexp(ik'/3~I.X) 
X exp( - V-C·D.k )¢(k ) 

= 11/311 ~ 1(21T)~2 exp(!V./3DP.V) f d 2k 

X exp(ik./3 ~ I·X )¢(k ) 

= 11/311~1 exp(!V./3D/3.V)P(J3-I.X,O). 

Differentiation with respect to t leads to a Fokker-Planck 
type of equation 

ap~~,t) = - [(:t 11/311)/11/311 

1 d - a2 

+ - - «(J3D/3k)--
2 dt axiaxj 

- _. a + exp(! V·/3 D/3. V)(J3 - I )ijxj/3 ki -
aXk 

X exp( - !V./3D;3.V)k(X,t) 

= (!V./3D;3.V - V.(J/3 ~ I.X)P(X,t), (5.4) 

together with the identity [(d Idt )11/311 ]111/311 = ;3ij(J3 ~ I)ji' 
It is easily seen that 

(0 01) /3(t )D(t )fi(t) = 2Fo 0 
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and 

(5.5) 

Equation (5.4) thus describes a nonstationary Markovian, 
Gaussian process. 12 

In the absence of modulation, E = 0, we can put y = w 
to obtain 

;3/3 ~ I = ( _Owo ;; ). 

Equation (5.4) then reduces to the familiar form 

ap(X,t) 

at 

(5.6) 

(5.7) 

which describes the Brownian motion of a simple harmonic 
oscilla tor. 13 

VI. THE CONDITIONAL PROBABILITY 

The solution of(5.4) for the special initial condition 
P(X,O) = 8(X - Xo) is called the conditional probability, de
noted by P (Xo,O;X,t ). Substituting ¢(k ) = exp( - ik.Xo) into 
(5.2) and then evaluating the integral, we obtain the condi
tional probability 

P(Xo,O;X,t) = 11/311-1(21T)~2 f d 2k 

X exp[ - !k.D.k + ik.(J3 - I·X - Xo)] 
= (21T) - IIID/3(t HI ~ 1/2 

X exp [ - !(X - /3.Xo)-·D /3- I(t HX - /3.Xo)] 
(6.1) 

with the symmetric and positive definite matrix 

D/3(t) = /3 (t)D (t);3 (t). (6.2) 

The distribution (6.1) has a center at/3 (t )·Xo' which is the 
solution of the equation of motion in the absence of the sto
chastic force. It starts from the initial value Xo and moves 
along a spiral, which either converges at the origin or di
verges at infinity, according as A 2> E2 or A 2 < E2 (the diver
gence is, of course, suppressed if nonlinear effects are includ
ed). The properties of the distribution are determined 
completely by the matrix D/3(t) or its inverse. Its full expres
sion is 

Dri(t) = 2FlJ (t) L dt' /3- I(t ,{~ ~);3 -I(t ');3 (t). (6.3) 

Evaluation of Df3(t) is carried out in Appendix C under var
ious physical conditions, and the results will be cited in what 
follows. 

For E = 0, we have 

Fo {(I 
Df3(t) = U ° ~) - exp [ ( _Ow

o 
_w~ )t ] 

xexp [( ° 
Wo 

=;;)t]). (6.4) 

For At> 1, this reduces to 

(6.5) 
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and (6.1) gives the stationary distribution 

The origin of the damping and fluctuating force have 
not been specified so far. If they are caused by a heat reser
voir in thermal equilibrium into which the oscillator is im
mersed, then (6.6) provides the well-known fluctuation-dissi
pation relation Fo/ A = 2kB T, where kB and T are the 
Boltzmann constant and the temperature of the reservoir, 
respectively. 

For£#O, three cases can be considered. For A 2> £2, the 
center of the distribution converges at the origin, and its 
asymptotic form is given by 

P(Xo,O;X,t) = [(A 2 - £2)1/2/JrFo] 

X exp! - (1/ Fo) [(A + £ sin2wt )x; 

+ (A - £ sin2wt )x~ + 2£ cos2wt X IX2 ] ).(6.7) 

It is convenient to define the variables t and 1/ along the 
principal axes by 

(t) = (COS(wt + 1T/4) - sin(wt + 1T/4))fxl). (6.8) 
1/ sin(wt + 1T/4) cos(wt + 1T/4) \x2 

Note that those states represented by (3.7) are on the taxis. 
In terms of the new variables, (6.7) takes the form 

P(Xo,O;X,t) = [(A 2 - £2)1/2/1TFo] exp! - (1/Fo)[(A - £)t 2 

+ (A + £)1/2
] l. (6.9) 

The distribution is now not isotropic; the equation 
P'(Xo,O;X,t) = const defines in the phase space an ellipse, 
hereafter referred to as the distribution ellipse, whose princi
pal axes rotate with the angular velocity w (Fig. 2). This re
markable feature reminds us of the discussion in Sec. IlIon 
the phase-locking behavior of the modulation. There we 
have seen that if the modulation continues indefinitely, there 
appears a definite phase relationship between the modula
tion and oscillation. For wt = 31T/4, for example, the oscilla
tion lends to take the phase A or B (see Fig. I), accordingly as 

o wt."'lI/lj 

B 

o 

FIG. 2. The distribution ellipses in the case 1'2 <A 2, showing the rotation of 
the principal axes. As lEI approaches A, the major semiaxis becomes much 
larger than the minor semiaxis, indicating a continuous onset of the coher
ent motion associated with the phase locking. It is easily seen that the coher
ent motion is not such that all oscillators move in unison with the same 
amplitude and phase. 
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X I (0) - x 2(0) is negative or positive. Of course, such a rigor
ous phase locking cannot be expected to occur for the Brow
nian motion, but it is plausible that for wt = 31T/4, mod21T, 
the mechanical states A and B have higher probability than 
any other states. This is the physical implication of the distri
bution ellipses drawn in Fig. 2. 

It should be pointed out that a similar rotation of the 
distribution ellipses has been reported already in 1945 in the 
case of a simple harmonic oscillator. \3 In this case the rota
tion occurs transiently; namely, an initial two-dimensional {j 
function in the phase space first becomes a narrow ellipse 
elongated in the X 2 direction, which then rotates with angu
lar velocity wand at the same time broadens out until it 
approaches the Maxwell-Boltzmann distribution centered 
at the origin. 

For £2 = A z, the center of the distribution,/3 (t )·Xo' ap
proachesacircledefined by(3.7). Writing X , = X - /3(t )-Xo, 
and then defining (t ',1/') related to X' by the same transfor
mation as (6.9), we find for At> 1 

P (Xo,O;X,t ) 

= _1 (~)1/2 exp[ _ ~ (L + 1/'z)] £>0. 
1TFo t Fo 4At ' 

(6.10) 

The phase-locking effect reveals itself in a more enhanced 
form in the fact that the major semiaxis is along the t ' direc
tion and increases as v't. 

Finally for £2> A 2, the center moves along an expanding 
spiral, and we find 

P (Xo,O;X,t ) 
(£2 _ A 2)1/2 

= e-«-A1t 
1TFo 

X exp [ - ;0 ((£_A)e- 2«- A1tt'2+(£+A)1/'Z)], 

(6.11) 

provided £ > O. The phase-locking effect is still more en
hanced, as it should be. 

The conditional probability averaged over the Max
well-Boltzmann distribution is also of some interest; we as
sume that the initial state of the system has the distribution 

where m is the mass of the oscillator and I a unit matrix. 
Then it is easily found that 

P (X,t ) = J P (Xo,O)P (Xo,O;X,t ) dXo 

= (lIA 1II/Z/21T) exp( - !X-A-X), 

A =tl -IE(1 + DE)-I(3 -I. 

D is shown to be proportional to eHt (see Appendix C), and, 
hence, for large t, A (t) approaches 

A (t )"'-'tl -1(t)D - l(t)(3 -I(t) = D {3- I(t). 

Therefore, P (X,t ) for large t is the same as (6.1), (6.10), or 
(6.11), provided (t ',1/') is replaced by (t,1/)' 
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APPENDIX A: HIGHER ORDER RENORMALIZATION 

For a periodic modulation, (2.5) is rewritten as 

V(!) = Lo' V(t) + €(e2iY'L2 + e4iY'L4 + c.c.)·V(t), (AI) 

where Lo is the same as (3.1), and 

L2 = ( ° -1 
1) 1 ( - i 
0' L4 = 2 -1 

With the use of the Laplace transform 

VIs) = i= e - stV(!) dt, 

(A 1) can be written as 

(s - Lo)'V(s) - €[LAV(s - 2iy) + VIs + 2iy)] 

+ L 4· VIs - 4iy) + L t· VIs + 4iy)] = VIOl. 

Now rewrite this equation as 
A A A 

(s - Lo - €2L1 (s))·V(s) - €(L2'[V(S - 2iy) + VIs + 2iy)] 

+ L 4·V(s - 4iy) + L t·V(s + 4iy)] + €ZL1 (s).V(s) 
= VIol, (A2) 

with €2L1 (s) representing higher order secular effects, and 
define 

K(s) = s - Lo - €2L1 (s). 

Then from (A2) follows 

VIs - 2iy) = K -1(S - 2iy)(V(0) + €(L2·[ VIs - 4iy) + VIs)] 

+ L4'V(S - 6iy) + L t·V(s + 2iy)] 
- €2 L1 (s - 2iy). V (s - 2iy)), 

and similar equations for VIs + 2iy) and VIs ± 4iy). Substitu
tion of these into (A2) yields 

(K (s) + €2( L1 (s) - L 2[K -I(S - 2iy) + K -I(S + 2iy)]Lz 

- L4K -I(S - 4iy)L t - L tK -1(S + 4iy)L4])'V(S) 

= (I + €(L2(K -1(S - 2iy) + K -I(S + 2iy)) 

+ L4K -I(S - 4iy) + L tK -I(S + 4iy)\)·V(0) 

+ €2L 2(K -I(S - 2iy)(L2 • VIs - 4iy) 

+ L4'V(S - 6iy) + L t·V(s + 2iy) + ... J) 
+ €2[LzL1 (s - 2iy).V(s - 2iy) + .. l (A3) 

Further iterations give rise to secular effects of higher order. 
Evidently it is natural to put 

L1 (s) = L21 K -I(S - 2iy) + K -I(S + 2iy) ]L z 

+ L4K -I(S - 4iy)L t + L tK -I(S + 4iy)L4' (A4) 

which is an implicit equation for L1 (s). 
The properties of the fundamental oscillation are deter

mined by the solution of 

det\\K (s)\\ = ° (AS) 

near the origin, whereK -I(S ± 2iy) andK -I(S ± 4iy) can be 
approximated by ( ± 2iy) - I and ( ± 4iy) - I, respectively. 
Therefore 

L1 (s)~ _i_ (L4L t - L tL4) + _1_ ( ° 1 0
1
). 

4y 4y -

Then (AS) leads to 

(s +,.{ )2 = €2 - (y _ w - €2/4yf. 
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In the case,.{ = 0, the condition for amplification is 

Ihwo l!4> Iy - Wo - h 2wo/64 I , (A6) 

which is a known result (see Ref. 11). 

APPENDIX B: NON-MARKOVIAN, GAUSSIAN 
PROCESSES 

To start with, a brief review of non-Markovian, Gaus
sian processes will be given in a form convenient to later 
analyses. The simplest equation that inclUdes a damping 
with memory and a stochastic force may be written as 

x(t)+ i',.{(t-t')X(t')dt'=f(t), t>O, (Bl) 
o 

with"{ (t - t ') representing a memory effect, andf(t) a Gaus
sian variable, satisfying (f(t) = 0, (f(t )/(t ') = F(t - t '). 
The solution is 

x(t) = X(t )x(O) + (' X(t ')f(t - t ') dt', X (0) = 1, Jo 
where X (t) is the inverse Laplace transform of [s + i (s)] - I 

with 

i (s) = f" e - st,.{ (t ) dt. 

Let P (x(O),O) describe the distribution of the initial value 
x(O). Then the average value of x(t) is given by 

«x(t )>> = f dx(O) (P (x(O),O)x(t ) 

where 

= [l/X(t)] f dx (P((x - A (t ))/X(t ),O)x) 

- f dx P(x,t)x, 

A (t) = i' X(t ')f(t - t ') dt '. 
() 

In terms of the Fourier transform 

P (x,O) = (l/21T) f e'!cxtf;(k) dk, 

P (x,t ) takes the form 

P (x,t) = [l/21TX(t) 1 f (exp[ ik [x - A (t )]!X(t )J>tb(k ) dk 

= [1121TX(t)] f exp [ikxIX(t ) - !k 1 D (t )lx2(t )] tf;(k ) dk 

(B2) 

with 

D (t) = (A (t)A (t) 

= (' dt' (' dt" X(t ')X(t ")F(t' - t "). 
Jo Jo 

(B3) 

In the limit t- co ,X(t ) for a passive system is expected to 
approach zero, and D (t) a finite value, denoted by D 00 in the 
following. Application of the method of steepest descents to 
(B2) yields the stationary distribution 

P(x,co) = l/(21TD oc )112tf;(0)e- X
'IW. 

= l/(21TD oc ) Ille - .,'/W. (B4) 
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whose Fourier transform is 

¢oo (k) = f e- ikxp(X, (0) dx = e - D~k'/2. 

The stationary distribution should not depend on t. 
Thus, if ¢ 00 (k ) is substituted into (B2) and the integral is 
evaluated, then the result must be identical with P (x, 00 ). 

From this self-consistency requirement follows 

(BS) 

Equation (BS) holds obviously at t = 0. Differentiation gives 

L X(t ')F(t - t ') dt' + X(t)D 00 = 0. 

The Laplace transform of this relation leads to 

[S+i(S)]-'P(S) + [s[s+i(s)]-I-ljDoo =0, 

whence follows the fluctuation-dissipation relation 

Pis) = i (s)D"" , 

or 

</(t )/(t 'I) = A (t - t ')D 00' 

With the use of (BS), (B2) simplifies to 

P (X,t ) = [1/217X(t)] 

X f exp{ikxIX(t) - !k 2[ I1X2(t) - I]D 00 j 

X¢(k) dk 

= 1/[ 21T[ I - X 2(t )]D "" ll/2 f dtP(t,O) 

(B6) 

X exp[ - !(x - x(t)t )2/(1 - X2(t))D "" j. (B7) 

It follows easily that 12 

-P(X,t) = - x - [xP(x,t)] +D"" -P(x,t) .(BS) a '{a a
2

} 
at x ax ax2 

If x(t ) is monotonic, one can define a generalized time T 
through 

T= -logX(t) 100 

x(t J dt 

to reduce (BS) to the form 

a {a a
2

} -P(x,T)=a - [xP(x,T)] +Doc -2P(x,T) , 
aT ax ax 

(B9) 

a = [ LOO x(t) dt ] -I. 

Formally, (B9) is identical with the Fokker-Planck equation 
in a stationary Markovian, Gaussian process. Note, howev
er, that t or Tin (BS) or (B9) is a specialized time coordinate 
in that, as is obvious from (B 1), incoherent effects are sup
posed to set in at t = T= 0. 

All the results can be extended with a slight modifica
tion to the problem in hand; the equation to be studied is 

X(t)=( 0 wO).X(t)_2 ('A(t-t')(O °l)'X(t')dt' - Wo 0 Jo 0 

+ h cos2ytX (t ) + I(t J(~). 
It is assumed that A (t - t ') is very small and y is nearly equal 
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to WO' The transformation X (t) = err. V(t) yields 

V(t) = (0 - E -o(y - woJ)'V(t) 
-E+ (y-wo) 

+LI(t).V(t)- LA(t-t'Je-r(t-l'l 

X[1 +(-,C02S2~t' sin2yt')].V(t') 
sm yt cos2yt' 

+ I(t)e - rr.(~). 
It was shown in Sec. III and in Appendix A that the term 
involving L I (t ) gives rise to small corrections to the secular 
effects as well as small higher harmonics. The Laplace trans
form of the above equation with this term omitted yields 

sV(s) - VIOl 

= Lo(s).V(s) + iris) [L3'V(S - 2iy) + L ~.V(s + 2iy)] 

(BIO) 

with 

i ), jr(s) = roc e - SI/(t)e - rr dt. 
- I Jo 

Equation (BIO) is very similar to (A2), and analyses from 
now on go parallel with those in Appendix A, Taking ac
count of the secular effects to order i ~ (s), we find 

J(s).V(s) = [1 + ir(s)[L3J -I(S - 2iy) 

+ L TJ -I(S + 2iy)] j.V(O) 

with 

(BIl) 

J(s) = s - Lo(s) + i r (s)L 3J -I(S - 2iy)ir (s - 2iy)L ~ 
+ ir(s)L TJ -I(S + 2iy)ir (s + 2iy)L3' (BI2) 

The fundamental oscillation in the lowest order approxima
tion is given by 

v (t ) = v(t). V (0) + L dt' I(t - t ')v(t 'Ie - 1(1 - I 'I.(~), 

where v(t) is the inverse Laplace transform of J -I(S). In the 
original representation, we have 

X (t) = errv(t )·X (0) + err L dt' I(t - t ')v(t lIe - r(t - t'I{~). 

The condition for amplification is that the real part of the 
solution of J(s) = 0 be positive, 

Define X(t ) = errv(t ) and write 

X(t) =X(t).X(O) +A (t), 

A (t) = L dt' I(t - t ')el(t - t 'IX(t 'Ie - Tit - I 'I.(~). 
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The distribution function P (X,t ) is shown to take the form 

P(X,!) = {21Tllx (t )111- 1 f (exp!ik.x-I(t )·[X - A (t)ll > 

Xtf;(k)d 2k 

= [21Tllx(t)111-1 f exp[ik·x-l(t).X 

- !/("'x-1(t )Dr(t )X-I(t )·k ltf;(k) d 2k, 

in which 

Dr(t) = f dt' f dt" F(t' - t ")er(t-I')X(t') 

X e - r(1 - I ')(~ O)erll - 1")X(t ")e - r(1 - I") (BI3) 
1 ' 

It can be shown after somewhat tedious calculations that 

ap(X,t) _[1" d 'v-1D --1)-" " '-IX] --'--'---'- - - v'X-V[ rX !X'v - v'XX . 
at 2 dt 

XP(X,t). (BI4) 

The conditional probability can also be calculated easily to 
be 

P (Xo,O;X,t ) 

= [21T[IIDr (t)IIl' /2 1-1 
X exp[ - HX - X(t ),Xo1-·D r I(t). [X - X(t ),Xo1), 

(BIS) 

The physical meaning of the expansion (B 12) is of some 
interest. To see this, we put A (t) = Ac5(t), which yields 
iris) = A. Then (BI2) reduces to 

where we have put 

w = Wo - A 2/2y'"""'wo - A 2/2wo, (B 16) 

and J -I(S ± 2iy) has been replaced by ( ± 2iy)-I. The last 

approximation is permissible so long as the fundamental os
cillation is concerned. It should be mentioned that the right
hand side of (B 16) is the first two terms in the expansion of 
(w~ - A 2)1/2 in terms of A 2. Thus the expansion (BI2) to the 
order considered represents the frequency renormalization. 
In the same approximation, X(t) and Dr(t) are shown to 
agree with /3 (t) and Df3(t) defined in Sec. VI, respectively. 

APPENDIX C: EVALUATION OF Df3(t) 

When/3(t ) is substituted from (4.5) into (6.4),Df3(t ) takes 
the form 

Df3 (t ) = 2Foe - KeTleL.1 f dt' e- Lol 'e - TI 'eK (~ ~) 
X eKeTl'e - [" e - TIe - K. (CI) 

For £ = 0, r commutes with L(), and we can make use of the 
yroperties of e\ as exhibited in Sec. II, to transform back to 

/3(t)=e-KeTleLoleK = exp[(_Ow
o 

:~)r]. (C2) 

Then (CI) gives 

Df3(t) = 2Fo f dt' exp [ (_Ow
o 

_w~)t' ](~ ~) 

X exp [ (~o ~ ;; )r 1 
With the use of the identity 

wo ) (0 
- 2.,1 + Wo 

we can write D{J(t) as 

D (t) = - Fo {' dt' ~ /3 (t ')g (t '), 
f3 U Jo dt' 

which leads to (6.4) after integration. 
Written explicitly, (C2) takes the form 

exp [ (_Ow
o 

:~)t] = e - Are - K exp [ (~w ~)r ]eK
. 

Substitution of this into (6.4) yields 

0) _ e _ 2..1.1 ( coshk - Sinhk) ( cOSOJt 
1 - sinhk coshk - sinwt 

sinwt) 
cOSOJt 

(
COSh2k Sinh2k) (COSOJt - sinwt) ( coshk 

X sinh2k cosh2k sinwt cOSOJt - sinhk 

For At).}, this reduces to (6.5). 

- Sinhk)]. 
coshk 

Evaluation of Df3(t) for £#0 is extremely tedious; we shall do this only for wo>A and y = w, in which case e
K 

may be 
approximated by a unit matrix and La becomes symmetric: 

Lo = - C ;) = Lo· 
Therefore 

Df3(t) = FoeTleLol f dt' e - LOI'[ G 0) (COs2wt' 
I sin2wt' 
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sin2UJl' )] _ L t' L I - n e 0 e "e . 
- cos2wt' 

(C3) 
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It is easily seen that the first term in the curly bracket yields, 
after integration, quantities of order IE ± A I-I, whereas con
tributions from the second term are of order w - I. Hence, for 
small enough E and A, the second term is negligible, and we 
obtain 

D{3(t )'"'-'Foen i' dt' e2L•t·e - n 

=Foert(2Lo)-I(e2L·'-I)e-n, 

where we have put A 2 - E2=1-0. From now on the calculation 
is straightforward; the result is 

D (t) = Fo (coswt sinwt)( A -: E) 
(3 2(,1 2 _ E2) - sinwt coswt - E /l, 

X [( I 0) _ e _ 2A.( (COSh2Et - sinh2Et)] ° I - sinh2Et cosh2Et 

X (c~swt - sinwt), (C4) 
Slllwt coswt 

and 

I\Dj3(t)1\ = [F(/4(A 2 _ E2)](I_ e- 4A.1_ 2e- 2A1 cosh2Et). 
(CS) 

The inverse matrix is 

D (3- I(t) 

2 (coswt sinwt) = _ (I + e - 4AI _ 2e - 2Ac cosh2et ) - I . 

Fo - Slllwt coswt 

X [( I 0) _ e __ 2At (COSh2Et sinh2et )] ° I sinh2et cosh2Et 

X (A E)(C~swt - sinwt). 
E A Slllwt coswt 

(C6) 

For A 2 > E2, the second term in the curly bracket vanishes in 
the limit IElt> 1, and it follows that 

2257 

D (3- l(t)~ ~ [A (I 0) + E(Sin2wt 
Fo ° I cos2wt 

cos2wt )] 
- sin2wt 

(C7) 
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and 

IIDj3(t lIl~FoI4(A 2 - (2). 

For ,12 < c, we have in the limit IElt> I 

D (3- l(t)~ ~ {[(lEI + A) + (lEI _ A )e-21Iel-Alt ](1 
~ ° 

and 

+ sgn(E)[(IEI + A) - (lEI - A)e - 21I el -A 1t] 

X (Sin2wt 
cos2wt 

cos2wt )} 
- sin2wt 

~) 

(C8) 

(C9) 

Finally, when ,12 - E2 = 0, direct integration of (C3) 
leads to 

D - l(t) _ A [( 4 I )(1 
j3 - 2Fo l_e- 4At + At ° ~) 

( )( 4 I )(Sin2wt + sgnE - -
I - e - 4At At cos2wt 

cos2wt )] 
_ sin2wt (ClO) 
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Previous analyses of the decoupling theorem, in Euclidean space, considered only one mass scale 
in the theory becoming large and had the stringent constraint of allowing no zero mass particles in 
the theory. We generalize the decoupling theorem in both respects. We prove the vanishing 
property ofrenormalized Feynman amplitudes, with subtractions, when any subset of the masses 
in the theory become large and, in general, at different rates, thus providing different large mass 
scales in the theory. This theorem is then extended and we give sufficiency conditions for the 
validity of the decoupling theorem when any subset of the remaining nonasymptotic masses are 
scaled to zero and, in general, at different rates. All the subtractions of renormalization are carried 
out at the origin of momentum space. The proof applies for theories with derivative couplings and 
with higher spin fields as well. 

P ACS numbers: 11.1O.Jj 

I. INTRODUCTION 

Previous derivations l
•
2 of the decoupling theorem, in 

Euclidean space, considered that only one mass scale in the 
theory becomes large and had the constraint that no zero 
mass particles be allowed in the theory. In this paper we 
generalize the decoupling theorem in both respects. We 
prove the vanishing property ofrenormalized Feynman am
plitudes Jd, with subtractions, when any subset of the masses 
becomes large and, in general, at different rates. We then 
apply a previous analysis of the zero mass behavior of renor
malized Feynman amplitudes3 to give sufficiency conditions 
for the validity of the decoupling theorem, i.e., of the vanish
ing property of .#, when any subset of the remaining nona
symptotic masses are scaled to zero and, in general, at differ
ent rates. We then give some examples. For many interesting 
applications of the decoupling theorem see, for example, 
Refs.4-8. An expected universality of the fundamental inter
actions at very high energies (cf. Refs. 4 and 9) makes it 
interesting to investigate the decoupling theorem when dif
ferent "heavy" masses (providing an energy scale for the 
strengths of the interactions) are involved in a theory. All 
subtractions 10 of renormalization are carried out at the ori
gin of momentum space with the degree of divergence of a 
subdiagram coinciding with its dimensionality. The proof 
applies for theories with derivative couplings and with high
er spin fields as well. 

II. BASIC THEOREMS 
A renormalized Feynman amplitude associated with a 

proper and connected graph G is, in Euclidean space, of the 
form 

.cI(P,fl) = L."dk R (P,k,fl), (1) 

where 

P= (p~, ... ,p~), k= (k?, ... ,k!), 

fl = fp, 1,···,flP ), fl'> 0, i = 1, ... ,p, 

R= 
[:/ (P,k,fl) 

I1[Q~+fln 
I 

(2) 

(3) 

P, k, andfl denote, respectively, the set of the components of 
the independent external momenta of G, the set of the inte
gration variables, and the set of the masses associated with 
G. :-? is a polynomial in the elements in the sets in (2) and, in 
general, is also a polynomial in the fp,i)-I as well. The QI are 
of the form: 

" m 

QI = Ia;k i + Ib~h (4) 
i ~ I j~ I 

Consider the graph G. A line I joining a vertex Vi to a 
vertex Vj in G will be represented by a propagator (in Euclid
ean space) of the form 

+ _ Pijl(Qijl,flijd 
D ijl (Q,jI,flijl) - [Q2 2 ]' 

ijl + /-lijl 
(5) 

where Qijl is the momentum carried by the line 1, flijl is the 
mass associated with the line and coincides with one of the 
masses in (2). P'jI is a polynomial in Q,jI ,fl,jl and, in general of 
flijl I as well. In general, for a propagator D ijt , we assume 
that 

degD iji.;; - 1, (6) 
11.,/1 

[For example, for spins 0, 1, 2: D ij1 = 0 C!-lijl 2) and for spins 
1/2,3/2: D iji = 0 C!-lijl I), and (7) is also true], and that 

deg D;Ji .;;deg D ;Ji' . (7) 
Q,//./tt{1 Q'lf 

The momentum Qijl carried by the line 1 in G will be 
written 10.11 as 

Qijl = kijl + qijl' (8) 

where k,jI is a linear combination of the integration variables 
only, and qijl is a linear combination of the external momenta 
of G [see (4)]. By definition, a subdiagram is called proper if 
the subdiagram has no external lines and if anyone of its lines 
is removed then the number of its connected parts does not 
increase. Accordingly, in particular, by a proper subdiagram 
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we do not necessarily mean a connected subdiagram. For 
any proper sub diagram gC G, a line I joining a vertex Vi to a 
vertex vj , all pertaining to g, will carry a momentum Qijl 
written in the form 

Qijl = q, + qt, = kijl + qijl' (9) 

where k t, is a linear combination of the integration varia
bles, and qt, is a linear combination of the external momenta 
ofg. We introduce the sets kg = Ikttl,qg= {qttl withi,j, 
and I pertaining to the subdiagram g. Similarly we write 
k =k G = I kijl J ,q qG = [qijl J for the whole graph G. Letg' 
be any proper subdiagram containing the proper subdia
gram g. Then with i,j, and I pertaining to the subdiagram g 
we have ll 

(10) 

where the dependence of the qt, on kg' is only through those 
k t, in g'lg. g'lg denotes the subdiagram g' with g in it shrunk 
to a point. 

We consider a (4n + 4m + pI-dimensional Euclidean 
space IR

4n ~ 4m +". Let f be a 4n-dimensional subspace of 
IR

4
n + 4m + P and let E be a complement of lin IR4n + 4m + P, and 

we may then write the direct sum:IR4n + 4m + P = fEEl E. f will 
be associated with the 4n integration variables. We further 
introduce a 4m-dimensional subspace EI of E, and introduce 
the orthogonal complement E2 of EI in E, and write 
E = EI EEl E 2. The subspace E2 is of p dimensions and will be 
associated with the masses in (2). We may write 
IR4n + 4m + P = fEEl EI EEl E 2 • We also introduce the projection 
operations A (E), A (f EEl E I)' A (f EEl Ez),A (f) along the sub
spaces E, fEEl E I, f EEl E2, f, respectively. 

Let P be a vector in IR
4n + 4m + P such that the elements in 

the sets P, k, f.l in (2) may be written as some linear combina
tions of the (standard) components of P. Suppose P is of the 
form l2 

P=LI17117z···17k +,..+L,17,,..17k +,..+Lk 17k +C, (11) 

where 1 <k<4n + p, and L I, L2,.,.,Lk are k independent vec
tors in IR

4n + 4m +", and 171' 172, ... ,17k are strictly positive pa
rameters. C is a vector confined to a finite region in 
IR4n + 4m +p such that f.li #0 for all i = 1, ... ,p. For any r in 
1 <r< k, the vectors L I,L2, ••. ,L, span a subspace S,. 
Throughout we suppose that A (f EEl E2)S, is the zero sub
space: A (f EEl E 2)S, = [0 J, for all 1 <r<k<4n + p. Since the 
integrations variables, in particular, may be written as some 
linear combinations of the components ofP in (11) it follows 
that for any proper subdiagram g the k t, may be written as 
some linear combinations of the components of the vector P 
as well. The latter, in particular, means that for r fixed in 
1 <r<k<4n + p, then a k~, of g may (or may not) depend on 
the parameter 17, in (11). 

Let r be fixed in 1 <r<k. Suppose that A (E )S, # [ 0 J . 

Then the renormalized Feynman integrand 10 may be written 
as L1 

( 12) 

where 
TIN) = II(8~V - Tg)fG ( 13) 

?,E.\' 
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and f G is the unrenormalized integrand associated with G. N 
is a set of proper subdiagrams such that (i) G E N, (ii) if g, g' 
are inNtheng(lg' or g' (l g, (iii) and finally letNbe arranged 
in an increasing order: [,..,g,g',,..) such thatg(lg'; then with 
g and g' as consecutive subdiagrams in N, all the k~; in g'lg 
are either all dependent on the parameter 17, or are all inde
pendent of the parameter 17,. Tg denotes the Taylor oper
ation, with respect to the external momenta of g, about the 
origin up to the order d (g)-the dimensionality of the subdia
gram g. If d (g) < 0, then we set Tg O. The 8: are defined as 
follows. LetlI! g, gcan be any consecutive elements in N such 
that.[(lg(lg. If all the k t, ingl.[ are dependent on 17, and all 
the k Z, in gig are independent of 17" then 8: = 1, otherwise 
8: = O. On the other hand, 8~ = 1. The sum in (12) is over all 
distinct N sets. 

Let Nbe a set in (12). We write 

N = H](N)uH2(N), (14) 

such that a proper subdiagram g is in H] (N) if all the k t, in 
gl.[ are dependent on 17" andgis inH2(N) ifall the k tl ingl.[ 
are independent of 17 ,. We also write 

(15) 

wheregEF\(N) if all the kZ, in gig are dependent on 17" and 
gEF2(N) if all the k Zl in gig are independent of 17,. In these 
notations, for g(lG,8: = 0 ifgEfi](N)uF](N), and 8: = 1 if 
gEF2(N). Finally we set 

pig) = 4 I L (g'/.[), (16) 
g'EH,(NJ 

g'Cg 
whereL (g) denotes the number of independent loops ing. We 
note, in particular, that ifgEfiI(N), then the sum in (16) obvi
ously goes over subdiagrams g'EfiI(N) with g' (lg. We also 
note from (13) that we may introduce the recursion relation 

Tg(N) = (8: - Tg)T~(N), (17) 

with 

T(N)_TG(N). ( 18) 

The subtraction scheme in (12) is not to be confused with the 
one in Ref. 11 (c.r. Ref. 10). 

As before, suppose that A (E )S, # [ 0 J with r fixed in 
1 <r<k. We then prove the following lemma for any subdia
gram g(l Gin N. The corresponding situation for the graph 
G will be treated separately. 

Lemma: Let Tg(N) be as defined in (17). For allg'Cg, 
withg'EfidN), we scale all the kt; ing'/.[, which by defini
tion depend on 17" by a parameter A., and we scale all those 
massesf.lij' ing, depending on 17" by the parameter A. as well. 
If gEF2(N) then 

degTg(N)<min[d(g), -1] -p(g), 
..I. 

(19) 

and ifgEfi2(N), then 

{

< - 1 -pig), 

d;gTg(N) ~ro, (20) 

where the = 0 condition in (20) holds if there is no subdia-
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gram g' Cg in N with g' EF2(N), and there are no masses,u ijl in 
the lines in g which depend on the parameter 77 r' 

The proof is by induction. Suppose that the lemma is 
true for flr;b,g in N, we then prove the lemma for g as well. In 
addition to these hypotheses, suppose, as part of the induc
tion hypotheses, that if lJ..EFJ(N )uH2(N) j then 

deg 7[(N)<d (lJ..) - p(EJ..) 
'I, 

and that 7 f! (N) has a structure such as 

7f!(N) = Pf!(kf!,qI!,,uV'~(kf!,,uV'~(kf!,,u), 

(21) 

(22) 

where Pf! is a polynomial in the elements in k f!, qf!,,u and, in 
general, in the (p/) - J as well. The f; are any functions of the 
form 

f;(k 8,q8,,u) 

= II rr'/a[(e~/)2+,u~/]-<7:;', 
g'EH .(N I ijl 

(23) 

g'Cg 

for n = 1,2, etl=Qij,' and for g'r;b,g,g'Elln(N),et;=kt;. 
The oijl are strictly positive integers. We also denote by 
f"(k 8,q8,,u) any function of the form 

f"(k 8,q8,,u) = rr/f![Q ~I + ,u~1 ] - <T.;,. (24) 
ijl 

Iftheqt, in thegl.[. in (23) and (24), are set equal to zero, then 
the corresponding functions are denoted by f; (k 8,,u) and 
f"(k 8,,u), respectively. Finally, if flEF2(N), then we suppose 
that the 7f!{N) has a structure such as 

Tf!{N) = Pf!{k[,qf!,,uV'~(k[,qf!,,uV'~{ks,,u). (25) 

We prove the above lemma together with the results 
through (21 )-(25) for the subdiagram g itself. 

Proof (i) Suppose thatgEll2(N). ThenflEH2{N)uF2(N). 
We write k f! = k ~k 8) and qf! = ~k g,qg). Suppose that 
[Ell 2(N). From the induction hypotheses we may then write 

7g{N) = - L(qg)A + B+aP:(kg,O,,u) 
A.B 

a 

Xf~(k g,,uV';(k ~k g),,ulf~(k ~k g),,u) 

XP~(k ~k 8),q~k 8,0),,u), (26) 

where 

IA I + IB I<d(g), (27) 

{

< - 1 -pig), 

deg P~ + degf~ + degf~ or 
J. A J. =0. 

(28) 

The = ° condition in (28) holds if g contains no masses de
pending on 77 r' and if there is no subdiagram g' C.[. with 
g'EF2(N) [i.e., in particular, ifp(EJ..) = 0]. Since the kt, inglfl 
are independent of 77 r' it follows from (26) and (28) that 

{

< - 1 -pig), 

d~g Tg(N) ~ro, (29) 

with pig) = pig), and the = ° condition in (29) holds if no 
masses in g depend on 77 r' and if there is no subdiagram 
g' Cg, with g'EF2(N). Suppose that [EF2(N), then 7g(N) has 
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the form 

A.B 
a,b 

Xf~{k ~k g),,ulf~b{k ~k g),q-,>{k g,O),,u) (30) 

X P ~ (k ~k g),q~k g,O),,u), 

We note from (10) that all the denominators in 
f~b (k ~k g),q~k g,O),,u) are dependent on 77r since the q-'>{k g,O) 
are independent of 77 r' According to the induction hypoth
eses we then have 

deg P~ + degf!b + degf~ <min[d (EJ..), - 1] - pig). 
J. Q. J. Q. A Q. -

(31) 

From (30) and (31) we the see that (29) is again true, Finally 
from (26) and (30) we also note that 7 g (N) has a structure as 
in (22), 

(ii)SupposethatgEF\(N). ThengEH2(N )uF,(N), Accord
ing to the induction hypotheses we then have 

7g (N) = - L(qg)A+B+ap~(kg,O,,u) 
A,B 

Xfk(kg,,uV'~(k-'>{kg),,u) (32) 

Xf~(k ~k g),,u)P~(k~k 8),q¥.f,k g,O),,u), 

where 

lal + deg P~ + degf! + degf~ <d (EJ..)- p(EJ..), (33) 
J. Q A 0. A -

On the other hand, we have 

IA I + IBI +d;gP: +d;gfk<d(glEJ..)-4L(glEJ..),(34) 

which together with (32) and (33) imply that (21) is true. 
From (32) we also note that 7 g (N) has a structure as in (22). 

(iii) Finally, supposethatgEF2(N), Then[EF\(N )uHl(N), 
Then we may write 

7g(N) = L(qgtP~(k-'>{kg),q~k8,0),,u) 
a 

xf~ (k ~k g),,u,) (35) 

Xf~{k~kg),,u)(1- Td(gl- al )lg/I!,.' 

where Td(gl- lal denotes the Taylor operation with respect to 
the external momenta of g up to the order d (g) - la I, for 
d (g» a. For d (g» lal, the basic property of the remainder of 
a Taylor operation implies that 

deg(1 - T d
\81- l a l )lg /8, <deg 18/8, - d (g) + lal - 1. (36) 

A A 

We also have from (7) that 

d~g I g/[ <d (gllJ..) - 4L (gilJ..)' (37) 

From (33), (35)-(37) we then obtain for d (g»O that 

d;g7g (N)< -I-p(g), (38) 

where pig) = 4L (giEJ..) + p(lJ..). On the other hand, if d (g) < 0, 
then (33), (35), and (37), with Tg 0, imply that 

deg 71( (N )<d (g) - pig), 
J. 

(39) 
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From (38) and (39) we may then write 

deg7g(N).;;;min[d(g), -I)-p(g). 

" 
(40) 

Finally, from (35) and the definition of the operation 
(1 - Td(g) -Ia l), we conclude that 7 g (N) has a structure as in 
(25). This completes the proof ofthe lemma together with the 
results through (21)-(25) for the subdiagram g itself. 

We now apply the above lemma to the graph G itself. If 
GEF2(N), then we may immediately conclude from (19) that 

deg7G(N).;;;min[d(G), - I)-p(G), (41) 

where we have used the fact that since A (I ff) E 2 )S, = (0 I, the 
external momenta of G are independent of TJ r> and we may 

freely replace degby deg in (41). IfGEll2(N) then ford (G) < ° 
" 'I, 

we have from (20) and (6) that 

deg7G(N).;;; -1-p(G), (42) 
'I, 

where we have used the fact that the k & in G /C?, are indepen
dent ofTJ, in the case GEll2(N). If d (G »0, then from (20) we 
note that 

(43) 

Accordingly from (42) and (43) we have for gEll2(N) that 

deg 7 G (N).;;; - 1 - p(G). (44) 

Since not necessarily all of the four components of the 
k~1 ing/~ withgEll1(N) are dependent on TJ" we have quite 
generally 

r = dim A (E )S, .;;;p(G). (45) 

By summing over all the N sets in (12) we then obtain from 
(41), (44), and (45) that for A (E )S, # (OJ, 

degR.;;; - I - dim A (E)Sy. (46) 

On the other hand, if A (E ).S, = (0 I, we have directly 
from (6) that 

degR.;;; - 1. (47) 

We are almost ready to state the generalized decoupJing 
theorem. To this end we decompose E2 into p one-dimen
sional orthogonal subs paces generated by orthogonal vec
tors L' 1""'L'p' In particular, we choose the L', to have only 
one nonvanishing component,u', respectively, for i = 1, ... ,p. 
We then write for the renormalized Feynman amplitude 

(48) 

=.rI(L'ITJI .. ·TJk + ... + L£ TJk + C), 

where 1 .;;;k.;;;p, and C is a vector confined to a finite region in 
E with,uk + 1, ... ,,uP#O. 
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Since the renormalized Feynman integrand R satis
fies 13 the power counting theorem criterion 12 we then have 
the following theorem. 

Theorem 1: The power asymptotic coefficients 
a[(S;),i= 1, ... ,k,foLafin(48)areallboundedaboveby -1 
thus establishing the vanishing property of & when the pa
rameters TJ \, ... , TJ k -+ 00 independently. 

Since the logarithmic asymptotic coefficients 14, \5 can
not change the vanishing property of /?f we will not carry out 
the explicit construction of these coefficients as the underly
ing analysis becomes quite cumbersome. 

We now generalize Theorem 1 when any subset of the 
remaining nonasymptotic masses are led to go to zero. To 
this end, for any line carrying a mass,u ijl that we wish to scale 
to zero, we write for the corresponding propagator 

"'-

+ P;jl (Q;jl ,,u;jl ) 
D;jl(Q;jl,,u;jl)+ [Q2 2]' 

;jl + ,u;jl 
(49) 

in the expression for I G , where P(Q;jl,,uijl) is a polynomial in 
Qijl and ,u/ji but not of (;.tijt!-I, such that 

A 

D+(Q .. 0)= puM,jI,O) 
lJ/ vI' 2' 

Qijl 
(50) 

denotes the zero mass propagator. (In general we may also 
allow positive powers of [Q ~I + ,u~1 ] -I in (49) as long as the 
correct dimensionality of D /i is taken when carrying out the 
subtractions of renormalization.l 

We scale any subset of the masses in (,uk + 1, ... ,,uPJ, say 
the masses in the set [,uk +s+ 1, ... ,,uPJ, s';;;p - k - 1, as 
follows: 

Ji-k+S+ 1_,,1,I,uk+S+ 1 } 

Ji-k+s+2,,1,1,,1,2J1 k+s+2 

~P-+,,1, 1,,1,2''',,1,p _ s - kJi-P . 

(51) 

We choose the external momenta of the graph G in question 
to be non exceptional. This, in particular, means that all the 
external momenta carried by the external lines to the graph 
G impinging on its external vertices are nonzero. Then ac
cording to Ref. 3 the limits A 1',,1, 2, ... .Ap _, _ k-O of s;~ exist if 
the following is true. 

Sufficiency conditions: Let i be any integer in 
1 .;;;i.;;;p - s - k. Let Ti be the set of all subdiagrams Gi C G 
such that the Gi contain all the external vertices of G but not 
necessarily all of its lines. Also, if GiETi then all the lines in 
G /Gi (if not empty) do not carry any external momenta and 
contain only masses from the set (,uk + S + i, ... ,,up); and any 
external line of G; depend on elements from the set P and/or 
the set [Ji-I, ... ,,u k + S + i-I ). Then if the following two condi
tions are true for every i in 1 .;;;i.;;;p - s - k, the limit 
"1, 1,,,1, 2, ... ,,,1,p_, k-O of J:ff exists: (1) For any 
GiETi,d (Gi).;;;d (G). (2) Ifd (Gi ) = d (G ) then G i has no prop
er subdiagram gi C Gi such that all of its masses are from the 
set [,uk +, + i'''',Ji-p J, and the dimensionality of each of the 
connected components of gi are non-negative. In particular 
we note that these conditions imply that the graph G itself is 
not to contain a proper subdiagram g such that all of its 
masses are from the set [Ji- k + , + 1, ... ,Ji-P I and the dimensiona-
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lity of each of the components of g are non-negative. The first 
condition (1) implies that the powers of the parameters (1/ Ai) 
for Ai-O are non-positive, and condition (2) implies that the 
logarithmic coefficients associated with those parameters 
(1/ Ai), having zero power asymptotic coefficients, are identi
cally equal to zero. These two properties then imply the exis
tence of lim A I,A 2, ... ,Ap __ s _, --+0 of ,.if. 

We consider the renormalized Feynman amplitude: 

,w(L;111112 .. ·11, + ... + L£l1, + Li-+s+ IAI + ... 
+L;AI· .. Ap_ s _, +C), (52) 

where C is now a vector confined to a finite region in E with 
/-1' + I , ... ,/-/ + s =I- 0, and we may then state the following 
theorem. 

Theorem 2: If the sufficiency conditions for all 
i = 1 , ... ,p - s - k above are satisfied, then the power asymp
totic coefficient a/(S)) with} = 1 , ... ,k, of .aI associated with 
the parameters 111, ... ,11), ... ,11, are all bounded above by - 1 
thus establishing the vanishing property of.al when 
171,172, .. ·,17k-00;AI,A2, ... ,Ap _, ,-0, independently. 

III. EXAMPLES 

Consider the renormalized Feynman amplitudes asso
ciated with the graphs in Figs. 1 and 2 in quantum electrody
namics. We write the photon propagator (in the Feynman 
gauge) as Dl"v(Q) = gI"J(Q 2 + /-12). All the renormalized 
amplitudes associated with these latter graphs vanish when 
the mass m of the fermion is led to go to infinity. Also any 
subdiagram g of any of the graphs in Figs. 1 and 2, say a 
graphG, is such thatd (g).;;;d (G). We also note thatthesubdia
gram G does not contain any proper subdiagram which has 
all its masses from the set [/-1). Accordingly, the limit /-1-0 
of all the amplitudes ,if of the above mentioned graphs exist, 
and in the limit In--+ 00 ,/-1--+0 they vanish. 

It is quite instructive to explicitly derive the vanishing 
property of the renormalized amplitude associated with the 
graph in Fig. 1 with /-1 = O. The explicit expression for it is 
given by (for q2 > 0) 

.(f(q,m,O) = yqa(!22) + mb (!22). (53) 

a(L) = - ~ llX dx In( 1 + q27 X), (54) 
m 2 21T 0 m-

b(!22)= - : fdXln(1 + !: X). (55) 

We use the identity (x;>O), 

FIG. I. Lowest order fermion self-energy graph in quantum 
electrodynamics. 
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FIG. 2. Some low and high order photon self-energy graphs. 

and hence the bound 

I
ln(1 + q2,X) I.;;; q27 X + q4x 2 

m- m- 2m4 ' 
(57) 

to bound the expressions in (54) and (55) as 

(58) 

(59) 

Accordingly upon scaling m by 17, with 11 > 1, we obtain 

(60) 

(61) 

where 

( 
q2 ) a q2 a q4 

C
d

m
,·=--+ -

61T m 2 161T m4
' 

(62) 

h ( q2 ) a q2 a q4 
C m2 = 2; m 2 + 6; m4 ' 

(63) 

in conformity with the above theorems. Other examples may 
be similarly treated. The analysis in this paper is rigorously 
carried out in Euclidean space. In a forthcoming paper some 
of the results obtained here will be generalized to Minkowski 
space as well, where many interesting applications have 
been, and are being, worked out. 
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Electric charge is vectorlike in the real world. We formulate this fact in terms of an infinite 
hierarchy of trace conditions. Contemporary physics offers an understanding of only the first two 
conditions. We discuss the requirement of a vectorlike charge in the context of grand unification. 
We give an argument against elementary Higgs fields. A number of group theoretic assertions 
bearing on the issue of vector like electric charge are proven. We argue that the observation of 
color nontriplet quarks would signal a rich fermionic spectrum. Several unsolved mathematical 
problems are stated. 

PACS numbers: 11.1O.Lm, 11.30.Na 

A fundamental, and striking, feature of our world is the 
vectorial character of the electric charge. Let us explain 
what we mean. At some fundamental level, Nature is de
scribed by a field theory with some number of fermion fields. 
We adopt the convention, commonly used in the grand unifi
cation literature, of treating all fermion fields as two-compo
nent left-handed Weyl fields. I Thus, for example, the elec
tron family consists of 15 fermion fields: e-, e+, v, u, ii, d, 
and J. Then in the real world the electric charge Q has the 
noteworthy property that, for every fermion field with 
charge + q, there is a fermion field with charge - q if q =1= o. 
We say that the electric charge is vectorlike. 

In the real world, charge is certainly vectorlike. Other
wise, there will be massless charged 2 fermion fields (pro
vided that the electromagnetic gauge invariance is not spon
taneously broken). The theory will be beset by such severe 
infrared difficulties that an S matrix presumably cannot be 
defined in the conventional way. Also, experiments strongly 
indicate that the electromagnetic current is purely vector, 
without an axial vector piece. 

However, even if the S matrix may not exist, the field 
theory could still be perfectly sensible in the sense that all off
shell Green's functions are well-defined. Indeed, the only 
requirement for quantum electrodynamics to be renormali
zable and hence defined is that it be anomaly-free ': trQ 3 = O. 
For example, quantum electrodynamics with a charge-2 fer
mion field ifJL and eight charge-( - 1) fermion fields ifJiL 
(i = \, ... ,8) should be a sensible field theory. It is renormali
zable, and all (off-shell) Green's functions may be calculated. 
What does the physical spectrum of such a theory look like? 
Unfortunately, field theorists are at present far from being 
able to answer such question. Perhaps the local U( 1) invari
ance is dynamically broken. One could conceivably consider 
vacuum condensation of the order parameters ifJL CtPL' ifJL 
CtP,L' W,L CifJjL' But strong forces are not available to drive 
the formation of condensates. 

Why does Nature arrange things so that electric charge 
is vectorlike? We cannot provide a truly satisfactory answer 
to this fundamental question. Perhaps some day one could 
show that field theories with a nonvectorlike electric charge 
are not sensible. It is not unreasonable to conjecture that 
such theories will dynamically break electric charge. The 
scope of this paper is more modest. Our purpose here is to 

explore this question, to examine some examples which 
might shed some light, and to prove some assertions under 
certain specific circumstances. 

The mystery of why electric charge 1S vectorllke 1S un
derscored in the context of grand unified theories of weak, 
electromagnetic, strong, and possibly technistrong interac
trions. In these theories, we have the condition trQ = 0 in 
addition to trQ 3 = O. (Thus, the simple example above would 
not be acceptable in this context.) These theories describe the 
world in terms of a gauge theory based on some simple gauge 
group G, which is subsequently broken down to some sub
group [in the real world this is presumably SU(3)0010r X U(I)]. 
This subgroup is to contain one and only one U( 1) factor, 
which is then identified with electromagnetism. [Why the 
gauge group G should be broken down to contain one and 
only one U( 1) factor4

,2 is another mysterious, and at present 
unanswerable, question.] The question raised in this paper is 
then the following: Why in the world should this particular 
U(I) generator, when evaluated over the fermions, be 
vector like? 

The situation is especially mysteriom if elementary 
Higgs fields are responsible for the symmetry breaking. In 
general, there is no particular connection between the fer
mion representations and the Higgs representations used. 
With dynamical symmetry breaking caused by fermion bi
linear condensation,S there might be a deep connection. This 
might be considered as another argument in favor of the view 
that elementary Higgs fields are to be regarded as unnatural. 
It is tempting to conjecture that the dynamics of symmetry 
breaking is such as to leave no nonvectorlike U( 1) unbroken. (, 

In the Georgi-Glashow7 SU(5) theory, electric charge is 
vectorlike with the usual "5 and 10 assignment offermions. 
The group SU(5) is first broken into SU(3) X SU(2) X U(I) by 
an adjoint of Higgs and then into SU(3)XU(I) by a funda
mental of Higgs. This symmetry-breaking chain uniquely 
fixes the charge generator Q to be Q = (1/3, 1/3, 1/3, - 1, 
0), We use (aI' a2" .. ,aN) to denote a diagonal N XN matrix 
with diagonal elements equal to (a I' a2, .. " aN') To illustrate 
our discussion, let us suppose that the fermion content is not 
the usual one but corresponds to the anomaly-free represen
tation 9[1] + ! 2 J ' (We use the following notation for the irre
ducible representations ofSU(n): [k ] denotes the totally anti
symmetric tensor with k upper indices, [kJ = [n - k] 
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denotes the totally antisymmetric tensor with k lower indi
ces, 1 k I denotes the totally symmetric tensor with k upper 
indices, [: ] denotes the traceless tensor with k upper and m 
lower indices antisymmetric among the upper and lower in
dices, and so forth.) 

With the standard breaking ofSU(5)-+SU(3)xSU(2) 
X U( I), one can easily work out the fermion spectrum to be 

(6,1; - ~), 

(3, 2,;~, -1), 

(1,3; 2, 1,0), 

nine (3, 1; 1), 

nine (I, 2; 0, - 1). 

The first two numbers in the parenthesis denote the 
SU(3) and SU(2) representations, respectively. The numbers 
after the semicolon indicate the electric charges. Electric 
charge is certainly not vectorlike. For instance, the lepton 
sector consists of one field with charge + 2, one field with 
charge + 1, nine fields with charge - 1, and ten neutral 
fields. (Incidentally, in this particular model trQ 3 vanishes in 
the quark and lepton sectors separately.) Note also that this 
model has quarks belonging to a color sextet.8 The question 
of whether there is a deep connection between having only 
color-triplet quarks and the electric charge being vectorlike 
naturally suggests itself. In an SU(5) theory, the requirement 
that quarks are color-triplets implies that electric charge is 
vectorlike. However, the converse is not true. We will exhibit 
a counterexample to the converse statement. 

The example above shows that, given some anomaly
free respresentation ofSU(5), it is extremely unlikely that the 
Georgi-Glashow charge when evaluated over the fermions 
will be vectorlike. It appears truly remarkable that the fer
mion assignment [4] + [2] (i.e.,S + 10) leads to a vectorlike 
charge. 

Not being able to answer the dynamical question of why 
electric charge is vectorlike, we retreat from physics to 
mathematics. In this paper we would like to pose the follow
ing mathematical question: Given some simple group G [say 
SU(N)] and some anomaly-free fermion representation R, 
does there exist a charge generator Q = (ai' a2, ... , aN) such 
that Q is vectorlike over the fermions? Mathematically, this 
corresponds to the requirement that the representation R be 
real under the U( 1) of electromagnetism. 

Note that the statement that Q is vectorlike is equiv
alent to saying that 

trQ2k~I=0 fork=0,1,2, ... , 00. (1) 

[This trace is over all fermions. Q being vectorlike means 
that for every fermion of charge + q there is also one of 
charge - q. Their contributions to the trace in Eq. (1) thus 
cancel against each other.] What we are saying is that our 
present understanding of physics tells us that there are good 
reasons (simple grand unification and renormalizabiIity) to 
demand trQ = ° and trQ 3 = 0. (Note these reasons only be
came known not that long ago.) Will we ever discover deep 
reasons for demanding the entire set of conditions in (I)? 

In a gauge theory broken down to a U( 1) of electromag-
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netism, there are additional constraints on Q. For instance, 
in an SU(N) theory with Q = (a I' aZ, ... ,aN ), the numbers a k 
must be such that there exist sets of integers nk so that 

.'II 

I nkak = 0. This holds whether the symmetry breaking is 
k~1 

due to elementary or to composite Higgs fields. 
In the real world, Q is actually vectorlike over the quark 

and lepton sectors separately. Also, color is vectorlike. In 
contrast, baryon number B and lepton number L, which are 
not associated with a local invariance, may not be vectorlike. 
[In the standard SU(5) model, B is vectorlike but L is not.] 
We will not investigate here the implications of demanding 
vectorlike color. 

Henceforth in this paper we shall use the following ter
minology: For a given group G, an anomaly-free set of fer
mion representations, R, and a charge generator Q, which is 
vectorlike over R will be referred to as a "solution". 

We now list a number of (trivial) observations. 
Observation 1: If the representation R is real under the 

group G, then Q is vectorlike. 
Observation 2: For any representation R, Q will be vec

torlike over R if Q is represented in the fundamental repre
sentation by a matrix of the form 

diag(a, - a,b, - b, ... ,c, - c,O,O, ... ,O). 

A charge generator of this form will be referred to as "auto
matically" vectorlike. 

We refer to these two classes of solutions ("real" solu
tions and "automatically vectorlike" solutions") as "trivial
ly" vectorlike solutions. Note the Georgi-Glashow charge is 
not trivially vectorlike. We do not wish to imply, however, 
that Nature may not choose a trivially vectorlike electric 
charge. In what follows we will exhibit infinite classes of 
nontrivial solutions. However, we have not been able to an
swer the question of whether these solutions comprise all 
solutions, though we have found no others. Thus it remains 
an open problem to find the general solution to the stated 
mathematical problem. 

Clearly, since the only simple groups that admit of com
plex representations are SU(N), SO(4N + 2), and E (6), only 
these groups can have nontrivial solutions. We will discuss 
each of these cases in turn. First we make two remarks: 

Remark 1: If! R[,\"p Qv = (a I , ... aN ) I is a solution for 
SU(N), then! R[N + I)' Q.v = (a I"", a.v , 0) I is a solution of 
SU(N + 1) if R(v + I) , decomposes to R(N) under an SU(N) 
subgroup of SU(N + 1). 

Remark 2: If ! R I,Q I and! R 2,Q I are solutions for a 
group G, then! (R I ® R 2),Q I is a solution as well. (Note that if 
R I and R2 are anomaly-free, then so is R I ® R2') 

We now exploit these two remarks to construct infinite 
classes of solutions. 
I. SU(N) 

Case A: R contains only totally antisymmetric 
representations. 

In this case, by Remark I, if we find a representation 
R(.\, + II of SU(N + 1) such that R(N + I) reduces to a real re
presentation under an SU(N) subgroup ofSU(N + 1), then 
Q = (a paz, ... a,v, 0) is a solution. If N is odd, then RIN + II is 
also real (as can easily be verified if we note that 
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[k]N + 1 ---+[k]N + [k - I]N) and so we obtain just another 
trivial solution. But if N = 2p, then we have the following 
nontrivial solution: 

SU(2p + 1), Q = (ai' ... , azp' 0), 

R = \ [2], [4], ... , [2p] I 
with ak arbitrary except that ~ak = O. 

In the light of this discussion, the Georgi-Glashow 
solution 

(2) 

\ SU(5), Q = (1/3, 1/3, 1/3, - 1,0), Roo = [2] + [41l 

is revealed to be a solution precisely because when one re
duces SU(5) to SU(4), Roo ---+[0] + [1] + [2] + [3] 
= 1 + 4 + 6 + 4, a real representation ofSU(4). 

The solution in Eq.(2) can be embedded in an orthogo
nal group leading to the following nontrivial solution for 
SO(4p + 2): 

SO(4p + 2), 

(3) 
R = (22P)-dimensional spinor. 

[Of course, SO(lO) is a special case of(3) withp = 2.] The 
notation for Q is as follows. 9 We denote the components of 
the spinor representation of SO(4p + 2) by 

kl€2"'€2P+l)' (4) 

where €i = ± 1 and nf~+/€k = + 1 (or - 1). This nota
tion makes obvious why (3) represents a solution. Since 
alp + 1 = 0, we can reverse the sign of Q by letting 
€ k ---+ - € k, k = 1, ... , 2p, and €2p + 1 ---+€Zp + 1 • 

Evidently, we can apply remark (1) repeatedly to the 
solution in Eq. (2) to generate additional nontrivial solutions. 
For example, starting with the Georgi-Glashow solution for 
SU(5) we can construct the nontrivial solution for SU(6): 
R = 2[1] + [2] = 6 + 6 + 15 and Q = (a, b, 
e, - (a + b + c), 0, 0). [Incidentally, this 27 dimensional re
presentation may be embedded in E(6)]. Repeating this pro
cedure an arbitrary number of times, we find the following 
nontrivial solutions: 

SU(2p), Q = (a l' ... , a Zk ' 0, 0, 0, ... , 0), 

R = \1]1[1], 1]z[2], ... , 1]p-l [p - IJl, 

1], = P!k (_ l)q+'l3q(P -I + q - 1) ... , 
q~l p-I-q 

where 131'"'' I3p __ k are arbitrary integers; (4a) 

SU(2p + 1), Q = (ai, ... , aZk ' 0, ... , 0), 

R = \1]1[1], ... , 1]p[p]J, 

1], = P!k ( _ l)q+ 'l3q(P -/ + q) ... , (4b) 
q~O p-l-q 

where 130"", I3p _ k are arbitrary integers. (Here we interpret 
- [r] as [r]*.) 

We have not succeeded in finding any other nontrivial 
solutions for SU(N) with only antisymmetric fermion repre
sentations (see the Appendix). If any exist, then it is easy to 
show that there must be such nontrivial solutions for which 
Q has no vanishing diagonal entries (see the Appendix). [All 
of the solutions in (4) necessarily have a Q with some vanish-
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ing diagonal entries because of how they were constructed.] 
It seems probable that (4a) and (4b) represent the most 

general nontrivial solutions for SU(N) involving only anti
symmetric fermion representations. We have, however, not 
been able to prove this assertion. 

Case B: R contains representations of mixed symmetry 
under permutation. 

We may use Remark 2 to generate an infinite number of 
solutions. Given that for SU(N) and charge Q the sets of 
representations R l' R z, ... are solutions, then R ==:IIiRi is 
also a solution. 

Let us look at an example. Consider SU(5) again with 
the charge operator Q = (1,0, - 1, -1, - 1). We may con
struct a nontrivial solution involving mixed representations 
by multiplying the Georgi-Glashow solution 
Roo = [2] + [4] by the real representation 
R rea1 = [2] + [3]: 

= [~] + [~] + [~] + (real representations), 

i.e., 

R = 50 + 40 + 10 + (real representations). 

Suppose we take this to be an SU(5) model with the standard 
pattern of breakings 

SU(5)---+SU(3)c xSU(2)XU(I) 

--.SU(3lc XU(I)em; 
then we display the resulting content in Table I. 

This model thus represents a counterexample to the 
conjecture that an SU(5) theory which admits a vectorlike 
electric charge and which has purely V-A weak interaction 
necessarily contains no quarks which are nontriplets of col
or. ("Shiny quarks" in the terminology of the second paper in 
Ref.8.) Our model appears to be the smallest (in the number 
of fields) SU(5) model which contains shiny quarks and a 
vectorlike electric charge. Thus, the observation of a shiny 
quark will imply either the existence of at least 100 new fer
mion fields or that SU(5) is incorrect as a classification 
scheme. Within the grand unification framework, the exis
tence of shiny quarks is correlated with a rich fermionic 
spectrum. 10 

The same construction goes through for other groups, 
of course. For instance, in SOt 10), solutions may be generat
ed by mUltiplying 16X 16 = 10 + 120 + 126 and 
16X 10 = 16 + 144. Thus, the following is always a 
solution: 

any group G, Q, 

R = IIRi' where Ri = solution for G,Q. 
i 

(5) 

Are there any other nontrivial solutions for SU(N) 
which are not of the form discussed here? We have not found 
any. Whether any exist is, however, an open question. 

Given a specific group and a specific representation R, 
it is not difficult, though it is tedious, to search for a charge 
operator Q which is vectorlike over R. The obvious proce
dure consists of determining the maximum and minimum 
charges in R, matching them, and then repeating the proce-
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TABLE I. (d,I,) denotes a d-dimensional representation of SU(3) of color, with value I, of the third component of weak isospin. 

Q=2 

10-> 
40-> 

50->(1,01 

total 
no. of fields = I 

leptons: (=~t 
quarks: (:L, 
anti· 

C) quarks: -. J , 

-1 L 

5 

3 

4 

3 

(1,0) 
(8,0) 

(6,11 

3 6 9 

(+ I)L> (+ 21L 

( ~ 1) [' ( ~lL 
(-1)/. (- ~)[.' 

2 

3 

(3,1) 
i6,1) 
(3,1) 
(3, -j) 

15 

(+ llL 

I 

3 

iI,I) 

(6,0) 
(I,O) 

12 

dure (see the Appendix). We have labored over a number of 
cases in this manner, and the experience we gained from 
these exercises tends to suggest that, given an arbitrary 
anomaly-free representation, the existence of a non trivially 
vectorlike electric charge is rather unlikely. 

II.SO(4N + 2) 

We need only concern ourselves with spinorial repre
sentations ofSO(4N + 2), as all of the tensor representations 
are real and thus are trivially vectorlike. 

The case of SO(4N + 2) is reducible to the case of 
U(2N + 1) in the following sense. Q defined on the vector 
representation is a (4N + 2) by (4N + 2) antisymmetric real 
matrix. It can therefore be brought by a basis transformation 
to the block form H 

0 a 0 

-a 0 

'0 b 

-b O. 
0 '0 c 

-c 0 

The U( 1) generated by this matrix is easily seen to be
long to a U(2N + 1) subgroup ofSO(4N + 2). Thus a knowl
dege of nontrivial solutions for U(2N + 1) will give us nontri
vial solutions for SO(4N + 2). 

Here we will explicitly discuss only the 2 2N-dimension
al spinor representation ofSO(4N + 2). Under a U(2N + 1) 
subgroup this spin or decomposes into 
[ [0] + [2] + ... + [2N] J . It can be shown (see the Appendix) 
that this is a solution for all and only those Q which are ofthe 
form Q = (aI' ... , aN' 0) [where we have written Q as an 
U(2N + 1) generator]. In fact, for Lak = 0, this isjust the 
SO(4N + 2) embedding of the SU(2N + 1) solution given in 
Eq. (2). 

This solution is covered by our Remark 1. The form of 

o 

8 

2 
-I 

4 5 
-2 -- --

3 3 3 3 

(2: -j) (3,0) 
(6, -jl (3,0) (I,j) (I,- II (1,-]) 

(3, -ll iI,O) 
(6, -I) (8, -l) (6,01 

12 15 9 6 3 1=100 

OOIO'{ l ) 
sIxes 

_2 , L 

COIOr( l ) 
-'-. l' sIxes -, 1. 

(- t)/. 

color ( 0 ) 
octets: - I t.' 

(+ I)L 

Q is such that we may break SO(4N + 2) down to SO(4N), 
under which all representations are real. 

Indeed, the preceding remark implies that higher-di
mensional spinorial representations ofSO(4N + 2) also are 
solutions for Q = (aI' ... ,aN,O) [written again asa U(2N + 1) 
generator]. All of these spinorial representations may be 
constructed as products of 2 2N-dimensional spinors and 
vectors. 

III. E(6) 

E(6) has a maximal subgroup that may be denoted 
SU(3)A XSU(3)B X SU(3)c- The generatorsAJa,I = A, B, C, 
a = 30r 8 are six mutually commuting generators of £(6) 
(which is a rank 6 group). In some basis we may express the 
charge generator as a linear combination of the six 

AJa:Q= I a/aA/a' 
/-- A.B.C 

a - J,K 

Under the SU(3)A xSU(3)n XSU(3)c subgroup the funda
mental representation which has dimension 27 transforms as 

27 = (3,3,l) + (l,3,3) + (3,1,3). 

If, therefore,aAa = a lla (or alia = a Ca or a Ca = a Aa ), then 
clearly Q is vectorlike over the 27-dimensional res present a
tion. For then, under the Weyl reflection symmetry which 
takes SU(3)A +-+SU(3)1l ,Q-+Q, and 27--27*. This gives us a 
four-parameter family of solutions. Under the SU(6) X SU(2) 
subgroup of £(6), this four-parameter family can be written 

a 

b 

c 

- (a + b + c) 

d 

-d 
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This charge generator is vectorlike not only over the 27 but 
over all E(6) representations, which transform as 
(r.,r2 ,r3 ) + (r3,r.,r2) + (r2,r3,r.) under the 
SU(3)A XSU(3)B XSU(3)c subgroup. 

We have found no solutions that are not of this form. 

IV. CONCLUDING REMARKS 

Let us look at an SU(S) model in which the fermions are 
in the anomaly-free set of representations consisting of some 
number of "families" of [2]L + [4]L' Let us assume that the 
vacuum expectation value of some Higgs in the adjoint re
presentation breaks SU(S) down to a smaller group at some 
mass scale M. SU(S) may be broken to one of the following 
groups depending on the vacuum expectation value of the 
adjoint Higgs: SU(4)XU(I), SU(3)XSU(2)XU(I), 
SU(3) X U(I)2, SU(2)2XU(I)2, SU(2) XU(1)3, or U(I)4. In any 
of these cases in the absence of further breaking there are 
unbroken U(I) gauge interactions remaining. Further
more-if there is no further breaking-at least one of these 
unbroken U(I)'s is nonvectorlike. For example, ifSU(S) 
breaks as in the Georgi-G1ashow model to SU(3)c_ 
XSU(2)XU(I)y and does not breakfurther, then we are left 

with an exact U(I) of hyper charge which is clearly not vec
torlike over the fermions: 

_1 
6 _1 

2 _1 2 
6 J 

_1 
2 - 1 _1 2 

6 J 
Y(S)* = • Y(lO) = (6) :I _1 2 

1 6 J 
j _1 
1 6 
'1 

_1 
6 

Suppose now that a Higgs, r/J a, in the fundamental represen
tation ofSU(S) acquires a nonvanishing vacuum expectation 
value. Then whatever U(I) generators remain unbroken 
must have at least one vanishing diagonal entry [i.e., if 
(r/Jk) 0;60, then Q = (a l,. .. ,a5) will only remain unbroken if 
ak = 0]. But all such generators are vectorlike over a family 
of fermions [Eq. (2)], so that a further breaking done by the 
vacuum expectation value of a fundamental Higgs is suffi
cient to insure that only vectorlike U (1) charges remain un
broken! Without further breaking, on the other hand, it must 
be that some nonvectorlike U( 1) charges remain unbroken. 

There might be a significant clue here to the structural 
properies of grand unified theories. To the extent that all the 
nontrivial solutions we found are such that at least one field 
in the fundamental representation has vanishing charge, it 
appears that breaking by a Higgs in the fundamental repre
sentation is necessary (or, equivalently, condensation in the 
fundamental channel, if one prefers). Grand unified theories 
presently on the market all have this feature. 

We conclude that a deep theoretical understanding of 
why charge is vectorlike may be important to a further devel
opment of fundamental theories. The requirement of a vec
torlike charge in the context of grand unification appears to 
have far reaching implications. 

Further work, such as an exhaustive listing of all nontri
vial solutions, would be welcome. We have also, in this pa-
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per, avoided the difficult dynamical question of why a theory 
would choose a symmetry-breaking channel so as to guaran
tee a vectorlike charge. 
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APPENDIX 

As mentioned in the text, it is an open question whether 
the solution given in Eq. (4) is the most general nontrivial 
solution for SU(N) involving only antisymmetric fermion re
presentations. If other nontrivial solutions exist for this case 
then there must exist such nontrivial solutions for which 
Q = (a ., ... ,a N) has no vanishing diagonal elements, i.e., a j 0;60 
for all i = 1 , ... ,N. [This is obvious. For suppose all nontrivial 
solutions for SU(N) with anti symmetric fermion representa
tions have Q with some diagonal elements vanishing. Sup
pose (N - M) of the a vanish. We can look at such a solution 
under the SU(M) subgroup ofSU(N) in which Q has no van
ishing diagonal elements. This gives us a solution for SU(M) 
which by assumption must be a trivial one. But this implies 
that under SU(M) the fermion representations are real. This 
in turn means that the original SU(N) solution was of the 
form given in Eq. (4).] 

In the search for such exceptional solutions (we have 
found none), the following theorem simplifies things. 

Theorem: Let SU(N) have a solution consisting of a set 
R of antisymmetric fermion representations (containing no 
real representations) and a charge Q = (a.,a 2 , ... ,aN ) with 
a j 0;60 (all i). We may, without loss of generality, assume 
a.>a2 >···>ak >O>ak+. > ... >a N • Then there 3 i,jsuch 
that i < k <j, and such that either [i],JER or [7], [j]ER and 
such that [l], [TjEtR for any i < I <j (in particular [k] and 
[k]EtR ). 

This theorem is proven by demanding that 
Qmax = - Qmin , where Qmax is the largest fermion charge 
and Qmin is the smallest fermion charge. 

Corollary: For SU(2p + 1), R = [[2],[4], ... ,[2p] 1 the 
only nontrivial solutions have Q of the form 
Q = (a ., ... ,a2p ,0). 

Proof Suppose Q = (a l , ... ,a2P.±.)' a, 0;60. Then aply the 
theorem. For every [l ] either [l] or [I]ER (if I = even, [I ]ER; if I 
is odd, [TjER. But we know that [k] and [k] do not belong to 
R.-Thus we have a contradiction. Thus one of the a j must 
vanish. 
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Some applications of Postnikov systems in gauge theories 
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We use Postnikov systems for spaces relevant to gauge theories in ordpr to derive results on 
characteristic classes and to prove Singer-like theorems about the impossibility of a continuous 
gauge choice on compactified space-time manifolds. 

PACS numbers: 11.1O.Np 

In recent years classical manifolds such as spheres, tori, 
and projective spaces have been growing more and more im
portant in gauge field theory due to the rich structure one 
can obtain on these geometrical configurations. This is 
achieved by compactifying the Euclidean space-time (or a 
subspace of it) with suitable conditions at infinity. 

Whereas the geometrical approach to gauge theories 
built over spheres has been widely studied, the same atten
tion has not been paid, for instance, to the geometry of the 
torus, though a gauge theory on such a manifold seems to 
have interesting features as to the confinement problem. I 

In this paper we report some results relevant to the ge
ometry of a gauge theory defined on tori and other compact 
manifolds, obtained by using the Postnikov system algo
rithm. We shall first study in detail theories with an SU(N) or 
an SU(N )/Z" gauge group, and use this case as a pattern for 
other usual semisimple groups. 

Let us recall briefly what a Postnikov system is. 2
--4 If a 

topological space X is simply connected, one can find a fam
ily of spaces X"' n;;, 2, such that 

i, jl', k-, 

K (11'4,4)---+ X 4---+K (11'5 ,6), 

ill'" k, 

K (11',,3)---+ X 1---+K (11'4,5), (1 ) 

I" 

where the p" are fibrations with fiber K (11'" ~ I' n + I), k n 

inducing maps, i" inclusion maps. K(lT",m) are Eilenberg
MacLane spaces, and 11'" are the homotopy groups of X. The 
Xn spaces approximate X, in the sense that if we denote by K 
an n-dimensional complex, then the homotopy classes 
[K,X] = [K,X,,].' 

We first apply this construction to classify the inequiva
lent principal G-bundles, G = SU(N )/Z:v over a manifoldM. 
The classification is given by the homotopy classes 
[M, BG], where BG is the base space of the universal G
bundle. As 11' n (BG);::::: lTn _ I (G ), and G is connected, then BG 
is simply connected and there exists a Postnikov system for 
it. Let M (4) be a four-dimensional compact oriented mani
fold. Then we are interested in [M I4I,BG4]. Following a pro
cedure analogous to Ref. 4, we can derive from (1) the follow
ing exact sequence: 

it P't 
O---+Z---+ [M 141 ,BG 41---+H 2(M 141,Z:v )-0, (2) 

where it ,pr are induced by i4 and PI' respectively. 

One must be careful in dealing with this exact sequence 
because it is an exact sequence of sets as [M 14\ BG4 ] has no 
natural group structure and, by itself, it means only that the 
image of it is mapped by pr into the trivial element of H 2 

(MI41, Z:v)' However, going through the Postnikov construc
tion (see the Appendix), one realizes that to every element of 
H 2(M 141, Z,,) there corresponds a subset of[M 141,BG4 ] which 
may be given the same group structure as Z. So we write 
formally [M141, BG4 ]1Z to mean a set in one-to-one corre
spondence with H2 (M I41, Z:v)' 

We see that inequivalent bundles over a manifold M (4
) 

are classified according to the group of integers and the 
groupH 2(MI41, Z.v). If M (4) is the four-dimensional torus T 4 , 

we get by standard methods' H 2( T4,Z.v);::::: 6Z", (that is, the 
direct sum of six groups Z:v), which means that for any 
Chern class E H4(T4,Z);:::::Z we have N 6 inequivalent fiber 
bundles, or, in physical language, for any instanton sector 
there are N" gauge inequivalent periodic boundary condi
tions. 1 We give some more examples in four dimensions. 
H 2(S4,Z:v) = 0, H" (Rp 4,Z,V);:::::0(Z2) if Nis odd (even), 
H2(S2XS2,Z:v);:::::2Z.v, H2(SIXS I,ZS) = 0. 

If M is a lower-dimensional manifold, the Postnikov 
system gives simply [M,BG];:::::H 2(M,Z:v), Then if M is the 
three-dimensional torus T.1, we have H 2( T 3 ,Z" ) ;::::: 3Z:v, 
Moreover, H2(S\ZS) = 0, H 2(RP\Z,v);:::::H 2(Rp 4 , Z,,), 
H2(S2XS I, Z,v);:::::Z:v' 

In two dimensions there exists a classification of2-man
ifolds or surfaces" M R , with g a nonnegative integer, and N h , 

h a positive integer. One finds easily H 2(Mg ,Z,\, );::::: Z,,\ for all 
gandH 2(Nh ,Z,v);:::::0(Z2) ifNisodd (even) for all h. We recall 
that Mo = S2, 1l.f1 = T2, NI = RP2. 

The Postnikov construction turns out to be very useful 
also in another context, that is, in showing the impossibility 
of a continuous gauge choice in a gauge theory defined on 
compactified spaces. Let us consider a gauge field theory 
defined on a principal fiber bundle P (M,G). Let '(/ be the set 
of connections on P, and ;Y the group of gauge transforma
tions, that is to say, the group of automorphisms of P, 7 de
fined by p---+p.y(p) for allp E P, where y:P---+G is any smooth 
function satisfying y(pg) = g-' ly(P)g, \;;fgE G. If (j) E 'Ii, then r 
E HI transforms (j) into 

(3) 

The action of ,'1 splits CC into orbits, In the path integral 
approach to quantum field theory the problem arises of 
choosing a representative for each orbit in a continuous way. 
This problem has already been appropriately settled in fiber 
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bundle language and solved in the caseM = S 3 or S 4 by Sing
ers: When G is a semisimple Lie group, there is no continu
ous gauge choice. When M is a less simple manifold, Singer's 
proof must be partially modified. This is what we want to 
illustrate here. At first we choose G = SU(N). In order to 
have a well-defined mathematical structure, we consider the 
subset if;' of irreducible connections and the (sub) group 
ff = '!I IZ", of gauge transformations, where Z'I is the cen
ter of SU(N). 

Indeed, as one sees from Eq. (3), the y's that leave un
changed a fixed connection OJ must obey the equation 
[y,n] = 0, where n is the curvature of OJ. On the basis of the 
Ambrose-Singer theorem,9 y must commute with the Lie 
algebra of the holonomy group. When OJ E ~, it follows that 
y is constant and belongs to the center of the group G. The 
converse is trivial and therefore is one wishes a free group 
action on (C one must refer to the group ~. As a conse
quence, the space N = ~ 1 ff turns out to beR the base space 
of a principal fibre bundle whose group is ~. The possibility 
of choosing a representative for each orbit in a continuous 
way would imply the existence of a global cross section in 
this principal fibre bundle, that is, its triviality. Therefore, 
1Ti((C) = 1Ti(N) ffi 1Ti(,'1). Now, as Singer showed, all the ho
motopy groups 1Ti (~) are trivial; so a necessary condition for 
the existence of a continuous gauge choice is 

1Ti(ff) = 0 for all i. (4) 

From now on, our procedure will consist in taking Eqs. (4) as 
hypothesis and looking for contradictions with them. Let us 
define ,iIj 0 as the subset of [I} formed by the gauge transfor
mations taking the value of e E SU(N) in a fixed point Xo 

E M.IO We take from Ref. 7 the following fundamental theo
rem: If dimM <;;;4, f§ 0 is weakly homotopically equivalent to 
the set (SU(N)).I\1 of all mapsfM-SU(N) such thatf(xo) = e. 5 

Let us consider the following fibrations, O-ZN 
-,Cfj -ff -0, G-,!ij 0-[1} -SU(N )-0, and the relevant ex
act sequences 

-O-1Td .'1)-1T 1( ,'1)-Z",-1To( '!I)-1To( ,19), 
(5) 

-G-1T I ( ,(1 o)-1T I ( '!J )-O-1To( '!J o)-1To( ,Cfj )-0. 

Inserting Eq. (4), we get 

1To( ,(9 0) = Z'I' 1T I ( '!I 0) = o. (6) 

Now 

(7) 

1T1( '!Jo ) = [S II\M,SU(N)], 

where the symbol 1\ means smash product. In order to com
pute the equivalence classes in Eqs. (7), we may write down a 
Postnikov system for X = G = SU(N) as this group is 2-
connected: 

K (1Ts,S)-Gs 
1 

K (1T4,4)-G4-K (1Ts,6) (8) 

1 

K (1T],3) = G~-K(1T4'S), 

We recall that 1Ti = 1Ti (SU(N)). From the fib rations of this 
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system we can extract the following interesting exact se
quences of groups II: 

-H2(M,1T,)-H4(M,1T4)-[M,G41-H.l(M,1T.l)_H'(M,1T4), 
(9a) 

-H I(M,1T3)_H3(M,1T4)_[S I 1\ M,G41-H2(M,1T.l) 
_H 4(M,1T4), (9b) 

_H4(M,1Ts)_[S II\M,G51_[S II\M,G41_H5(M,1Ts). (9c) 

We recall that since dimM<;;;4, H S(M,1T4) = H 5(M,1Ts) = 0,4 
[M,SU(N)]:::::;[M,G4 ], and [S II\M, SU(N)]:::::;[S II\M,G,;], 

Now let us first consider the case N>3. Then 
H 4(M,1T4 ) = 0, and from (9a) we get the exact sequence 

0-[M,G4 1-H](M,Z)-0, (10) 

so that, in this case, 

1To( ,'1o):::::;H.l(M,Z):::::;[M,G4 1. (11 ) 

If M=S4, then 1To('''lo):::::;O. 
If M = S~, then 1To( ,(9 0 ):::::; Z. 
If M= T4, then 1To( ,'9 0 ):::::;4Z. 
If M = T 3

, then 1To( ,(iJo):::::;z. 
If M=Rp 4

, then 1To(,'10):::::;0. 
If M = Rp 3

, then 1To( ,'iJo):::::;Z. 
If M=S2 X S2, then 1To( ,iJo):::::;O. 
If M = S~XS t, then 1To( ,(10):::::;Z. 
If M=S2 X SI, then 1To( ,(10):::::;Z. 

For a two-dimensional manifold 1To( '!J 0) :::::;0. In any case we 
find a contradiction with Eq. (6). For completeness, we re
port that, taking into account Eqs. (9b) and (9c), one finds 
new contradictions when M = T 4

, T 3
, S2 XS 2, S2XS I, 

Rp 4 , Rp.l. 

Now we concentrate on the particular case N = 2.Then 

1T4 :::::;Z2' 
We may take advantage of the exact sequence 

_H4(M,Z2)_[M,GJ_H'(M,Z)_0. (12) 

One immediately sees that for all two-three-four-dimension
al manifolds already mentioned [M,G4]i:Z2 • The only ex
ceptions may be S4, Rp 4

, S 2XS2 for which Eq. (12) is not 
conclusive. ForS 2 xs 2 andRp 4 

12 we use the sequences (9b) 
and (9c), from which we get 

O-[S II\M,G4 1-ZffiZ-Z2 for M = S2 XS2,(13a) 

0-Z2-[S I 1\ M,G4 l-Z2-Z2 for M = Rp 4
, (13b) 

-[S II\M,Gsl-[S II\M,G4 1-O for both. (13c) 

From (13a) and (13b) we see that in both cases [S I 1\ M,G4 ] is 
not trivial, so that from (13c) [S I I\M,Gs] =1=0, then, by Eq. (7) 
1T I ( ,!ij 0) #- o. So we are again in contradiction. 

So sum up, when G = SU(N), we have verified that for 
all manifolds considered a continuous gauge choice is impos
sible. When the gauge group is G ' = SU(N )/Z", we need only 
a minor specification. Indeed it is enough to observe that ,Cfj' 

coincides with(it is homeomorphic to) .~ 
= ,'1 IZN , where ,Cfj is the group ofSU(N)-valued gauge 

transformations. Then the previous discussion needs no 
change, and at the end we arrive at the same conclusion. 

Now let us consider a gauge theory with a compact 
semisimple, connected, but not necessarily simply connect
ed, group G. In this case the previously quoted Singer's theo-
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rem does not hold, because classifying inequivalent G-bun
dies requires more characteristic classes besides the second 
Chern class. But it still holds for G, the universal covering 
group of G. So if g is the group of G-valued gauge transfor
mations, we have the following fibration: 

(14) 

where go is, as above, the subgroup of g containing only 
the gauge transformations with a fixed point. So Singer's 
theorem and the fibration (14) mean 

1To( .'1);:::; [M,G], 1Td g);:::; [5 'AM,G 1 (15) 

if dimM <4. Now we must link .i7J with the very gauge group 
of the theory, that is, ff, the group of G-valued gauge trans
formations. We have the fibration 

0->-1T, (G )-G->-G-O. 

As 1T,(G) belongs to the center of G (which is finite), we get a 
new fibration 

0-1T,(G )_f'IJ -+ff ->-0. 

Let C be the center of G, which is also finite. Then 

O-C->-~'-~ _0, 

(16) 

(17) 

where .'1 = ?J IC, is a fibration. On the basis of the previous 
discussion, a gauge choice is possible only ifEqs. (4) are satis
fied. Consequently, from (15), (16), and (17) we must have 

->-O-[S 'AM,G l->-O-1TI(G)-+[M,G l-C. (18) 

Let us consider some examples. Let G = SO(n), n>6. 
The~ 1T,(SO(n)) = Z2' Let us write down a Postnikov system 
for G. Then we get, for example, an exact sequence like (9a), 
where 1Tj are to be interpreted as homotopy groups of G, 1Tj 
(G) = 1Tj (G )fori>2. Weget[M,G4 ];:::;H3(M,Z ) for dimM< 4, 
aS1T4 (G) = O. For all manifoldsconsidered,H 3(M,Z )iseither 
trivial or a finite direct sum of Z groups. Therefore, we get 
immediately a contradiction with the sequence (18). The 
same result can be obtained for SO(5). For G = SO(4), as well 
as for other semisimple groups commonly used in gauge the-

ories (i.e., products of simple groups) the extension is 
straightforward. 

For the sake of completeness we quote also the excep
tional groups and the symplectic groups. The first case is 
fairly simple due to the fact that the fourth and fifth homo
topy groups are trivial, the sixth homotopy group is different 
from zero (;:::; Z~) only for G2 , 13 and the previous proof ex
tends easily. The sympletic groups have the same first five 
homotopy groups as SU(2), so that one has the same result as 
in that case. 

APPENDIX 
All fibrations involved in a Postnikov system are in

duced by a principal fibration having a space of paths as total 
space and a space ofloops as fiber. Therefore, any such fibra
tion is also a principal fibration.} This qualification implies 
much more than a simple (Serre) fibration. In fact a Serre 
fibration (E, p, B, F) is a principal fibration if it has the fol
lowing (briefly stated)properties2.'4: 
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lowing (briefly stated)properties2.'4: 

(1) There is a multiplicationlike binary operation m: 
F XF- F, which is homotopy associative and has a two
sided unit and a two-sided homotopy inverse; 

(2) there is a map f..l: F X E-E, which acts fibrewise and 
coincides with m when restricted to F X F; 

(3) if we callE * CE XEthesubset I (z"z2):p(zIl = P(Z2) j, 
there exists a map h: E *-+ Fsuch that ,uo(h,1TIl~1T2' where 
1T; (Z"Z2) = Zj' 

Now let M be any space. Then for a principal fibration 
the following theorem holds: 

Let v, v' E [M,E]. then p*(v) = p*(v') if and only if there 
exists WE [M.F] such that,u *(w,v) = v'. It turns out that 
W = h *(v,v'). Here p*,,u *. h * are of course induced by p, ,u, 
and h, respectively. 

Now we split [M.E] into subsets, each of which corre
sponds to an element of[M,B]. This is possible becausep* is 
onto. Let us consider one such subset I v: p*(v) = U E [M.B] I, 
and pick out from it an arbitrary element Vo' Let us put 
¢ *(w) = ,u*(w,vo) and ¢*(v) = h *(vo.v). Then, due to the 
above-stated theorem. ¢ * maps [M.B] onto the subset 
p* - I(U) and ¢ * and ¢* turn out to be inverse to each other. 
Therefore, ¢ * is a one-to-one map of [M,F ] onto p* - '( u). and 
in general every subset of [M,£] corresponding to a fixed 
element of [M,B] is in one-to-one correspondence with 
[M,F]. 

The set [M,F] is endowed with a group structure, due to 
the properties of the map m. One can obviously transfer this 
group structure into every subset of [M,E] corresponding to 
a fixed element of [M,B ]. However, there is no natural way of 
doing that. 

'G.'t Hoof!, NucL Phys. B 153,141 (1979); G. Mack, Preprint MPI
PAE/PTh 41/79 (1979). 

lR. E. Mosher and M. C. Tangora, Cohomology Operations and Applica
tions in Homotopy Theory (McGraw-Hill. New York, 1966) . 

.IE. H. Spanier, Algebraic Topology (McGraw-Hill, New York, 1966). 
4S. J. Avis and C. J. Isham, lectures at the Cargese Summer School on 
Recent Advances in Gravitation (1978). 

'We take yx (X, Yj, to mean, respectively, the set of maps and the homotopy 
classes of maps from the pointed space X to the pointed space Y. 

"CO R. F. Maunder, Algebraic Topology (Van Nostrand Reinhold, London. 
1970); A. Dold, Lectures in Algebraic Topology [Springer, New York, 
1971). 

7M. Daniel and C. M. Viallet, Rev. Mod. Phys. 52,175 (1980). 
xI. M. Singer, Comm. Math. Phys. 60, 7 (1978). 
9S. Kobayashi and K. NomizlI. Foundations of Differential Geometry 
(Interscience, New York, 1963). 

'''Any element of;1 can be viewed as a family ofG-valued functions, each of 
which is defined in a trivializing neighborhood in M, subjected to suitable 
compatibility relations. 

II [M,G4 ]. [S I 1\ M,G,j, etc., in the sequences (9), can be given a group struc
ture, due to the 2-connectedness ofSU(N). As a matter offact, for example 
[M,G4 ] is an abelian group.' 

"We give up considering S4 here because our method is quite plethoric in 
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The linear integral equations associated with any antiexact solution of the 
Yang-Mills free field equations 
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Any system ofr antiexact I-forms, A a, that solves the Yang-Mills free field equations associated 
with a semisimple r-parameter gauge group is shown to satisfy a system oflinear inhomogeneous 
integral equations. These equations take the form A a = A f dx i

, A f = R f + Y::;:( A j), where 
R f dxi are r antiexact I-forms, each of which solves Maxwell's free field equations, and Y::;: are 
linear Riemann-Graves integral operators that are also linear in the structure constants of the 
gauge group. The standard iteration procedure for solving such systems may be looked upon as 
generating a sequence of corrections to the R f fields that account for the nonabelian character of 
the gauge group. 

PACS numbers: 1l.10.Np, 02.30.Rz 

1. MATHEMATICAL PRELIMINARIES 

Most of the results obtained in this paper come about in 
a simple and direct manner by use of the calculus of exterior 
differential forms together with certain extensions that are 
given in this section. We assume that the reader is familiar 
with the standard structure of the exterior calculus so that 
we may use the following symbols without further remarks: 

/\ for the exterior product of forms, 
J for the inner multiplication of a vector with a form, 
d for the exterior derivative of a form. 
The arena for our discussion is a four-dimensional flat 

manifold M 4 , that is the Cartesian product of three-dimen
sional Eculidean space with the real line. It is sufficient for 
our purposes to work with a fixed glObal coordinate cover 
! xiJ relative to which the metric tensor of M4 is given by 
(( gij)) = diag(I,I, 1, - 1) and hence det( gij) = - 1. Results 
for other coordinate covers may be obtained directly from 
the standard mapping properties of vector fields and exterior 
differential forms. 

Vector fields on M4 are written as 

V=Viai , 

with the usual summation convention and ai==alaxi. The 
class of exterior forms of degree k on M4 is denoted by A k. 

We use 

fl = dx 1 /\ dx2 
/\ dx3 

/\ dx4 

1 i j k d I = - eijkl dx /\dx /\dx /\ x , 
4! 

(1.1) 

for the volume 4-form of M 4 • Starting with fl, construct a 
sequence of forms of decreasing degree by 

fli = ai Jfl, 

(1.2) 

flkji = ak Jflji , 

so that !fli J is a basis for A 3, !flji I j <iJ is a basis for A 2, etc. 
These forms exhibit the following useful properties (Ref. 1, 
pp.480-486): 

dfli = 0, dflji = 0, dflkji = 0, 
(1.3) 

and hence 

P = pifli' Q 
_ 1 qij II qij _ _ qji 
-:2 r-Ij' - , (1.4) 

yield 

dP = (ai pi) fl, dQ = (ai qij) flj , 
(1.5) 

. . k ij 
VJP=VJp'flji' VJQ=~Vqflkij' 

Since M4 is star shaped with respect to any of its points, 
it is simplest to take the center of M4 to be the origin, in 
which case we define the vector field X by 

X = Xiai . (1.6) 

If W is a form of degree k on M4 , then W can be written 
uniquely as 

W = Wi •... i, (Xl) dXi, /\ dxi, /\ ... /\ dx" , 

in which case we define the A-dependent I-parameter family 
of k-forms W(A ) by 

W (A ) = Wi'''.i, (AX!) dxi, /\ ... /\ dx
i
, . (1.7) 

The linear homotopy operator, H, is defined on k-forms W 
by means of 

HW= f XJ W(A)A k-\ dA, (1.8) 

and satisfies the fundamental identity 

W=dHW+HdW, (1.9) 

whereby the Poincare lemma is established for M4 (Ref. 1, 
pp. 414-502; Ref. 2, pp. 211-5). 

The operation H gives rise to the collection of "antiex
act" exterior forms which have very useful properties. The 
reader is referred to Ref. 1, Chap. V of the Appendix for the 
derivations as well as an account of what happens under 
mappings and under a change of center. Since 

HHW=O, 

(1.9) shows that any form W has an exact part 

We = d (HW + d1]) = ds, 

and S is unique under the stipulation sEkerH (i.e., 

(1.10) 

(1.11) 

HW + d1]EkerH~1] = 0). Any form W also has a unique 
antiexact part 
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Wa =HdW, (1.12) 

and H d WE kerH. The class of antiexact forms, d is defined 
by 

d = I WEA I WEkerHj . (1.13) 

This is equivalent to 

d= IWEA IXJW=O, W(O)=O for deg(W»Oj, 
(1.14) 

from which it follows that d is a submodule of the module A 
of exterior forms on M 4 • Further, and most important of all, 
H is the inverse of d for any WEd: 

W=HdW, V WEd . (1.15) 

For example, suppose B is a given element of d and we want 
to obtain all WEd such that 

dW=G+B/\ W. 

Since WEd, BEd imply B /\ WEd and W = H dW, appli
cation of H to both sides of the above equation yield 

W = H dW = HG + H (B /\ W) = HG, 

and we are done. 

2. STATEMENT OF THE PROBLEM 

We shall consider classical gauge fields associated with 
an r-parameter Lie group G. These fields are represented by 
the r Yang-Mills I-form potentials 

Aa=Af(x)dxi, a= 1, ... ,r. (2.1) 

Greek indices have the range 1 through r and the summation 
convention is also observed with respect to these indices. Let 
ua = ua(x) and C pY' respectively, denote the parameters and 
the constants of structure of the group G in an appropriate 
representation. The action of G on the I-form potentials 
gives rise to the gauge transformations 

A a = A a _ dua - ca{3 A Pu{3 P , (2.2) 

and to the connection I-forms 

Wp = Cp a {3 A p , (2.3) 

that characterize the nonabelian aspects of G. The curvature 
2-forms n p associated with wp assume the form 

np=Cp a{3FP, 

where the 2-forms 

Fa = dA a + Wp /\A {3/2, 

(2.4) 

(2.5) 

are the "field strengths" (i.e., Fa = ~ Fij dxi /\ dxi). They sat
isfy the equations 

dFa + wp /\F {3 = 0, (2.6) 

for any and every choice of the A ms as a consequence of the 
Bianchi identities of n p and (2.4). Although the Fms given 
by (2.5) are not invariant under the action of G, the equations 
(2.6) are invariant. [Equations (2.5) and (2.6) are the nonabe
!ian gauge generalization of the first half of Maxwell's 
equations 

dF=O, F=dA, 

with F = ! Fij dxi /\ dx i and A = Ai dxi]. 

The generalization of the second half of Maxwell's 
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equations to the nonabelian gauge theory obtains directly 
from the demand that a gauge invariant action functional 
with Lagrangian L be rendered stationary relative to the 
choice ofthe A a,s: 

a ( aL ) _ aL =0 
i alai A j) JA j . 

(2.7) 

In the interest of simplicity, we restrict our attention to what 
may be called the free Yang-Mills situation in which the 
Lagrangian is taken to be a gauge invariant function of the 
componentsFij of Fa =! Fij dXi /\dxi. Ifwe set 

(2.8) 

Then the use of (2.5) and (2.3) show that (2.7) is equivalent to 

dGa - wI: /\ G{3 = 0 . (2.9) 

[Note that Ga =! G~ Pij and (1.4) imply that 

dGa = (aiG~)pi ' 

and that wp = wPi dXi and (1.3) give 

wI: /\ G{3 = (w~ G g) Pj . 

Thus (2.8) and (2.9) generalize the second half, 

Gij=aL/aFij , aiGij=o, 

of Maxwell's equations.] 
If the group G is semisimple then the Cartan-Killing 

metric 

(2.10) 

is nonsingular, while the Jacobi identity and (2.3) show that 

-W::Cp{3 = w'pCap • 

Thus, if we introduce the 2-forms G a by 

Ga = CayGY, 

it follows that 

dGa -wI: /\ G{3 = Cav(dG v + w; /\ G Y). 

(2.11) 

(2.12) 

In this instance (2.9) is equivalent to the field equations 

dG a + Wp /\ G {3 = 0 . (2.13) 

The customary restriction to a quadratic Lagrangian then 
reduces (2.8) and (2.12) to the equivalent statement 

(2.14) 

for some Lijkl that is invariant under the action of G. For 
example Ca{3 Fij F f!t g'k gj/ is manifestly invariant under G 
in which case we would have 

(2.15) 

The reader is referred to the survey article of Yang3 for the 
details of these matters, although in a slightly different 
notation. 

Our basic problem is now evident. 
Find all Yang-Mills I-form potentials A a for a semisim

pie Lie group G, that satisfy the field equations 

dG a + wp /\ G {3 = 0 , 

where 

(2.16) 

and 
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(2.17) 

For the present, we will not restrict the L 's except to require 
that they are unaffected by the action of G. 

3. THE EQUIVALENT SYSTEM OF LINEAR INTEGRAL 
EQUATIONS 

If the A ms are restricted to be antiexact [i.e., X J A a 

= 0, A U(O) = 0], there is a system of linear integral equa
tions that are equivalent to the Yang-Mills free field equa
tions (2.15)-(2.17). In order to see this, we first write (2.16) in 
the equivalent form 

dA~=Fa_wpI\A~= Fa_!C~tJA~I\A~, (3.1) 

where we have put A a = A ~ to emphasize the fact that the 
A a's are now assumed to be antiexact. Since antiexact forms 
form a module, C ~tJ A ~ 1\ A ~ is antiexact and hence be
longs to kerH. Thus applying H to both sides of (3.1) and 
noting that A ~ = H dA ~ for any antiexact form, we obtain 

A~ =HFa. 

Written out, with the aid of (1.6)-(1.8), (3.2) gives 

A ~ =Xi f Fij(AX)A dA. 

Thus, introducting the linear operators 

hk (f)(x) = .c flAX) A k dA , 

(3.2) may be written as 

(3.2) 

(3.3) 

A ~ = x ih 1(Fij) . (3.4) 

It is now a simple matter to use (2.17) in order to obtain 

A ~ = X'hl(LijkIGakl). (3.5) 

We thus need to solve (2.15) for G akl . 
Let us start by decomposing G a by means of the opera

torH 

Ga=dta+G~, tU=HGa. 

When (3.6) is substituted into (2.15), we see that 

dG ~ = - wp 1\ (dtf3 + G~), 
and hence (2.16) gives 

dG~ = - C;f3 A ~ 1\ (dtf3 + G~). 
However, G ~ = H dG ~ since G ~ is antiexact and 

(3.6) 

(3.7) 

C;tJ A ~ 1\ G ~ belongs to kerHby the module property of .d. 
Thus (3.7) yields 

G~ = - C;f3 H(A~ I\dt (3), (3.8) 

and hence (3.6) gives 

G a = dt a - C;f3 H (A ~ 1\ dt (3) . (3.9) 

Thus, for any choice of the I-forms t a, (3.9) solves the field 
equations (2.15) for any A~. Now 

GU = ~ Gaij Pij 

and hence we need to write t a in the form 

f;- a_I f;- aijk //. f;- a(ijk) = 0 , 
~ - 3! ~ r-ijk' ~ 

in which case 
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dt
a =! am t

amij 
Pij . 

Further, 

A ~ 1\ dt f3 = A ~r am t amrj Pj , 

and hence 

XJAPl\dff3 =xiAP a famrj//. 
a ~ or In ~ r-lj • 

Thus, if we put 

am t amij = B wj , 

then (3.9) yields 

Gaij = Baij _ ca [xih (A P B f3rj) - xih (A P B f3ri)] (3 10) 
p{3 2 ar 2 ar ,. 

where 

Baij = am t amij, t a1mij) = 0, (3.11) 

may be thought of as generating functions. It now remains 
only to substitute (3.10) into (3.5) in order to obtain the fol
lowing linear system of Riemann-Graves integral equations 
for theA u.s: 

A ~ = xihl [Lijkl Bakl] - C;f3 xihl 

X [L ijkl xkh2(A ~r B f3rl ) - L'jkl xlh2(A ~r B f3rk )] . 

However, the antisymmetry of L ijkl in the indices k, I allows 
reduction to the equivalent form 

A ~i = xihl [Lijkl B akl] 

- 2C;f3 xihl [Lijkl xkh2(A ~rB f3rl)] . (3.12) 

It is clear from the form of (3.12) that those B akl for which 
solutions exist to (3.12) serve as a system of parametrizing 
functions for the solutions. 

When solutions exist they may be obtained by iteration 
of (3.12) starting with 

A~jIO) = xihl [L ijkl B ak/ ] . 

We draw particular note to the form that (3.12) takes when 
the L 's are constants 

A ~ = L'jkdxihdB akl) - 2C;f3 xihl [xkh2(A ~r B (3rl)] l . 
(3.13) 

The observation, 

hl(Xk f) = xkh2(f) , 

shows that (3.13) may also be written as 

A ~j = Lijkl Xi {hl(B akl) - 2C;f3 xkh2 [h2(A ~r B f3r/ )]J . 
(3.14) 

Thus, if we set 

R j = Lijkl xihl(B ak/), (3.15) 

and define the linear operation Y);; by 

Y);;( t~) = - 2Lijkl Xi xk C;f3h2[h2( t~ B f3rlll, (3.16) 

then the equivalent system of linear integral equations as
sume the relatively simple form 

A ~i = R j + Y);;(A ~r)' (3.17) 

Equations (3.17) are the system of linear Riemann-Graves 
integral equations that are satisfied by any antiexact system 
of I-form potentials that satisfy the free Yang-Mills field 
equations. Such solutions are, in a sense, intrinsic, for an 
analysis of the global action of the gauge group G and its 
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naturally associated fiber space of connection I-forms shows 
that any solution of the Yang-Mills field equations can be 
mapped onto an antiexact solution by the action of an appro
priate element of G.4 

4. DISCUSSION 

The first thing to be noted is that we are free to pick the 
quantities 5 aij\ and hence the B aij by (3.11). Thus, if we 
replace saijk by Ksuij\ then (3.15) and (3.16) show that we 
obtain the replacements 

Rj-KRj, Y;_KY;. 

This replaces (3.17) by 

A ~ = KR j + KY;(A ~r)' (4.1) 

Accordingly, if the functions 5 uijk are chosen with sufficient
ly nice properties (square integrable and of compact support) 
then we can always pick a value for K so that iteration of (4.1) 
will lead to a sequence A ~iln) that converges to a solution as n 
tends to infinity. There is thus no lack of solutions of (3.17) 
for a fairly large class of choices of the "generating func
tions," t uijk. 

The iteration process obviously starts with the choice 

A~IOI =KRj. (4.2) 
However, (3.16) shows that A :10) = KR,! is an exact solution 
when we set C py = 0; that is, the Abelian case, namely Max
well's equations. Accordingly A ~IO) = KR,! are simply r so
lutions of Maxwell's equations subject to the gauge condi
tion X J A K» = 0, that is 

xi A flO) = 0, A flO) (0) = 0 , (4.3) 

so that the A fo) 's are antiexact. We may thus view the iter-
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ation process 

A ~IO) = KR,! ' 
(4.4) 

A :iln + 1) = KR j + KY;(A ~r(n))' 

as a sequence of corrections of r solutions of Maxwell's equa
tions that accounts for the presence of the nonabelian gauge 
group with structure constants Ca /. This view has a merit in 
that it gives rise to a heightened physical intuition of this 
complex subject, and possible new insights through a study 
of the correction operators YJ:,". 
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A closed expression of the SU(3) [and U(3)] one-link invariant group integral in lattice gauge 
theories is derived. The U(3) result is compared to the expression recently derived by Brower, 
Rossi, and Tan. Applications of our results are briefly touched upon. 

PACS numbers: 11.1O.Np, 02.60.Nm 

1. INTRODUCTION 

In the study oflattice gauge theories I ,2 with a gauge 
group G, one encounters' invariant group integrals of the 
form 

Z(m,m+) = r dgeTrlwn' t-H''''), (1) 
Jr; 

where dg is the normalized, invariant Haar measure-l on the 
group G. For convenience, we have absorbed coupling con
stant parameters in the matrix m. Equation (1) is the generat
ing functional for computing expectation values of any given 
link for lattice gauge theories or for (G X G) chiral sigma 
models.:i g in (1) then belongs to the fundamental representa
tion of the group G. Equation (1) also enters into the con
struction of quasicoherent states appropriate for quantum 
fields carrying a nonbelian charge.6

.? In this case, one is in
terested in other representations of G than the fundamental 
one. For pion or gauge fields, one is, in fact, interested in the 
adjoint representation.!>·7 

Several recent papers)·x~1\ have been devoted to the ac
tual evaluation of (I) appropriate for lattice (QCD) gauge 
theories, i. e., one considers G = U(N) [or SU(N)). Two very 
successful methods have been applied. One is the character 
expansion) of the exponential in (I). The other one is the 
construction of a partial differential equation which (1) satis
fies due to its invariance with respect to left- and right-hand
ed actions of the group on m," In Ref. 13, a solution of this 
one-link Schwinger-Dyson equation of Brower-Nauenberg 
for U(N) was actually found with the result 

(2) 

where Zk ==2V x k and X k are the eigenvalues of the matrix 
mm+. 

In the 11 N expansion 14 approach to the QCD dynamics 
[G = SU(3)] one argues that Nbeing large is a "good" ap
proximation to N = 3. Since U(N) and SU(N ) seem to be rath
er similar in nature for large N, it is justified to study U(N) 
instead of SU(N). This circumstance simplifies the evalua
tion of (I) to a large extent since, for U(N), (I) is a function 

'''Institute of Theoretical Physics, S·41296 Giiteborg, Sw~den. 

only of mm +, In the present short paper, we will present an 
evaluationofZ(m,m+)forG = U(N),SU(N),whereN = 2,3. 
(The expressions we obtain for N = 2 seem to be known to 
some authors, We include our method of calculating these 
integrals as an illustration of the technique.) For the U(N) 
groups we will verify the expression (2), but we obtain 
Z (m,m + )=Zo(mm +) in terms of an explicit power expan
sion in mm+. For the SU(N) groups one has, in general, a 
dependence on more invariants of the matrices m and m + . 
For N = 3 we will reveal a drastic change in the nature of the 
integral (1) when comparing the SU(3) [U(3)] results with the 
SU(2) [U(2)) expressions. 

Concerning the motivation for the study of the invar
iant, one-link group integral 11), we have at present no more 
to add to the remarks in Refs. 3,5-13. The series expansion of 
the one-link integral (1) given below can be applied to a 
strong coupling expansion in a standard manner. Moreover, 
it is well known 1).16 that two-dimensional lattice gauge the
ories are exactly solvable in that the solution of the theory 
can be reduced to the evaluation of (1) for a diagonal matrix 
m = (J].. Now, for N = 00, the U(N) theory exhibits a third
order phase transition. 16 For finite N, it should be possible to 
see a sign of this effect on a lattice and, moreover, one can 
compare SUIN) with U(N) in an exact manner, Such a study 
is presently in progress. 17 

2. N = 2 INTEGRALS 
The SU(2) one-link integral can easily be evaluated by 

using an explicit S' parametrization since, topologically, 
SU(2);::;S'. Writing the group element asg = uoil + iU'(J, 

where (J are the three Pauli matrices, one obtains for 11), 

Z (m,m +-) = J, fdS fd 4U exp(is(u 2 
- 1)) 

21T 
Xexp(u(y4+u ,B+u 2C+u1D), (3) 

where u2 = u~ + u2 and A = 2Re(m II + md, 
B = 2Im(mn - mil), C= 2Re(m21 - m I2 ), and 
D = - 2Im(m'2 + m 2 ,). The integration over the u varia
bles in (3) are just Gaussian integrals which can be carried 
out directly. The final integral over the S parameter is then a 
Fourier-Mellin transform which can easily be evaluated. In
troducing the SU(2) invariant combinations Tr(mm +-) and 
detm + detm ~ , the final result is 

. x (Tr(mm+) + detm + detm l)" (4) Z(m,m+) = I-
n () n!(n + I)! 

where we recognize the power series expansion of the first 
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modified Bessel function II' Ifwe treat m and m+ as inde
pendent variables and put m + = 0, (4) reduces to the known 
result given by Creutz. 3 By making use of the expression (4), 
it is easy to derive an expression for the one-link U(2) gener
ating functional Zo(mm +) by a projection technique. W rit
ingg = exp(iq;)g', whereg' belongs to SU(2), we obtain 

1 i2
77" • . Zo(mm+) = - dq;Z(e"Pm, e-I'Pm+) 

21T 0 

00 [Tr(mm+)]n[det(mm+)]' - L (5) 
- n.r~O (n + 2r+ l)!n!(rW 

We have verified explicitly that (5) actually agrees with the 
expression (2) for N = 2. It is amusing to notice that the 
SU(2) result (4) is much simpler in structure than the U(2) 
form (5). This is due to the simplicity of the SU(2) group, and 
for SU(3) the result, which will be given below, is quite com
plicated in terms ofSU(3) invariants. 

For the sake of completeness, we also mention here the 
generating functional (1) in the case of the adjoint representa
tion of SU(2). m is then a 3 X 3 matrix and the g's can be 
represented by the rotation matrices Rij = !Tr(O"igO"jg+), 
whereg = unl + iu·a. Since Rij is real, only the real part of 
m contributes in (1). Writing M = 2Re(m) we obtain [see 
Refs. 6 and 7 for details, where an integral representation of 
(6) can be found, and where some physical applications are 
discussed] 

Z(m,m+)=Z(M) 

= f [2U+k+/)-I]!! xikzl (6) 
j,k,l ~ 0 j1k !l !( 1 + 2j + 3k + 41 )! Y , 

where 

x = Tr(MM-), 

y=4detM, (7) 

z = HTr(MM-W - Tr(MM-MM-). 

Since SU(2)1Z2::::S0(3), the generating functional (6) for the 
SU(2) group in adjoint representation gives the SO(3) group 
generating functional. 

3. N = 3 INTEGRALS 

In evaluating the SU(3) one-link integral, we have found 
it very useful to parametrize l8 the SU(3) group manifold in 
terms of two normalized, complex three-vectors u and v. 
Each g in SU(3) can then be written in the form 

uT UT) 
vT vT, 
W 2 W3 

(8) 

where WI = €ijk UjVk and u··v = 0, which leads to eight inde
pendent variables. An integration over SU(3) can be re-ex
pressed in terms of the u, v variables in (8). For the case 
G = SU(3) in (1) we obtain 

(9) 
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By making use of (8) we see that the argument in the expo
nential of (9) is a quadratic function in u, v, u·, v·. The com
plex Gaussian u and v integrals can be performed in a 
straightforward manner. [We observe that we can always 
write m = glDg2, gl,g2ESU(3), where D is a diagonal matrix 
whose matrix elements have a common phase.] All except 
one of the Fourier-Mellin transformations can then be ex
plicitly performed. As a result we obtain 

Z(m,m+) = .i.i dp _1_JI(2.YTfp))e-A.IP, 
1T r p yTfp) P 

(10) 

where 

Tfp)=p3_Xp2+ Yp+Z=-det(mm+ -pI) (11) 

and X, Y, Z, L1 are the SU(3) invariant combinations 

X=Tr(mm+), 

Y = HTr(mm+W - Tr((mm+)2), 
(12) 

Z = det(mm+), 

L1 = detm + detm+. 

The contour r in (10) encloses the pole p = O. By expanding 
the Bessel function in (10) and performing the contour inte
gral, we obtain 

00 1 
Z(m,m+)=2 I 

j,k,l,n~O U + 2k + 31 + n + 2)!(k + 21 + n + I)! 
xj yk ZI L1 n 

X----. (13) 
j! k! I! n! 

For m + = 0 this result agrees with that of Creutz. 3 

The U(3) one-link integral can now be obtained by mak
ing use of the method analogous to the one used in obtaining 
(5). The final U(3) integral can be written in the following 
forms 

Zo(mm+) = .i.i dp 10(2 YZ)J,(2.YTfp)) 
1T r pyTfp) P P 

= 2 f Ii + 2k + 41 + 2)! 
j,k,l~O [(i + 2k + 31 + 2)W 

1 xj yk ZI 
X --- (14) 

/!(k + 21 + I)! j1 k! /! 

One can verify in a straightforward manner that (14) satisfies 
the Brower-Nauenberg equation, which, in terms of the in
variants (12) reads for U(3), 

[(X2 - 2Y)Ji + 2(y2 -XZ)J~ + 3Z2J~ 
+ 2(XY - 3Z)JxJ y + 2XZJxJz + 4YZJ y Jz 
+ 3XJx + 4YJ y + 3ZJz ]Zo(mm+) = XZo(mm+). 

( 15) 

We have also shown explicitly the equivalence of (14) and (2). 
This is an expected result, since they satisfy the same differ
ential equation and boundary condition. 13 In the same way, 
(13) satisfies the SU(3) Brower-Nauenberg equation. Ifwe 
write ll L1 =2cos30 yZ, an additional term 
( - 1/12)[J 2Z (m,m+)lJO 2] will be present on the right-hand 
side ofEq. (15). 

Finally, we remark that in the case of matrix m = (31, 
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one can evaluate (10) directly [for U(3) and SU(3)] instead of 
using (13) and (14). Equation (1) can then be expressed as a 
power expansion [see Ref. 17 for details and for an applica
tion in two-dimensional (lattice) QCD] in [3. 

4. CONCLUSIONS AND REMARKS 

We have given a closed expression for the SU(3) [and 
U(3)] one-link integrals in terms ofSU(3) [U(3)] invariants. 
Bars has givenS a perspective on how to make use of the one
link integrals in lattice gauge theories. A strong coupling 
expansion can, for example, be done for SU(3) by making use 
of the generating functional (13). Corrections to the Bars
Greens truncation procedure 10 can furthermore be studied 
systematically for SU(3) [and U(3)]. Here we only notice that 
in the strong coupling limit, i. e., [[3 is small, [3 S * (d - 1) 
where d is the dimension of the lattice] in m = [3J, we obtain 
Z (m,m +) ~ 3[3 2TrJJ + . As shown by Bars and Green, 10 one 
can then find an approximate solution of the lattice gauge 
theory. It would be interesting to apply the expression (13) or 
(14) to a study of corrections to the Bars-Greens approxima
tion. Polyakov l9 has furthermore shown that the one-link 
integral (1) enters into the mean field approximation of lat
tice gauge theories. The one-link integral appropriate for this 
approximation in the large N limit has recently been dis
cussed by Brezin and Gross,20 where it was shown that (1) 
exhibits a two-phase structure as in the two-dimensional 
U( (0) theory. It has been conjectured 16 that for sufficiently 
large N one should see a sign of this two-phase structure. In 
two dimensions this is what actually happens. 17 The results 
of the present paper can be used to study this issue in higher 
(space-time) dimensions. 

As a final remark we notice that the steepest descent 
method can be applied to the integral representation (10) 
[and to the integral representation for U(3) easily derivable 
from (10)] to study the weak coupling limit ( [3 being large). 
As suggested by Brower and Nauenberg, II one could also 
study this limit by considering stationary points of (1) direct
ly. We will not, however, develop these considerations in the 
present note. 

Note added in the proof The one-link U(N) integral has 
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also recently been considered by V. A. Faleev and E. Onofri 
(TH. 2999-CERN preprint 1980). We thank the authors for 
information about their results prior to publication. 
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Minkowski space Yang-Mills fields from solutions of equations in the three
dimensional Euclidean space 
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Equations in the three-dimensional Euclidean space are derived by combining the Yang-Mills 
field equations with the conditions which are imposed on a Yang-Mills field in Bernreuther's 
method of constructing Yang-Mills fields in Minkowski space from Yang-Mills fields in 
Euclidean space. Bya proper ansatz for the Yang-Mills fields these equations are reduced to a 
single differential equation. The differential equation is identical with merons' equation in 
Euclidean space if we consider solutions of the latter equation which are functions of the ratio t / p, 
where t is the Euclidean time andp is the three-dimensional radius. One such solution is the single 
meron solution in Euclidean space. Starting from this and applying the method we get the de 
Alfaro-Fubini-Furlan solution in Minkowski space. Then, a more general ansatz is considered, 
which leads to a system of three nonlinear differential equations. 

PACS numbers: Il.lO.Np, 03.50.Kk, 03.30. + P 

I. INTRODUCTION 

In recent years a number of exact classical solutions of 
the Yang-Mills field equations in Minkowski as well as in 
Euclidean space were found. I-IX The best known such solu
tions are the instanton solutions and the de Alfaro-Fubini
Furlan solution. Other solutions have also been found, for 
example the elliptic solutions, etc. 

The standard method of finding classical solutions is 
the following. We make an ansatz for the Yang-Mills fields, 
we introduce this expression into the field equations, and 
then we try to solve the resulting system of second order 
nonlinear differential equations. The solution of this system 
is not easy in general. However, a large class of real solutions 
of the Yang-Mills field equations in Euclidean space can be 
found much more easily if we take into account the fact that 
a self-dual field is a solution of these equations. If we substi
tute the ansatz for the Yang-Mills fields into the duality 
condition a system of first order nonlinear differential equa
tions is obtained. But, we cannot use this method to get real 
solutions in Minkowski space since a self-dual field in Min
kowski space is necessarily complex. 

We may therefore try to invent a method of getting real 
solutions in Minkowski space from solutions in Euclidean 
space. Indeed, such a method has been proposed by Bern
reuther. 10 According to this method, which is reviewed in 
this section, from every Euclidean Yang-Mills field which 
satisfies certain conditions, we can get a real Yang-Mills 
field in Minkowski space. In Sec. II by combining these con
ditions with the field equations we obtain equations in the 
three-dimensional Euclidean space. In Sec. III by a proper 
ansatz for the Yang-Mills fields these equations are reduced 
to a single nonlinear differential equation. The resulting 
equation is identical with merons' differential equation, if we 
consider solutions which are functions of the ratio t /p (t is 
the Euclidean time and p the three-dimensional radius). A 
singular solution in Euclidean space, and from this by the 
application of the method, the de Alfaro-Fubini-Furlan so
lution in Minkowski space are obtained. Also we find that 
from every solution of that type of the merons' equation in 

Euclidean space a solution of the Yang-Mills equations in 
Minkowski space can be constructed. Finally in Sec. IV we 
consider a more general ansatz for the Yang-Mills fields. 
When we introduce this ansatz into the three dimensional 
equations we get a system of three nonlinear differential 
equations. 

It should be pointed out that Bernreuther's method 
gives nontrivial results only if the Euclidean space solution 
we start from is not self-dual. Pi 

To describe Bernreuther's method 10 we define from the 
Minkowski space variables xo, xj,j = 1,2,3 the Euclidean 
space variables y", a = 1,2, ... ,4 by the relations 

(I.l) 

Y4 = ~(I +x~ - x2
), 

and we consider the Euclidean space fields A ~ (y). From 
these fields with the help of the Pauli matrices oJ we define 
the matrices Aa (y) = (E/2i)a' A ~ (y), where € is the gauge 
coupling constant, and from them the matrices Bo(x) and 
Bi(x) as follows: 

Bo(x) = - XoA4( y), (1.2) 

B;(x) =A;(y) -X;A4(Y)' 

Then, we can show that if the fields A" (y) satisfy the 
relations 

y"A" =0, 

(1.3) 

(1.4) 

a 
Y(3 -A" = -A", (1.5) 

aYri 
the quantitiesAo(x) andA;(x) ofEqs. (1.2) and (1.3) are Yang
Mills fields in Minkowski space. From their definition we see 
immediately that these fields are real. 

Using Eqs. (1.2) and (1.3) we can express the field 
strengths Mil" (x) in Minkowski space in terms of the field 
strengths F,,(3(Y) in Euclidean space. We get 

M,j(x) = Fij(Y) -Xj F4j (y) -Xj F;4(y), (1.6) 

Mo,(x) = - X(~4;(Y)' (1.7) 
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II. EQUATIONS IN THE THREE-DIMENSIONAL 
EUCLIDEAN SPACE 

In this section we shall combine the Yang-Mills field 
equations in Euclidean space with the conditions (1.4) and 
(1.5) and we shall obtain three equations in the three-dimen
sional Euclidean space. To find the general solution of Eg. 
(1.5) we must solve the system 

dYI dY2 dY3 dY4 dAa y;- = h = Y; = y:- = - --;C-. (2.1) 

From the solution of this system we find that the general 
solution ofEq. (1.5) is 

A" = (1/Y4)'Pa(z\> Z2, Z3), 

where 

Z; = Y;lY4' i = 1,2,3, 

(2.2) 

(2.3) 

and the 'Po. are arbitrary functions of Zj' Then we find that if 
the fieldsAa are ofthe form ofEqs. (2.2) the condition (1.4) is 
satisfied if 

(2.4) 

To express the Euclidean Yang-Mills field strengths 
Fa(3 = a(3 Aa - au A(3 - [Ao.' A(3 J in terms of 'P; let us write 

lij = aj'Pj - ai'Pj - ['P;,'Pj]' 

Thus we get 

Fi) =Y4
2
/i)' 

(2.5) 

(2.6) 

(2.7) 

and we can express the Euclidean Yang-Mills field equa
tions in terms of the "field strengths" Ii)' the three-dimen
sional "fields" 'Pi' and the variables Zi' We find using Eqs. 
(2.6) and (2.7) 

aj Fji + [Aj , Fji] = Y4- 3(~ !;, + ['Pj ,!;;]). (2.8) 
J 

Therefore the field equations alflJi + [AI" Fllj J = ° 
become 

a~j !;i + ['Pj,./ji] + Zj(ZI a~1 ./j; + 3./j j + ZI ['PI'./j;]) 

= 0. (2.10) 

Also, the field equation aj Fj4 + ['Pj, Fj4] = ° becomes 

Z,(~j Ii) + ['Pi,fj J) = 0. (2.11) 

Since!;; = - fj we find that Eq. (2.11) is satisfied if Eqs. 
(2.10) are satisfied. Therefore the Euclidean Yang-Mills 
field equations together with the conditions (1.4) and (1.5) are 
reduced to the Euclidean three-dimensional equations 
(2.10). Using Eqs. (l.1)-(1.3) and (2.2)-(2.4) we find that from 
any real solution of Eqs. (2.10) we get a real solution of the 
Yang-Mills field equations in Minkowski space. 
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III. DE ALFARQ-FUBINI-FURLAN SOLUTION 

To find solutions of Eqs. (2.10) we make the ansatz 

CPj = -aj/(z/z)G, (3.1) 

where G = G [(z~ + z~ + Z~) 1/2] = G (z) and the matrices 
ail are generators of an SO(3) group, i.e., satisfy the relations 

[ajl' a jn ] = Djialn - Djnali - Dliajn + Dlnaji' (3.2) 

Then we get 

aj./j; + [cpj'./j; ] 

=ai)Zj(G"+ !:...G' -!:...G-~(G)2_(G)')' (3.3) 
Z Z Z2 Z 

where the prime means differentiation with respect to z. Also 
since 

ZjCPj = 0, Zj./ji = ai)zj(G' + G Iz), 

we get 

Zj(ZI ~/ji + 3!;; + [Z/'PI'!;; J) 
= ai)zj(zG " + 4G' + 2G Iz). 

(3.4) 

(3.5) 

From Eqs. (2.10), (3.3), and (3.5) we find that the function G 
must satisfy the equation 

(Z2 + l)G " + !:...( 2Z2 + l)G' 
Z 

2 2 G 3 G)2 :1 +,(z -1) --I -(G) =0. 
z- Z 

To simplify Eq. (3.6) let us write 

V=zG + l. 
Then Eq. (3.6) becomes 

Z2(Z2 + 1) V" + 2z3 V' + V-V' = O. 

Also, if we define; by 

; = liz, 

Eq. (3.8) takes the form 

(;2 + llV" + 2;V' + V - V' = 0, 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

where the prime denotes differentiation with respect to ;
Finally, if we introduce 1] by the relation 

1] = arccotz, 

Eq. (3.8) becomes 

COS
21]V" + V - V" = 0, 

(3.11 ) 

(3.12) 

where now the prime means differentiation with respect to 1]. 

Equation (3.8) or its equivalent forms (3.10) and (3.12) 
are related with merons' differential equation in Euclidean 
space ll 

(3.13) 

where p = (y~ + y~ + y~ ) I nand t = Y4- Indeed if'P is a 
function of pit = z, Eq. (3.13) becomes Eq. (3.8). Therefore, 
we find that every solution of merons' differential equation, 
which is a function of pit gives a real solution of the Yang
Mills equations in Minkowski space. Such solution is the one 
meron solution of Eq. (3.8), which corresponds to 
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v = 1/(Z2 + 1)1/2. (3.14) 

Then, from Eqs. (3.1), (3.7), and (3.14) we find 

CP, = -O'i}(z)lz2)[(z2+ 1)-1/2-1] 

from which we get 

(3.15) 

1 z, 
Ii) = O'ij -0-- - (O'ilZj - O'j1Zi)2'" 

z· + 1 Z 

[ 1 1] X -,-- -, , . 
Z" + 1 (z· + 1 f / . 

(3.16) 

The Yang-Mills fields in Euclidean space, which correspond 
to the solution (3.14), are obtained from Eqs. (2.2), (2.4), and 
(3.15). Expressed in terms of the Euclidean space variables 
Ya by the relations (2.3), they are the following: 

Ai(Y)= -O'ijY~[( 2 Y\)1/2 -1], A 4(y) =0, 
Y Y +Y4 

(3.17) 

where y2 = y~ + Y; + y~. The corresponding field 
strengths are obtained from Eqs. (2.6), (2.7), and (3.16) or 
directly from Eqs. (3.17). We get 

1 
Fi)(Y)=O'i} 2 2 

Y + Y4 

X [-y-l +_l_y_~ - (y2 : ~nJ12 J. (3.18) 

(3.19) 

Eqs. (3.17)-(3.19) give a singular solution in Euclidean space 
in the A4 = ° gauge. 

The corresponding real Minkowski space solution is 
obtained from Eqs. (1.2), (1.3), and (3.17). Using Eqs. (1.1) to 
express the fields in terms of the variables XO, Xi we get 

x.( 1 +x~ _x
2 

) 

Bj(x) = -(li):2 [(1 +(2+)(1 +(2_ »)1/2 -1, 

Bo(x) = 0, (3.20) 

where x2 = x~ + x~ + x~ and t + = Xo ± Ixl. Also, from 
Eqs. (1.6), (1.7), (3.18) and (3.19) or directly from Eqs. (3.20) 
we obtain the field strengths in Minkowski space, 

4 
Mi)(x) = (Ii) (1 + (2+ )(1 + (2_) - ((li/Xj - (ljlX j ) 

x-4x/ ( 1 
x 2 (1 + (2+ )( 1 + (2_ ) 

(1 + X~ - x
2

) (1 + x2
) ) 

(3.21) 
[(1 + t 2+ )(1 + (2_ »)3/2 ' 

4xo(1 + x~ - x2
) 

MOi(x) = - O'ijxj [(I + (2+ )(1 + (~ ) )3/2' (3.22) 

Egs. (3.20)-(3.22) give the de Alfaro-Fubini-Furlan solution 
in Minkowski space in the Bo = ° gauge. D 

Other solutions of Eg. (3.8) are the following: 

V = 0, ± 1. (3.23) 

Then, from Eqs. (3.7) and (3.23) we get 

G = C Iz, C = - 1,0, - 2, (3.24) 
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and the expression (3Ab) becomes 

z; lji = 0. (3.25) 

Using Egs. (1.7), (2.7), and (3.25) we find that 
MOi = 0, i = 1,2,3. Therefore the solutions (3.23) are not in· 
teresting for our problem. 

IV. MORE GENERAL ANSATZ 

To look for other solutions of Eg. (2.10) we make the 
ansatz 

CPj = (1/2i)(O'je + zp/z/ g + Ejk/O'kZ/h ), (4.1) 

where e = e(z), g = g(z), and h = h (z). Substituting the above 
expressions in Eq. (2.5) we find 

!;k = (1/2i) [(ajz, - O'kzj)(e'lz - g - eh - z2gh) 

- EjkP/(e2 + 2h ) - Ejk/O'J,z/h 2 

+ (EjI'Z, - E,hZj)a,z,(h 'iz + eg)], (4.2) 

where the prime means differentiation with respect to z. To 
simplfy the notation let us define A and B by the relations 

A = (e'lz) - g - eh - z2gh, (4.3) 

B = zh I + zleg + 2h + e1
• 

Then, we get from Eqs. (4.1) and (4.2), 

a I{ A' -/;1, = -: - adzA I + 2A) + ZkO'/Z,-
az;' 21 z 

+ Ekj/zja/ [~(e2 + 2h )' - h 1 

+ Z( : I + eg)' + 3 (: I + eg) ]}, 

(CPj'!;k J = (1I2i){(I I, [(e + z2g lB + z2eh 21 
- Zk(l/Z/ [gB + h (A + eh)] 

(4.4) 

(4.5) 

+ Ekjlzpd(e + z2g )A - h (e2 + 2h + z2h 2)]), 
(4.6) 

Zj!;k = (1/2i) [(ZkZPJ - O'kz2)A + EkjIZp/B], (4.7) 

a 1 
Z/ -a (Z);k) = --;-[(ZkZPj - O'kZ2)(zA I + 2A) 

'Zt 21 

+ Ekj/Zp/(zB '+ B)], (4.8) 

[z/CP/,Zj!;k] = (1/2i)[ - (ZkZj(lj - (lkz2)(e + z2g )B 

+ EkjlzPlz2(e + z2g )A ]. (4.9) 

Substituting the expressions (4.5)-(4.9) in Eg. (2.10) and 
equating to zero the coefficients of (I k • Z k Zj O'j' and E kjlZj (II we 
get, respectively, 

z(1 + z2)A I + 2(1 + 2Z1)A 

- (I + z2)(e + z2g )B - zleh 1 = 0, (4.10) 

z(1 + zl)A I + 4Z2A _ z2hA 

- zl[e + (I + z2)g]B - z2eh 2 = 0, (4.11) 

z(1 + zl)B '+ (1 + 3z2)B + z2(1 + zl)(e + z2gJA 
- (I + z2h He2 + 2h + z2h 2) = O. (4.12) 

Subtracting Eg. (4.11) from Eg. (4.10) we get 

(2 + z2h )A - eB = O. (4.13) 
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There three unknown functions e, g, and h are determined 
from the system of Egs. (4.10), (4.12), and (4.13). 

To proceed further we introduce new variables I, n, and 
p by the relations 

1 = 2 + z 2h, n = ze, p = e + Z2g, (4.14) 

and we define the functions a and b as follows 

A = a/z2
, B = b /z. (4.15) 

Then from Egs. (4.3), (4.4), (4.14), and (4.15) we get 

a = n' + (1 -l)p, (4.16) 

b = I' + np, 

and Eg. (4.13) becomes 

la - nb = 0. 

Also, Egs. (4.10) and (4.12) become, respectively, 

z2(1 + z2)(a' - pb) + 2z3a - n(/- 2)2 = 0, 

z2(1 + z2)(b ' + pal + 2z3b 
- (I - 1)[n2 + 1(1- 2)] = 0. 

(4.17) 

(4.18) 

(4.19) 

(4.20) 

Therefore we have to solve the system of Egs. (4.18)-(4.20), 
where a and b are given by Egs. (4.16) and (4.17). 

First, we check if there are solutions of Egs. (4.18)
(4.20) having constant I and constant n. Of course, the case 
1= n = ° is included. We find that this can happen if 

p = n = I = 0, or p = n = 0, I = 2, 
or n = 0, 1= l,p:unrestricted. (4.21) 

Then, from Egs. (4.15)-(4.17) we get A = B = 0. This solu
tion, and generally every solution which gives A = B = 0, is 
not interesting for our problem because in this case from 
Egs. (1. 7), (2.7), and (4.7) we get MOi = 0, i = 1,2,3. 

Then, we check if there are solutions having I = ° but 
n = n(z)#O. In this case we get from Egs. (4.16)-(4.18), 
p = 0, a = n', and b = 0. But then Eg. (4.20) implies n = 0, 
which means that there are no solutions having 1 = ° and 
n#O. 

Also, we check if there are solutions having n = ° but 
1= l(z)#O. In this case Egs. (4.16)-(4.18)implyb = [',a = 0, 
and p = 0. Then Eg. (4.19) is satisfied and Eg. (4.20) gives 

z2(1 + z2)1" + 2z'l' -[ (/- 1)(/- 2) = 0. (4.22) 

Eguation (4.22) is identical with Eg. (3.8) if we make the 
identification V = I - 1. This was expected since if 
n = p = ° which implies e = g = 0, and 1 = 2 + zG, the an
satzes (3.1) and (4.1) become identical. 

Consider now solutions having I #0, n #0 and at least 
one of them a function of z. In this case Egs. (4.19) and (4.20) 
can be replaced by simpler expressions. Indeed if we multi
ply Eg. (4.19) by I, Eg. (4.20) by n, subtract the resulting 
expressions and use Egs. (4.16)-(4.18) we get 

z2(1 +z2)pb - n[(/- l)n 2 + l(l- 2)] = 0. (4.23) 

Also, adding Egs. (4.19) and (4.23) we get 

z2(1 + z2)a' + 2z'a - n(l- 1)[n 2 + 2(1- 2)] = 0. (4.24) 

Therefore, we have to solve the system ofEgs. (4.16)-(4.18), 
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(4.23), and (4.24). From this system we can eliminate a, b, and 
p, in which case we get a system of two eguations with two 
unknowns. Indeed, from Egs. (4.16)-(4.18) we get 

p = (In' - nl ')I(n 2 + 12 - [), (4.25) 

which together with Egs. (4.16) and (4.17) may be used to 
eliminate a, b, andp. Then, Egs. (4.23) and (4.24) become, 
respectively, 

Z2( 1 + z2)1 (In' - nl ')(nn' + II' - 1 ') 

- n(n 2 + 12 -If[(I- 1)n2 + l(l- 2)] = 0, (4.26) 

z2[(1 +z2)n(n~' + I~' -1')], 
w + 1--1 

- n(l- 1)[n 2 + 2(1- 2)] = 0. (4.27) 

We have not found the general solution of the system ofEgs. 
(4.26) and (4.27). 
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Given a Lie group K acting on a principal fiber bundle P(M, G), we study the K-invariance of 
connections in P and in bundles associated to P. The geometry of spontaneous symmetry breaking 
is discussed from this point of view. The results are applied to the Wu-Yang and 't Hooft

Polyakov models of a magnetic monopole. 
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1. INTRODUCTION 

It is well known that classical gauge fields can be re
garded as connections in principal fiber bundles. 1,2 A very 
useful technique in searching for explicit solutions to the 
Yang-Mills equations is to require that they be invariant 
under an appropriate group of symmetry transformations. 3,4 

In differential geometric terms, we have a Lie group K acting 
on a principal fiber bundle P (M, G), and we initially try to 
characterize the set of all connections in P which are invar
iant under K. Then we can impose further constraints if re
quired: dynamical equations, self-duality equations, etc. 

In Sec. 2 of this paper we discuss the general theory of 
K-invariant connections in a principal fiber bundle P (M, G), 
following mainly Kobayashi and Nomizu,5 from which we 
quote Wang's theorem on the classification of K-invariant 
connections when M is a homogeneous space K / J. The con
sequences of K-invariance for associated bundles are then 
considered, in particular the case of spontaneous symmetry 
breaking. 2 ,6 

This general theory is applied in Sec. 3 to the W u-Yang 
model ofa magnetic monopole7

: we show this solution may 
be obtained as the unique SU(2)-invariant connection on the 
Hopfbundle S~(S2, U(l)). In Sec. 4, we consider the exam
ple of the 't Hooft-Polyakov model ofa monopole. H

•
9 This 

solution, for fixed radius r, may be obtained as the unique 
SO(3)-invariant connection in a reduced subbundle Q (S 2, 

SO(2)) of the trivial bundle S 2 X SO(3)(S 2, SO(3)). This con
nection is projected from a two-parameter family of SO(3)
invariant connections in S 2 X SO(3). 

2. INVARIANT CONNECTIONS AND BROKEN 
SYMMETRY 

Let P (M, G ) be a princi pal fiber bundle, with projection 
1T: P-?M. We say that a Lie group K acts on P(M, G) as a 
group of bundle automorphisms if for each kEf( there is a 
transformation k p of P which commutes with the action of 
the structure group G: 

kp(ua) = kp(u)a (VuEP, VaEG). 

Thus k p maps each fiber of P into another fiber of P, and so 
induces a transformation kM of M. 

We fix a reference point uoEP, and let Jbe the isotropy 
subgroup of Kat Xo = 1T(Uo): 

J = 1JEf( ~MXO = xol· 
For jEJ, we define A (j)EG by 

(2.1) 

Then A: J-?G is a homomorphism'; we also denote the in
duced Lie algebra homomorphism by A: c/'-?f7. 

In applications we may initially only have a group ac
tion defined on the base space M, and we need to know about 
the existence and uniqueness of a lifting of this action to an 
action by bundle automorphisms on P (M, G). This is in gen
eral a difficult problem (see, for example, the literature cited 
in Ref. 10). For the case where K is compact and semisimple 
and the structure group G is solvable and connected, then 
Palais and Stewart II have shown that such an (essentially 
unique) lifting exists. Another case, which will be of great 
importance for us, occurs when K is compact and acts transi
tively on M, so that M can be identified with a homogeneous 
space K /J. There is now actually a one-to-one correspon
dence between 

(a) equivalence classes of principal bundles P (M, G) ad
mitting a lifting of the K action on M to an action on P (M, G), 
and 

(b) conjugacy classes of homomorphisms A: J-?G. 
Details may be found in Ref. 4. The lifted action of K is 
clearly fiber-transitive; i.e. given any two fibers of P, there is 
a kEf( such that one fiber is mapped to the other by k p . 

Let rbe a connection in P (M, G), i.e. a smooth distribu
tion u-?Ha on P such that 

Ta(P) = Hu $ Va 

Haa = dRa(Ha) VaEG. 

(2.2) 

(2.3) 

In (2.2), Vu denotes the subspace of the tangent space Tu (P) 
to Pat u consisting of vectors tangent to the fiber through u. 
Vectors in Hu (Vu) are called horizontal (vertical). In (2.3), 
dRa denotes the differential of the map Ra :p ....... p which 
sends u-ua. 

Equivalently, the connection r is specified by its con
nection form OJ, which is a f7-valued one-form on P 
satisfying5 

OJ(A *) = A, VAEf7 

DRa(OJ) = Ad(a-I)OJ (VaEG). 

(2.4) 

(2.5) 

Here, A * denotes the vector field on P induced by AEf7, Ad 
denotes the adjoint representation of Gin 17, and DRa(OJ) 
denotes the pull-back of OJ by Ra . The curvature form fl of r 
is defined to be the exterior covariant derivative of OJ, i.e. 

fleX, Y) = DOJ(X, Y) = dOJ(hX, hY), for X, YETu(P), 

where hX, h Yare the horizontal components of X, Y. 
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If r = (x,), O<t< I, is a (piecewise smooth) curve in M, 
then for each VoE1T-I(XO) there exists a unique horizontal lift 
r* = (vJ starting from Vo. The induced mapping 

Pr: 1T- I(XO)-+1T- I(X I), VO-+VI 

is called parallel displacement along r. The holonomy group 
<P (u) of rat uEPis the set of aEGsuch that u can be joined to 
ua by a horizontal curve. 

Each kEK will map the connection r into another con
nection, denoted by k (F), with horizontal subspaces H k,<u) 
= dkp(Hu ),and connection form 8k i I(W).5 If each kEK 
mapsrintoF, i.e.dkp(Hu) = Hk,~u) (VuEP), then we say ris 
a K-invariant connection. We remark that if K is compact, 
then P(M, G) admits aK-invariant connection (Ref. 12, p. 
282). 

The following important theorm, due to Wang, and 
proved in Ref. 5, gives a complete algebraic classification of 
the set of K-invariant connections on P (M, G) in the case 
mentioned above, where K acts fiber-transitively on 
P(M,G). 

Theorem 2.1: Let K be connected and act fiber-transi
tively on P (M, G), and let J be the isotropy subgroup of Kat 
Xo = 1T(Uo), with corresponding homomorphism A: J-+G giv
en by (2.1). Then there is a one-to-one correspondence be
tween the set of K-invariant connections in P and the set of 
linear maps A : ).-+,/ satisfying 

(2.6) 
A (Ad" (j)(X)) = Adv(A (j))(A (X)) (VjEJ, VXEIf), (2.7) 

where, for example, Ad" denotes the adjoint representation 
of Gin f? The correspondence is given by 

A (X) =wu.(X) (XE.-t) , 

where X is the vector field on P induced by X. 
We shall apply this theorem in Sees. 3 and 4. 
We now consider how these concepts, particularly that 

of K-invariance, carryover to associated bundles. If G acts 
on a manifold F on the left, we let E denote the quotient 
P X GF of P XFby the G-action 

(u, S)a = (ua, a-Is) (uEP, SEF, aEG). 

As in Ref. 5, we write E (M, F, G, P) for the bundle over M 
with fiber F associated to P (M, G ). The projection 1T E: E-+M 
is that induced by the map (u, S )-+1T(U) of P XF-+M. Thus 
1TE (US) = 1T(U), where us is the image of (u, S)EP XFunder 
the natural projection P XF-..E. 

An important example is the bundle E (M, G / H, G, P), 
where H is a closed subgroup of G. In this case E may be 
identified with P / H, the quotient of P by the right action of 
H. E admits a cross-section (i.e. a map ifJ: M-+E such that 
1T E oifJ = idM , the identity map of M) if and only if the struc
ture group G of P (M, G) is reducible to H, i.e. there is a 
reduced subbundle5 Q of P over M with structure group H. 

An automorphism of E (M,F,G,P) is a transformation of 
E which takes a fiber into another fiber. We now prove 

Proposition 2.1: K acts naturally as a group of automor
phisms of E, inducing the given K action on M. 

Proof If zEE, put x = 1T Az) and choose UE1T- I(X) and 
SEF such that us = z, then define 
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kE(z) = kp(u)S (VkEK). 

This is independent of the choice of u and S, for if we take 
U'E1T- I(X) with U' = ua, say, for aEG, then clearly we must 
have S I = a-Is, in order thatz = uS = U'S I. Then 
kp(u')S ') = kp(ua)a-Is = kp(u)aa-Is = kp(u)S· 

It is clear that kE: E-+E maps fibers into fibers, and that 
(kk ')r; = kEk E(Vk,k 'EK). Ifz = us' then 1TE

Ok E(z) 
= 1Tdkp(u)S) = 1Tokp(u) = kMo1T(U) = kMo1Tdz), so 

1TEOkr; = kMo1TE' i.e. kE induces the map kM on M. 0 
Let S (E ) denote the set of cross sections of E: 

S(E) = [ifJ: M-+E [1TEoifJ = idM ]. 

Proposition 2.2: K acts naturally on S(E). 
Proof We define, for kEK, ifJES (E): 

kifJ = kr;oifJok M I. 

Clearly 

1T£o(kifJ) = 1Tr;ok£oifJok;;; I = kMo1Tr;OifJok ,;;; , 

= kMok ,;;; 1= id,lI1" 

(by Prop. 2.1). Thus kifJES(E). Also for k, k 'E./(: 

(kk ')ifJ = (kk ')£oifJo(kk ')M 1 = kEk ~.oifJok:W lk;;; 1 

=k(k'ifJ). 0 

We shall denote by S K(E) the set of K-invariant sections of 
E; SK(E) = [ifJES(E)[kr;oifJ = ifJokM' VkEK]. 

Note thatS (E) is in one-to-one correspondence with the 
set JI' G(P) = [f P-+F I/(ua) = a-Y(u), VuEP, VaEG J, under 
the mapping 

S(E)-+2" G(P) 

ifJ-¢;, 

where ifJ (x) = u~ (u) [if UE1T-' (x»). TheK-action onS (E) in
duces the following K-action on JI' G(P): 

k~ = kifJ = ~ok i'. 
We denote by 2"~(P)theK-invariantelementsof 2" dP); so 

JI'~(P) = UE2" G(P)[~okp =~, VkEK}. 

A connection in E(M, F, G, P) is defined l3 to be a 
smooth distribution Q: z-+Qz on E such that Tz (E) = Wz 
E!) Qz (Wz being the subspace ofTz (E) which is tangent atz to 
the fiber through z], and for each curve r = (x,), O<t< 1, in 
M and ZoE1T i 1 (xo), there exists a unique one-dimensional 
integral manifold of Q passing through Zo which projects 
onto T. 

The connection r induces a unique connection in E, 
obtained as follows. 13 IfzEE, with x = 1T£(Z), fix UE1T-\X). 
Then there is a unique SEF such that us = z. So for S fixed we 
have a map 

1/§;: P-+E, 

v-VS, 

whose differential d1/1:; at u takes Tu(P)-+Tz(E). We then 
define Qz = d1/i;(Hu ): This is independent ofu and S, and 
one can show that this is a connection in E. 

If T = (x,), O<t< 1, is a curve in M, then the parallel 
displacement in E corresponding to T is the map 

p~: 1Tj,-: I (xo)-+1Ti '(XI) 

UOS-+uIS = [PT(UO)]S, 
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(UOE17"·I(XO»' A cross section ¢;ES (E) is said to be parallel if, 
for every curve 7 = (x,) in M, we have 

p;(¢; (xo» = ¢; (x I)' 
Proposition 2.3: If r is a K-invariant connection in 

P(M,G), then the induced connection inE(M,F, G,P)isK
invariant in the sense that 

dkE: Qz-Qk,(z)' 

Proof We observe that, for vEP, 

kEoTfs(v) = kE(vs) = kp(v)s = 17s ok p(V). 

So kE 017g = 17.okp, and 

dk,,(Qz) = dk"od17t;(Hu) = d (kEo17.)Hu 

=d(Tfgokp)H" =d17sHk,~u) = Qk,{z)' 0 

Proposition 2.4: If 7 = (x,) is a curve in M, then in E (M, 
F, G, P) we have 

(i) k"op; = (PtoT)ok E , IrIkEK; 

(ii) If ¢>ES (E ) is parallel, then so is k¢;, IrI kEK. 

Proof (i) If UoE17"-I(XO) then for sEP, 

k". °p;(uoS) = kJ; [PT(UO)S ] 

= [kpOPT(UO)]S 

= [(PkMOT)okp(uo)]S 

[using the fact that the curve k p 0 7* is the unique horizontal 
lift of k M

o7 starting at kp(uo)] 

= PLOT(kp(uo)s) = ptoT OkE(UOS). 

(ii) If ¢>ES (E ) is parallel, then 

p;((k¢> )(xo)) = p;'(kE0¢>ok.;'; I(XO)) 

= kEO(P7;'" lOTIO¢; (k M I(XO)) 

= kEod; (k;.; I(X.)) = (k¢; )(x.). o 
If P is a representation of G on a vector space Vover C, 

then we can form E (M, V, G, P), the (complex) vector bundle 
associated with P (M, G). All that we have said concerning 
general associated bundles is valid for vector bundles. In 
addition, we have the following properties arising from the 
vector space structure of V: 

(1) Each fiber 17"il (x), xEM, of E has a vector space 
structure such that the map U: s-us of V-17"i I (x) is a lin
ear isomorphism, IrIUE17"'I(X). 

(2) The set S (E) of cross-sections of E is a vector space 
over C, with 

(¢> + ¢)(x) = ¢> (x) + ¢(x) (A¢; )(x) = A (¢; (x», 

(¢>, ¢ES(E), AEC, xEM). 

It is also a module over the algebra C x (M) of smooth real
valued functions on M, with 

j(¢> )(x) = j(x)¢; (x) (fEC "'(M), ¢>ES(E), xEM). 

(3) If K acts on P (M, G), then K acts as a group of 
automorphisms of E: in particular, for each kEK, k E is linear 
on fibers of E. Note that in general kE is not a homomor
phism of C OO(M)-modules; we have 

k (f¢» = (f0k ,;.; I)(k¢;) (fEC 00 (M), kEK, ¢;ES(E». 

(4) If ¢>ES (E ) and X EX (M) (the set of smooth vector 
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fields on M), then the covariant-derivative V x¢;ES (E) of ¢; 
with respect to X is defined by 

(V A )(x) = lim (p;)b¢; (x,) - ¢; (x), 
'-0 t 

where 7 = (x,) is the unique maximal integral curve of X 
starting at Xo and (p;)~ denotes parallel displacement5

.
13 

from 17" i I (x, )_17" i I (x). 

It can be shown that, under the action of K, 

V x(k¢;) = kEoVdk " '(X)¢; 

= [k(Vdk"I(X)¢;)]okM • 

We now turn to the situation where we have spontane
ously broken symmetry and investigate what happens to a K
invariant connection. The geometry of broken symmetry has 
been clearly stated by Trautman2 (see also Ref. 6). We con
sider those cross-sections ¢;ES (E) such that ii (P) (which is 
in varian t under the action of G on V) is actually an orbi t Wof 
Gin V. Normally, W is not a subspace of V, but it is a sub
manifold, diffeomorphic to G / H, where H = H w is the iso
tropy group of WE W. 

Such a ii will then correspond to a unique cross-section 
¢; 'ES (E '), whereE '(M,G IH,G,P)isthebundleassociatedto 
P (M, G) with fiber G I H. Thus it corresponds to a unique 
reductionofP(M,G)toasubbundleQ(M,H). We can easily 
see that5 

Q = I uEP l,u(u) = uii (u) l 
= luEPlii(u)=HJ, 

where,u denotes the natural projection from PtoP IH -;:::,E '. 
From Ref. 5 we quote the following: 
Proposition 2.5: Suppose that the Lie algebra!7 ofG can 

be written as!7 = m Ell h (a vector space direct sum) where m 

is a subspace of!7 with ad,.. (H)(m ) = m. Then, given a con
nection form w in P, the h-component w' of wlQ is a connec
tion form in Q, called the projected connection form on Q (M, 
H). 

An important result is 
Proposition 2.6: Under the above conditions, the follow-

ing five statements are equivalent: 
(i) w is reducible to a connection in Q. 
(ii) w' = wl Q , i.e. the restriction of w to Q is h-valued. 
(iii) The corresponding cross-section ¢> , is parallel. 
(iv) ¢>' is covariant constant: V x¢; , = a (IrIXEX(M)). 
(v) 3uEPsuch that !/>(u)r;;,H, where !/>(u) denotes the 

holonomy group at uEP. 

Proof The equivalence of (i), (ii), (iii) and (iv) is proved in 
Ref. 5 (pp. 83,88, and 114); the equivalence of(iv) and (v) is 
shown in Ref. 14 (p. 35). 0 

Proposition 2.7: The map ¢> is invariant under K [i.e. 
iiE2'~(P)] ifand only if K acts on the reduced bundle Q (M, 
H) as a group of aut om or ph isms. 

Proof If iiE2' ~ (P), then iio k p = ii, IrI kEK, so if UEQ: 

ii (kp(u» = ii (u) = H. 

Thus kp(U)EQ. The fiber of Q passing through u consists of 
all elements of the form ua (aEH), so it is clear thatK acts on 
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Q (M, H) as a group of bundle automorphisms. 
_ For the converse, if K (Q ) C Q, then if UEQ, ¢ (u) 

= ¢(kp(u)). Then, if vEP, v = ua for some UEQ and aEG, so 

¢okp(u) = ¢ (kp(ua)) = ¢ (kp(u)a) = p(a~ I)¢okp(u) 

=p(a-I)¢(u) = ¢(v), as required. 0 
PropOSition 2.8: Under the conditions of Propositions 

2.5 and 2.7, if OJ is a K-invariant connection form in P, then 
the projected connection form OJ' is K-invariant. 

Proof Let Tf be the nl-component of wl Q , and let UEQ, 
XETu (Q). Then 

w(X) = w'(X) + Tf(X). 

But OJ(X) = OJ(dkp(X)) = OJ'(dkp(X)) + Tf(dkp(X)), V kEK, 
[since dkp(X )ETk/~ul (Q)]. Thus w'(dkp(X)) = w'(X), i.e. okp. 
OJ' = w'. 0 

In the case where K acts fiber-transitively on P, the in
duced K-action on Q will also be fiber-transitive. If we take 
UoEQ, then Theorem 2.1 will also apply to Q (M, H): there is a 
one-to-one correspondence between the set of K-invariant 
connections win Q and the set of linear maps.if: k_h 
satisfying 

A(X) = A. (X) (VX~) 

A(AdAJ)(X» = Ad/, (A. (j))(A(X)) 

(VjEJ, VXE.-t). 

(2.8) 

(2.9) 

Note that J remains the same, and A.: J-H. The correspon
dence is given by 

A (X) = wU , (XIQ) (XE.-t). 

Clearly the projected K-invariant connection form w' in 
Q corresponds to the map 

A': k--+h 
X-h-component of A (X). 

In this case, it is clear that OJ is reducible to a connection in Q 
if and only if the corresponding map A maps k to h. 

3. THE WU-YANG MODEL OF DIRAC'S MONOPOLE 

It is well known that the magnetic monopole of lowest 
strength g = !(fic/e) has a geometric interpretation as a con
nection in the (nontrivial) HopfbundleS 3(S 2, U( 1 )).2.15, H'We 
shaH discuss this model from the point of view of the theory 
of K-invariant connections. 

We recall 15, 16 the following properties of the Hopfbun
dIe S 3(S 2,U(I». It is convenient to picture S 3 as the set of 
points z = (zo' Z 1 )EC2 with Izo 12 + Iz 112 = 1; we shall also 
write Zo = x I + iX2' z I = X3 + ix4 • The gauge group U (I) 
actsonS 3 by (zo,zl)a = (zOa,zla), foraEU(I). The projection 
1T (the Hopfmap) is defined to be 1T = TfrP, where p: S 3_C 
takes (zo' z I) to zo/ z I' and Tf: C---+S 2 is the stereo graphic map, 
given by 

( 
2x 2y 1 - IwI2 ) 

Tf(w) = 1 + Iw1 2 ' 1 + Iw1 2 ' 1 + Iwl2 ' 
where w =X + iy. 

The group SU(2) acts naturally on S 3 on the left by 
kz = (azo + [3ZI' yzo + &1)' where k = (~~)ESU(2) and 
z = (zo' z I)ES 3. It is clear that this action commutes with the 
U(1) action, so SU(2) acts on S3(S2, U(1» as a group of 
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bundle automorphisms. The induced action on C is 

kw = aw +[3 , 
yw + fj 

which corresponds to the natural action of SO(3) on the 
sphere S 2 (see, for example, Ref. 17). Since this action is 
transitive, Theorem 2.1 is applicable. 

It will be convenient to take our reference point to be 
U = (0, I)ES';1T(u)isthentheNorthpolen = (0,0, I)ES 2 .The 
isotropy subgroup of SUI2) at n is 

J= {(e~1 e~io)leER}~U(l)~SO(2) 

and, by (2.1), the homomorphism A.: J---+U( 1) (in this case an 
isomorphism) is given by 

(
e

dl 0) B 
A.: 0 e /(1 ---+e I, 

which induces the Lie algebra isomorphismA.:,i---+u(1) given 
by 

(
ie 

A,' . 0 

Proposition 3.1: There is exactly one SU(2)-invariant 
connection in S3(S2, U(1». 

Proof: Since SU(2) is connected and acts fiber-transi
tively on S3(S2, U(1», by Theorem 2.1 there is a one-to-one 
correspondence between the set of SU(2)-invariant connec
tions in S 3 and the set of linear maps A: su(2)_u( 1) satisfy
ing (2.6) and (2.7)withK = SU(2), G = U(1). We choose the 
basis [i(}"k Ik = 1,2, 3j for su(2), where the (}"k are the Pauli 
matrices, and write A (i(}"k) = iAk (Ak ER). Then (2.6) be
comes simply A3 = -1, while from (2.7) we find, substitut
ing X = i(}"2' i(}"3' that 

A I = A I cos2e + A2 sin2e (VeER) 

A z = - A I sin20 + A z cos20. 

This says that the point (A I> A z)EIR2 is fixed under all rota
tions about the origin, which forces A I = A2 = O. 

Thus there is a unique linear map A: su(2)---+u( 1) satis
fying (2.6) and (2.7); this proves the proposition. The map A 
is given by 

A: (~iJ !iJ---+ - ia (aER, [3EC). 0 

This (unique) SU(2)-invariant connection r has very 
special properties. Since k can be written as k = ci (f:J m, 

where m is the subspace spanned by [i()" J' i(}" 21, 
and AdAJ)(m) = /"rl, we see that, since A 1 = A2 = 0, r is 
the so-called canonical connection in S 3(S 2, U(1» (Ref. 5, p. 
110). It is irreducible [the holonomy group of r coincides 
with the gauge group U(1)], and not flat (its curvature form 
n does not vanish everywhere). These statements follow im
mediately from Ref. 5 (Proposition 11.4 and Corollary 11.6 
of Chapter II). However, the most important property for us 
(which we shall demonstrate shortly) is that r is exactly the 
connection corresponding to a magnetic pole of lowest 
strength g = !(Iic/e). It was observed by Trautmanl5 that 
this latter connection is SU(2)-invariant,18 but we have 
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shown that the strategy of looking for all possible SU(2)
invariant connections leads to a unique answer. 

We now calculate the connection I-form w of r. By 
Theorem 2.1, at the reference point u = (0, 1) we have 

w" (X) = A (X) (XEsu(2)), 

where X is the vector field on S 3 induced by X, given by 

X"J= dJ(exp(tX)u) \ (VJECOC(S3)). 
dt t~O 

If we put X" = ia k' then a simple calculation yields 

(Xd" = ~l : (X2 )" = ~l : 
aX2 " ax\ " 

- al (X,)" = - - . 
aX4 " 

(3.1) 

We therefore have 

w" C~) = w" (a~J = 0, w" (a~J = i. 

To evaluate w at a general pointz' = (zb, z; )ES 3, we use the 
fact that SU(2) acts fiber-transitively onS 3. We have u = kz', 
where 

C' k= \ -, 
o 

z'r -=., 0 SU(2). 
z\ 

If YETz' (S 3), then we can write 

dk(Y) =X" +A~, 
for someXEsu(2) andAEu(I). We then have (Ref. 5, p. 107) 

wAY) = A (X) + A. (3.2) 

If we calculate dk (Y) for Y = a/axil z' , then we obtain 

( al) - - -dk ax \ z' = xi (X2)" + x~ (XI)" + x; (X3)" , 

dk (~ I,) = - x~ (Xz>U + xi (X.)u - x; (X3)u' 
aX2 z 

dk (~ I,) = - x; (X2)u - x; (X.)u + x~ (i';)" , 
aX3 z 

(3.3) 

wherezb =x; +ix;,z; =xi +ix~,andwehaveused(3.I). 
Thus we have A = ° in (3.2) and so, by (3.3): 

w z ' (a~) = - ix;, 

W z' (a~J = - ix~, 

(a) ., 
W z' aX

2 
=IX\, 

Therefore the connection form w of r is given by 

w = - i(x2dx I - x\dx2 + x 4dx3 - x 3dx4 ), (3.4) 

which is exactly the connection given in Refs. 15 and 16. Its 
curvature is 

(3.5) 

which corresponds to the field of a magnetic monopole of 
lowest strength g = W,cl e). 

We conclude this section with some brief remarks on 
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higher magnetic pole strengths. The Hopfbundle is modified 
as follows. We consider the lens space L (n, 1), which is the 
quotient manifold S 3/1.n of S 3 under the free discontinuous 
action of1.n on the right given byl9 

(Zo, z\)p = (zoe27riP/n, z\e27riP/n), 

pEZn' (zo, z\)ES 3
• 

Let 11 n : S 3 --S 311.n denote the projection. Since (zo, z J and 
(za, ZI)P always lie in the same fiber of S3 over S2, it is clear 
that I1n is an S 2-homomorphism from S 3(S 2, U(I» to 
S311.n (S2, U(l». (,un induces the identity maponS 2). Note 
that the induced map, also denoted by I1n' ofU(I) to U{l) is 
the covering isomorphism a~n. (We also denote the corre
sponding Lie algebra isomorphism A __ nA by I1n). This fol
lows from the fact that the standard fiber of S 3/1.n over S 2 

is2a U(I)I1.n' which is isomorphic to U(I) under the map 

U(l)/1.n --U(1) 

I1n(a)~n (aEU(I». 

Clearly SU(2) also acts by bundle automorphisms on 
S311.n (S2, U(1». The unique SU(2)-invariantconnection 
win S3 is mapped by I1n to the SU(2)-invariant connection 
w n in S 311.n ; we have 

Dl1n(Wn) =l1n'W = nw. (3.6) 

[Here, as in Ref. 5, p. 82, I1n ·W denotes the u( I )-valued I-form 
on S 3 defined by (;.in ·w)(X) = I1n (w(X)) = nw(X)]. 

It follows from (3.4) and (3.6) that Wn corresponds to a 
magnetic monopole of strength g = !n( liel e). 15,20 

We could, of course, apply Theorem 2.1 directly to find 
the SU(2)-invariant connection Wn in S 3/1.n . The argument 
is entirely analogous to the situation for S 3; choosing I1n (u) 
as our reference point, we see that J is the same, while the 
homomorphism A: J __ U(I) is replaced by A n. From condi
tions (2.6) and (2.7) we conclude that there is a unique 
SU(2)-invariant connection Wn in S 3 I'ln' given by the map 
nA: su(2)--u(1), where A is defined in Proposition 3.1. 

4. THE 't HOOFT -POL YAKOV MODEL OF A MONOPOLE 

An interesting example of the geometric theory of the 
role of K-invariant connections in spontaneous symmetry 
breaking, described in Sec. 2, is the 't Hooft-Polyakov model 
of a magnetic monopole. 2 ,8,9,21 

We recalf that in this model, the gauge group Gis 
SO(3) and the base space M can be identified with S 2 (if r is 
fixed). We begin with the trivial bundle P = S 2 X SO(3). In 
this case K is also SO(3); its natural transitive action on S 2 
lifts to the following action by bundle automorphisms on P: 

kp(r, a) = (kr, ka) 

VrES 2, Vk, aESO(3). 

We choose (0, I) as our reference point in P, where 0 = (0,0, 
I) and I is the identity element ofSO(3). The isotropy group 
J therefore consists of all rotations which leave 0 invariant, 
i.e. SO(2) g;: U (I). Clearly A: J-+G is just the identity map i--i 
ofSO(2). 

Takingp to be the natural (or adjoint) representation of 
SO(3) acting in the space V = R 3

, we form the vector bundle 
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E associated with P with fiber V. The Higgs field2 ¢JES (E) is 
given [in terms ofthe corresponding elementl,b of .!£ dP)] by 
,f) (r, a) = a-Ir. Clearly,f) (P) = S2 = G IH = SO(3)/SO(2), 
where H = SO(2) is again the isotropy group of n. Thus ,f) 
corresponds to a unique reduction of S2 X SO(3)(S 2, SO(3» 
to a subbundle Q (S2, SO(2»; we have Q = (r, a)EP la-Ir 
=nl· 

We now find the SO(3)-invariant connections in P. By 
Theorem 2.1 these are in one-to-one correspondence with 
the set of liner maps A: so(3)-so(3) satisfying (2.6) and 
(2.7). We can take (Xi l as a basis for so(3), where 

x,~G ~1 D· x,~G ~ ~} 
x,~( ~1 ~ ~) 

Clearly,/ = If = so(2) is spanned by X 3• We write A (X;) 
= Ak.xk for i = 1,2,3 (summation over k implied). Then 

I , I 

A: x=(_Oa 3 

a 2 

(A II, A 12ER) 

o 

i.e. a two-parameter family ofSO(3)-invariant connections in 
P. 

Next we observe that Y' = so(3) = /n Ell If, where rn is 
the subspace spanned by l X I' X 2l, and that ad (H )(nz) 

y 

= /n; thus by Proposition 2.5, if OJ is a connection form in P, 
then the If-c,?mponent OJ' of OJI Q is a connection form in Q. 
Also, since ¢J is SO(3)-invariant, we see from Proposition 2.7 
that SO(3) also acts on Q(S2, SO(2)) by bundle automor
phisms. Furthermore, by Proposition 2.8, 0/ is 50(3)
invariant. 

Since the reference point (n, I) lies in Q, if OJ is an 50(3)
invariant connection in P, corresponding to A given by (4.3), 
then there is a unique projected connection OJ' in Q, corre
sponding to the map 

A': so(3)--+If, 

x-{ -:a, ~' ~} 
Note that OJ is reducible to the connection OJ' in Q if and 

only if A is already If-valued; i.e. A II = An = O. 
Clearly the bundle Q (S2, SO(2)) Can be identified with 

the bundle S 3/1.2 (S 2, 50(2)), since Q can be identified with 
SO(3) under the map (r, a)-a, and SO(3)=SU(2)/Z2 
=S 311.2 , Thus we can identify the projected connection OJ' in 
Q with the connection OJ 2 in S 311.2 described in Sec. 3: OJ' 

corresponds to a magnetic monopole of strength 
g = (kle).2.15 
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(2.6) becomes Au = Dk3 ; and (2.7) becomes 

A (XdcosO + A (X2)sinO = r I A (Xdi 

- A (XI )sinO + A (X2)cosO = riA (X2li, 
'Ii}ESO(2), (4.1) 

where 

j~( ~~~8 
sinO 

cosO 

o 
Since we have 

}-IXI}=XlcosO +X2sinO, 

r IX2 } = - XlsinO + X 2cosO, 

r 'Xl} = Xl' (4.2) 

we find that (4.1) gives the following conditions on the A ki: 

A11=A n , A 21 = -AI2' A 31 =A 32 =O. 
Thus we obtain a two-parameter family of linear maps 

A: so(3)-so(3) which satisfy (2.6) and (2.7): 

o (4.3) 
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It is shown that the covariant harmonic oscillator formalism in the light-cone coordinate system 
discussed in previous papers is a realization of the symplectic group. It is shown in particular that 
the Lorentz transformation of the wave function along a given direction corresponds to a one
parameter subgroup ofSp(4). The diagonal form in the light-cone coordinate system is discussed 
in detail. The oscillator formalism is known to represent the Poincare group for relativistic 
extended hadrons, while serving as a simple calculational device for basic high-energy hadronic 
phenomena. Likewise, the symplectic formulation given in the present paper may serve as the 
basic spacetime/momentum-energy symmetry for a relativistic quantum mechanics of bound
state quarks. 

PACS numbers: 1l.30.Cp, 03.30. + p, 03.65.Fd 

I. INTRODUCTION 

From a mathematical standpoint, special relativity is 
the physics of Lorentz transformation, and quantum me
chanics is the physics of Fourier transformation. I It is easy to 
see, if not well known, that the Lorentz boost is a symplectic 
transformation in the plane of longitudinal and timelike co
ordinates. In Fourier transformation, the width of the mo
mentum distribution is inversely proportional to that of the 
spatial distribution. This is also a transformation property of 
the symplectic group. Thus, it is not unreasonable to suspect 
that the natural language of relativistic quantum mechanics 
is the symplectic group. 

There have been many attempts to construct a quantum 
mechanics based on wavefunctions which can accommodate 
special relativity. The present paper is based on our own 
physical prejudice that Dirac's form of relativistic dynamics 
has been most fruitful and is most promising. 2 Dirac's pre
scription is to construct spacetime representations of the 
Poincare group subject to a covariant constraint condition 
which reduces the four-dimensional Minkowskian space
time into a three-dimensional Euclidean space in which non
relativistic quantum mechanics is valid. 

In our previous papers, 3 we have shown that the COvar
iant harmonic oscillator formalism can serve as a solution of 
Dirac's "Poisson bracket" equations for relativistic quan
tum mechanics. It has been shown also that the oscillator 
model can explain some of the basic features observed in 
high-energy hadronic physics, including the mass spec
trum,4 the proton form factor,S the parton phenomenon,6 
and the jet phenomenon. 7 

In addition, the harmonic oscillator has the basic ad
vantage of being mathematically simple and precise in all 
branches of physics. For this reason, the oscillators played a 
decisive role in the 1920's when the present form of nonrela
tivistic quantum mechanics was developed. We therefore 
have reason to believe that the oscillator formalism will 
again play an important role in the development ofrelativis
tic quantum mechanics, in conjunction with our efforts to 

explain basic high-energy hadronic phenomena in the rela
tivistic quark model. 

In spite of what we said above, the purpose of the pre
sent paper is mathematical. Weare interested in translating 
the basic features of the existing relativistic oscillator for
malism into the language of the symplectic group. There is 
no shortage of papers in the literature on the symplectic 
group applied to nonrelativistic harmonic oscillators,8 and it 
is not our intention to add anything new to the existing treat
ment of the nonrelativistic system. The point of this paper is 
to see whether special relativity can be integrated into the 
symplectic formulation of nonrelativistic harmonic 
oscillators. 

In Sec. II, we present the covariant harmonic oscillator 
formalism in a form suitable for the mathematical develop
ment of the present paper. In Sec. III, the symplectic nature 
of the Lorentz boost is discussed. Section IV deals with the 
symplectic nature of quantum mechanics. In Sec. V, we 
show that the covariant harmonic oscillator formalism is 
essentially a realization of the Sp(4) group, and that the Lo
rentz transformation of the oscillator wave function corre
sponds to a one-parameter subgroup ofSp(4). 

II. FORMULATION OF THE PROBLEM 

Our starting point is Dirac's 1949 paper on forms of 
relativistic dynamics for atoms.2 The word "atom" in mod
ern language means a bound state of quarks inside a hadron. 
For simplicity, let us consider here a hadron consisting of 
two quarks. If x I and X 2 are the spacetime coordinates for the 
two quarks, the usual procedure is to use the variables 

X = (Xl + x 2)12, 

(1 ) 

X = (x I - x 2)12v2, 

where X is the spacetime coordinate for the hadron and x 
represents the spacetime separation between the quarks. 

If we assume that the quarks are bound together by a 
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harmonic oscillator force of unit strength, it is possible to 
construct representations of the Poincare group for relativis
tic extended hadrons exhibiting the basic high-energy fea
tures.9 The wavefunctions diagonal in the Casimir operators 
take the form 

<P (X,x) = tf;(x,P) exp[ - iP·X), (2) 

where P is the 4-momentum of the hadron and t/!(x,P) is the 
internal wave function describing the motion of the quarks 
inside the hadron which satisfies the differential equation 

WJ1J
2 

- x/]tf;(x,P) = (n + 1)Ift(x,P), 

with the subsidiary condition 

PI'a
l
, ttf;(x,P) = 0, 

where 

a t = X + J/JxIJ-. 
It JL 

(4) 

It was noted in Ref. 10 that the most convenient coordi
nate system for constructing the desired representation of 
the Poincare group is the Lorentz frame which moves with 
the hadron. Without loss of generality, we can assume that 
the hadron moves along the z direction with velocity param
eter /3. Then the moving coordinate variables are 

x' =x, y' =y, 

Z'=(Z-/3t)/(I-/32)1/2, (5) 

t' = (t - /3t )/(1 - /3 2)112. 
The convenient feature of the harmonic oscillator is 

that the transverse variables can be separated and can be left 
out throughout the discussion of the Lorentz boost. Thus the 
only relevant factor in the wave function is 

t/!r/ = (1T2nn!)-1/2Hn(z') exp[ - (Z'2 + t '2)/2). (6) 

The above form does not contain excitations along the t' 
direction due to the subsidiary condition given in Eq. (4). 

We have also discussed in Ref. 10 the possibility of writ
ing the above form using the light-cone coordinate system. 2 

The light-cone variables are 

u = (t + z)/v'2, 

(7) 

v = (t - z)/v'2. 

In terms ofthese variables, the wavefunction ofEq. (6) can be 
written as 

t/!//(u,v) = (~nl/1Tn!)I/z exp[ - (u'z + v'Z)/2) 

xLto(;:')Hn-m(U')Hm(-V')), (8) 

where u' and v' are derived from t' andz' according to Eq. (7). 
In both Eqs. (6) and (8), the Gaussian forms are diagonal. The 
expression in the light-cone coordinate system is more com
plicated than the forms given in Eq. (6), especially for excited 
states. In this paper, we would like to point out that this 
light-cone wave function serves as the starting point for a 
more satisfying mathematics based on the symplectic group. 

The starting equation for the oscillator formalism is the 
hyperbolic differential equation given in Eq. (3). However, 
due to the constraint ofEq. (4), the physical solutions can be 
constructed from various elliptic differential equations with 
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compact support. In particular, the wave function of Eq. (8) 
satisfies the differential equation 

H - (J/Ju')2 - (J/Jv'f + U,2 + V'2)tf;{3 n(u,v) 

= (n + 1)I[I{3n(u,v), (9) 

with 

J/Ju' = (l/v'2)(J/Jt' + J/Jz'), 

(10) 

J/Jv' = (l/v'2)(J/Jt' - J/Jz'). 

The above differential equation is a harmonic oscillator 
equation in a two-dimensional Euclidean space, and is sep
arable in the u' and v' variables. The wave funtion given in 
Eq. (8) is a linear combination of the u' and v' solutions whose 
total eigenvalue is (n + I). We shall use the above equation to 
translate the existing oscillator formalism into the language 
of the symplectic group. 

III. SYMPLECTIC NATURE OF THE LORENTZ BOOST 

We need three rotation and three boost operators in 
order to close the Lorentz group. However, the actual trans
formation is either a rotation around or a boost along a given 
direction. Two rotations can generate the third one. There
fore, the Lorentz transformation matrix can be constructed 
from two rotation operators and one boost operator. As in 
the case of Sec. II, we shall consider here the boost along the 
z axis, and show that this is a symplectic transformation. 

The boost matrix which transforms u and v into u' and 
v' takes the form 

(
e+ 11 0) 

B (11) = 0 e - 'I . 

It is to be applied to the column vector (~), where 

sinh11 =/3/(I-/3 Z)lIz. 

With this diagonal form, it is easy to see 

gijB'kBjm = gkm' 

where 

The above [gij] matrix is the metric tensor for the Sp(2) 
group, and commutes with the rotation matrix 

(
cose -- Sine) 

R (e ) = sine cose . 

Therefore, all matrices of the form 

B '(11) = R (e)B (11)R -I(e) 

(11 ) 

( 12) 

(13) 

(14) 

(15) 

( 16) 

will satisfy the symplectic condition given in Eq. (13). Since 
we obtain the light-cone coordinate system by rotating the zt 
Cartesian coordinate by 45°, the familiar Lorentz boost of 
the form given in Eq. (5) is also a symplectic transformation. 

Let us next consider the quantities which remain invar
iant under this symplectic transformation. For this purpose, 
let us define the vectors 

u = (~) and v = (~). ( 17) 
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Then we can consider the "cross product" of these two 
vectors: 

A = uXv. ( 18) 

The above cross product remains invariant under the boost 
transformation given in Eq. (11). This in variance is illustrat
ed in Fig. 1. The area of the rectangle A has its direction or 
sign depending on which side is measured first. The magni
tude of the area is therefore a boost-invariant quantity: 

A = IAI + 4uv = 2(t + z)(t - z) 

(19) 

In the above discussion, we have been dealing with the 
invariant quantity formed from one spacetime coordinate 
(t,z). In order to explore fully the symplectic properties of the 
Lorentz boost, we should consider also the invariants 
formed from two different 4-vectors: (ta ,za) and (tb ,Zb), and 
corresponding U and v variables. Then the boost matrix of 
Eq. (11) assures us that both ua Vb and Va Ub remain invariant. 
This means that 

and (20) 

Kab = (UaVb - vaub) 

are also boost invariant. Jab is symmetric under the inter
change of a and b, and Kab is antisymmetric. In terms of the t 
and Z variables, 

(21) 

Kab = tazb - zatb' 

The fact that Jab is boost invariant is well known. However, 
the in variance of Kab is not yet widely known. It is one of the 
symplectic properties of the Lorentz boost. We can check 
the boost in variance of Kab using the basic Lorentz transfor
mation formulas given in Eq. (5). 

IV. SYMPLECTIC NATURE OF QUANTUM MECHANICS 

Symplectic properties of quantum mechanics, especial
ly those of harmonic oscillators, have been completely and 

Area A 

FIG. I. The geometry of Lorentz boost. As is well known, the hyperbola 
tells us that (t' - z') is boost-invariant. This condition tells us also that the 
area of the rectangle inscribed by this hyperbola remains invariant under 
the boost. 
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thoroughly discussed in the literature, and we are not trying 
to add anything new to the existing treatment. H The purpose 
of this section is to discuss some of the known symplectic 
properties ofnonrelativistic oscillators which are relevant to 
the problem of making the oscillator system covariant. 

The symplectic nature of quantum mechanics mani
fests itself in the conservation of the area of the phase space 
under the scale transformations of the coordinate and its 
conjugate momentum variable. If the coordinate variable is 
elongated, then its conjugate momentum variable is con
tracted by the same amount. As is well known, this feature is 
built into the Fourier transformation. 

We shall discuss here the symplectic property of relativ
istic oscillators using the differential equation given in Eq. 
(9). This equation can be written in a two-dimensional qua
dratic form 

Hqu ,2 + q/2 + U'2 + v'2]tPr/(U'V) 

= (n + 1 )tP/3 "(u,v), 

with 

qu' = iJIJv' = (%' + qz')lv2, 

where 

qo'=iJIJt', q;= -iJIJz'. 

(22) 

(23) 

The variables qo and qz represent the energy and the z-com
ponent momentum differences, respectively. If we define the 
momentum-energy wavefunction as 

¢>/3"(qu,qu) = (1!21T)JdUdU tP/3"(u,v) exp[ - i(qu u + qvu)], 

(24) 

then its mathematical form is identical to that of the space
time wave function given in Eq. (8). 

The phase space ofthe above oscillator system remains 
invariant under the following symplectic transformations: 

(25) 

(
V' ) (e ~ '1 0)( U ) 

qu' - 0 e+'1 qu' 

The parameter 'YJ in the above expression can be any real 
number, and can therefore be the boost parameter defined in 
Eq. (12). The metric in both cases takes the form given in 
Eq. (14). 

As we rotate U and u using the matrix given in Eq. (16), 
qu and qu become rotated in the same manner. This rotation 
leaves the quantity 

(qu u + quu) = (qrl- qzz) (26) 

invariant. 

V. SYMPLECTIC NATURE OF RELATIVISTIC QUANTUM 
MECHANICS 

In Secs. III and IV, we discussed the symplectic natures 
of Lorentz boosts and quantum mechanics respectively. In 
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order to give a symplectic formulation of the combined effect 
of quantum mechanics and relativity, we consider the four
dimensional space (u,v,q u ,qv)' Then the Lorentz boost ma
trix becomes 

e" 
0 0 0) B("I~ ~ 

e- YI 0 0 

0 e- YI o . (27) 

0 0 e+ YI 

This transformation leaves invariant the symplectic 
metric for Lorentz boost: 

o 
o 
o 

o 
o 
o 
-1 

(28) 

The transformation matrix of Eq. (27) also leaves invariant 
the symplectic metric for Fourier transformation: 

o 
o 
o 
-1 

o 
o 
o 

(29) 

We can illustrate these transformation properties using 
spacetime and momentum-energy diagrams. When the ha
dron is at rest, the wave function ofEq. (6) or (8) is localized 
within a circle around the origin in the zt or uv plane. This 
localization region becomes Lorentz-deformed according to 
the geometry given in Fig. 1. The momentum-energy wave
function has the same deformation property as that of the 
spacetime wavefunction. Figure 2 describes these deforma
tion properties. 

The physics of Fig. 2 has been extensively discussed in 
the literature. II It has been shown° in particular that the 
Lorentz deformation property described in this figure leads 
to an explanation of the peculiarities in Feynman's parton 
picture, 12 and to an accurate calculation of the proton struc
ture function. This deformation property explains also the 
proton form factor behavior5 and the origin of the hadronic 
jet phenomenon. 7 As is well known, the hadronic mass spec
tra can be understood in terms of the SU(6)00(3) scheme.4 

There seems to be a misunderstanding that the O( 3) in this 
scheme is inherently nonrelativistic. This 0(3) group is the 
little group of the Poincare group for massive hadrons,9 and 
is therefore relativistic. 

As for the mathematics, it is important to note that the 
area of the ellipse remains invariant under Lorentz boosts. 
This has been translated into the matrix language ofEq. (27). 
It is also interesting to note that the major axis of the space
time ellipse is conjugate to the minor axis of the momentum
energy ellipse, according to Eq. (23), and vice versa. For this 
reason, the volume of the phase space remains Lorentz-in
variant. This symplectic feature is represented by Eq. (25). 

When we make a Lorentz boost along the z direction, 
the transformation matrix should satisfy the metric condi
tions for both [gij] and [hij]' This corresponds to a one-pa
rameter subgroup of the Sp(4) group. 
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FIG. 2. The symplectic transformation in which the hadron is Lorentz
deformed according to the spacetime geometry given in Fig. I. As the ha
dron moves very rapidly, both the spatial and momentum distributions 
become spread wide along their respective longitudinal axes. It is shown in 
Refs. 6 and II that this mechanism produces the pecularities ofFeynman's 
parton picture" which is universally observed in high-energy laboratories. 

VI. CONCLUDING REMARKS 

We have discussed in this paper the possibility of using 
the language of the symplectic group for describing covar
iantly localized quantum mechanical wave functions. It is 
shown that the Lorentz boost of quantum mechanics can be 
described simply by one matrix given in Eq. (27), which is a 
representation of a one-parameter subgroup of Sp(4). 

It is not uncommon for new physical theories to be pre
ceded by a specific solution such as that of the harmonic 
oscillator. If the development of quantum mechanics in the 
1920's is a lesson to us, the generalization of the specific 
solution takes the form of translating it into a matrix or 
group theoretical language. We have translated here the co
variant oscillator formalism, which is compatible both with 
special relativity and with quantum mechanics, into a lan
guage of the symplectic group. 

Since physics is an experimental science, the value of 
the mathematics presented in this Journal is not necessarily 
dictated by its length or complexity. It is determined by its 
ability to explain what we see in the real world. The matrix 
given in Eq. (27) is simple enough for us to suspect that the 
basic spacetime/momentum-energy symmetry governing 
the hadronic phenomena discussed in Refs. 4-7 is that of the 
symplectic group. 

Our discussion in this paper was limited to Lorentz 
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transformations along one given axis. A more general dis
cussion of the spacetime symmetry should include the ten 
independent transformations associated with the generators 
of the Poincare group, and this discussion is given in Ref. 9. 
The present paper deals with the specific additional proper
ties associated with the Lorentz boost along a given 
direction. 13 
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sectors are realized in terms of bosons, para-bosons and certain bilinear combinations of bosons 
and fermions. 
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1. INTRODUCTION 

This paper studies first certain types of boson and para
boson representations of some graded Lie algebras (GLA's) 
with the Lie algebras (LA's), so(3) and so(2, I) as their Bose 
sectors in a unified manner and then considers similarly the 
same types of representations ofGLA's with so(4), so(3,1), 
and so(2,2) as their Bose sectors. Further it is shown that a 
method of description of general linear G LA's in terms of a 
mixture of bosonic and fermionic operators due to Freund 
and Kaplanskyl can be utilized for a similar representation 
of any GLA. This fact is used for constructing a boson-fer
mion representation of the GLA, Gsu(2) with su(2) - so(3) 
as Bose sector, studied in detail by Pais and Rittenberg. 2 

Based on this result such representations in terms of bilinear 
combinations of bosons and fermions are constructed also 
for other GLA's, studied in the paper, with so(2,1),so(4), 
so(3, I) and so(2,2) as their Bose sectors. All the G LA's in 
this paper are to be considered over real numbers and they 
belong to the class of orthosymplectic GLA's after 
complexification. I 

The para-Bose creation and annihilation operators 
[ fJ) PJ", fJ) p) I j = 1,2, ... , n] belonging to statistics of order p 
obey the relations given by Green3 as 

[fJ (P) !fJ(P)' fJ(P)] 1 = 20 fJ(p) 
J' k' I Jk! , 

[fJ j Pl, !fJ ~P>, fJ) P)] 1 = 0, 

fJjP) fJ~P)'IO) = POjk 10),j,k,! = 1,2, ... ,n. (1) 

Jordan et al. 4 have given explicitly the matrix representation 
of single para-Bose operator fJ obeying 

(2) 

using the representation of the generators of the LA so(2, I) 
in terms of fJ and fJ +. Using such a para-boson realization of 
so(2, 1) it has been shown by us5 earlier that (fJ, fJ +) and the 
generators ofso(2, 1) expressed in terms of( fJ, fJ +) generate a 
GLA very similar to the GLA, Gsu(2) of Pais and Ritten
berg.2 This paper extends such a study of para-Bose descrip
tion also to certain other GLA's with the LA's so(3), so(4), 
so(3, I), and so(2,2) as their Bose sectors. 

alPresent address: Institute of Mathematical Sciences, "Matscience," Ma
dras-600 020, India. 
hlPermanent address. 

We have shown earlier5 that using the creation and 
annihilation operators [b /' bj I j = 1,2, ... ,np + [pI2l] be
longing to a single Bose field and satisfying the relations 

[bj , b kt 1 = Ojk' [ bj , b k ] = [b / ' b " 1 = 0, 

j,k = 1,2, ... ,np + [pI2], (3) 
one can construct a set of operators 

fJj p) 

= [~>r -I [)J>xp{( ;y12[(1 + i)b ,I - (1 - i) b, 1}] 
X [{ exp[l"( ; y12 (b rt + bJ ] b[P121 + (2r 2)" + j } 

+ {exp[(;Y/\b/ -br)]bIPI2II(2r I)",}}]} 
+ ~ilpl21 [1 - (exp(ip Jr)], 

X [)111 exp{(;)II2[(1 +i)b/ -(1-i)bJ }] 

Xb(2" + l)[pl2[ + J,j= 1,2, .. ,n, (4) 

where [p/2] stands for the integer part ofpl2. In view of this 
representation of a para-Bose field in terms of a single Bose 
field and also due to the fact that para-bosons of order p = 1 
are just bosons, the para-boson representations of the GLA's 
considered below provide also a class of boson 
representations. 

In Sec. 2 the general structure of a G LA is recalled. The 
para-boson representations of the above mentioned G LA's 
are attained in Secs. 3 and 4. In Sec. 5 the method of descrip
tion of general linear G LA's in terms of bilinear expressions 
of bosonic and fermionic operators due to Freund and Ka
plansky' is utilized for constructing the boson-fermion re
presentation of the G LA's considered in earlier sections. The 
paper concludes in Sec. 6 with some remarks including an 
observation on the C-theorem of Pais and Rittenberg.~ 

2. STRUCTURE OF A GLA 
In the specification of structure of G LA's let us follow 

Pais and Rittenberg2 and Scheunert et al." Then for any 
GLA the basic commutation and anticommutation relations 
among the even generators! Qm 1m = 1,2, ... , D I and the odd 
generators! V" la = 1,2, ... ,d I are given by 

(5a) 

(5b) 
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IVa' V/31 = A;'/3Qm' (Sc) 

m,n,p = 1,2, ... ,D, a, [3 = 1,2,oo.,d. 

Throughout the paper the normal convention of summation 
over repeated indices is assumed and it will be clear from the 
context as in Eqs. (Sa)-(Sc) above. The even generators I Qm I 
spanning a LA constitute the so-called Bose sector of the 
GLA. GLA's over complex numbers having the LA's 
sp(2p) Ell o(m) and sl(m) Ell sl(n) Ell gl( 1) as their Bose sectors are 
called orthosymplectic GLA and special linear GLA and 
denoted as osp(2p,m) and spl(m,n) respectively. As Freund 
and Kaplansky ' have stated, the GLA's thus far encoun
tered in physics are, after complexification, of either ortho
symplectic type or special linear type or else they are Inonu
Wigner contractions of these GLA's. All the GLA's consid
ered in this paper are of orthosymplectic type after complexi
fication. The special linear and the orthosymplectic GLA's 
have been shown to be simple in the sense that they have no 
invariant subalgebras. More details on the mathematics of 
GLA's and the associated supersymmetries of physics can be 
found in Refs. 1,2 and 6-13. 

3. GLA'S WITH 50(3) AND 50(2,1) AS BOSE SECTORS 

Here we shall realize in terms of para-bosons certain 
GLA's with the LA's so(3) and so(2, 1) as their Bose sectors. 
Since complexification of so(3) and so(2, 1) lead to the same 
LA over complex numbers l4

•
IS isomorphic to sp(2), these 

GLA's with so(3) and so(2, 1) as Bose sectors are of the type 
osp(2, 1) in their complex forms. 

Ifwe define 

J I =!( [3[3 - [3 +[3 +), 

J~ = V( [3[3 + [3 +[3 +), (6) 

where[3 and[3 + are boson operators or para-Bose operators of 
any order, obeying Eq. (2), then we have 

(7) 

Now it is straigtforward to see that the elements defined by 

(S) 

generate a GLA as per Eqs. (Sa)-(Sc). The structure con
stants of this GLA are given by 

2295 

f,~n = i€mnp (tmtnltp ); 

[F7/3J =(t,/4s,s2)[(s~ +S~)TI -i(si -S~)T2J, 

[F;'rd = (it l I4s ,s2 )! (s~ - si) To - i(s~ + si) T1 J, 

[Pl'f3] = (t3/2) T,; 

[A :,/3 J = (- i8s,s2It~) T~ F
" 

[A ;'fJ] = (- i8s,s2It~) T 2F2, 

[A ~/3 J = (- i8sIS2/t~) 72 F 3 , 

m,n, p = 1,2,3, a, [3 = 1,2, 
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(9) 

(10) 

(11 ) 

where 

(0 1) (0 - i) 
7'] = 1 0' 7'2 = i 0 ' (12) 

Here and everywhere below, the rows and columns of the 
matrices are labelled by the upper or the first index and the 
lower or the second index respectively, e.g., a and [3 respec
tively in Eqs. (10) and (11). 

Following Pais and Rittenberg2 let the metric tensors 
I hmn Im,n = 1,2, ... ,D I of the underlying LA and 
(gkllk,/ = 1,2, ... ,D + d I of the entire GLA be defined by 

h mn = h nm = f/:,qfnqp, 

gmn =gnm =hnm -F':n/3F!, 

g D + a. D + /3 = - g D + /3. D + a 

= F ~a A 'll l.. - F ~ /3 A ':: l.. , ( 13) 

gD+d.m = gm.D+d =0, 

m,n, p,q = 1,2, ... , D, a, [3, A = 1,2, ... ,d. 

Then in the present case we have that 

C 
0 

~} [h mn ]=2 ~ ti 

0 t~ 

m,n, = 1,2,3, (14) 

and 

t 2 
] 0 0 0 0 

0 ti 0 0 0 
3 

[gkl] = - 0 0 t~ 0 0 
2 

0 0 0 0 8S lS2 

0 0 0 - SS]S2 0 
k,/ = 1,2,3,4,S. (IS) 

When (t ],t2,t3,t4 ,ts l are all nonzero, as they should be to get 
the above GLA structure we always have 

detllh II #0, detll gil #0. (16) 

It should be noted from Eqs. (10) and (11) that if we have the 
condition 

(17) 

irrespective of the choice of S I and S2 then the matrices I F I 
and I A I of Eqs. (10) and (11) respectively are related by 

A '::/3 = Cal..F~/3' Cal.. = - Cl..a' 
m = 1,2,oo.,D, a, [3, A = 1,2,oo.,d, 

with D = 3 and d = 2, and 

[Cal..] = ( - iSS I S2 It 2) 7 2, 

a,A = 1,2. 

Ifwe choose 

( IS) 

(19) 

tl = (Gn G33 )1/2, t2 = (G33G 1.)1/2, tj = (GIIGnlI/2 

SI = S2 = i12[z, (20) 

then using Eqs. (9)-( 11), it is found easily that the elements 
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defined by Eqs. (8) and (20) generate a GLA with structure 
constants given by 

(21a) 

(2ib) 

(2ic) 

where m,n,p, = 1,2,3 cyclically. 
When Gil = G22 = G33 = 1, the above GLA has the 

LA so(3) as its Bose sector and is the same as 
Gsu(2) - Gso(3) discussed in detail by Pais and Rittenberg. 2 

When we take Gil = G22 = - G33 = 1 the above GLA has 
so(2, 1) as its Bose sector. It is evident from Eq. (20) that the 
condition in Eq. (17) can be satisfied in the case of so(3) and 
not in the case of so(2, 1). Hence, as can be seen directly from 
Eq. (21c), while the relation in Eq. (18) exists for the GLA 
with the compact LA so(3) as Bose sector as is known al
ready/ such a relation does not exist in the case of the GLA 
with the noncompact LA so(2, 1) as Bose sector. The graded 
so(2, 1) considered by us earlier5 corresponds to the choice 
[t l = t2 = - i, t3 = 1, SI = S2 = 11 in the above scheme. 

Thus if (J is a para-Bose operator of any order, the 
elements 

QI =f,,(G22G]3)1/2({J{J_{J+{J+), 

Q2 = Ai( G33G II) 1/2( {J{3 + {J +{3 +), 

Q3 = !(G II G22)1/2({J{J+ + W{3), 

VI = i{3+liv'2, V2 = i{3/2V2, (22) 

represent the generators of certain GLA's with so(3) and 
so(2,1) as Bose sectors respectively when 

Gil = G22 = G33 = 1 and Gil = G22 = - G33 = 1. 

4. GlA'S WITH so(4), so(3,1) AND so(2,2) AS BOSE 
SECTORS 

The GLA's with so(4), so(3,1), and so(2,2) as Bose sec
tors belong to the class of GLA's characterized as osp(2,3) 
after complexification since the complex extensions of all the 
underlying LA's in these cases lead to the same LA over 
complex numbers 14, 15 isomorphic to sp(2) Ell 0(3). 

Now we shall construct the para-Bose representations 
of certain GLA's with so(4), so(3, I), and so(2,2) as their Bose 
sectors in a unified manner following the unified description 
of GLA's associated with so(3) and so(2, I) given above. To 
this end let us start with two commuting para-Bose opera
tors {J and {J' of the same order or different orders, each 
obeying Eq. (2). For example, using Eq. (4) and six pairs of 
boson operators (bi' b / Ii = 1,2, .. ,61 we can construct two 
such commuting para-Bose operators, each of order 2, as 

2296 

{3121= (exp[i(ff/2)1/2(bt +btl]b2 1 

+ (exp ((-1T/2) I 12(b t - bl)]b,l, 

{3 'IZI = \ exp[i(1T/2)tlZ(b 4+ + b4 ) ]bsl 
+ (exp((1T12)1/2(b 4+ - b4 ) ]bo! . 
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(23) 

Let us define 

and 

such 

J 1 = AI {3{3 - {3 +{3 +), 

J2 = lit {J{3 + {3 +(J +), 

J3 = A( {3{J + + {J + {3 ), 

J; =!(P'{J' - f3 '+(J '+), 

J ~ = F(fJ'{3' + (J '+f3 '+), 

J ~ = !(fJ'{J '+ + (J '+f3 '), 

[Jl , Jk ] = iE)kl J I , 

(Ji, J~] = iEjkl J;, 
[J;,Jk 1 = 0, j,k,l = 1,2,3. 

(24) 

(25) 

(26) 

Then in analogy with the usual procedure IS of constructing 
the generators of so(4) from the generators of so(3) let us 
write 

M j =Xkl = -Xlk = (Gkk GII )1/2(J) + J;), 

~ = XO) = - XjO = (Goo IGjj )1/2(Gkk GII ) 

X(~ -J;), (27) 

wherej,k,l = 1,2,3 cyclically. Now it is easily seen that the 
elements defined by Eq. (27) obey the commutation relations 

[XI"" X pa] = i(GI1P Xvu + Gva !:t'I1P 

- Gw,X"p - Gvp XI,a)' (28) 
with 

GI", = GI'I' t) /1 v 

for j.l, v, p,(J = 0,1,2,3 or 

(MJ' M k ] = iE,k/GIIM/, 

(Mi , Nk ] = itjk/GuN{, 
[Nj , N,,] = it;kIGoOM{, 

j,k,! = 1,2,3. 

(29) 

(30) 

It follows easily from Eqs. (24)-(30) that the elements 

Q = {M",; m = 1,2,3 

m Min.,; m === 4,5,6, 

(31) 

VI = (i/2J2)f3 +, V2 = (iI2.j2)(J, 

generate a GLA with the structure constants given as 
follows: 

[Fjap ] = !(Gkk GI/)1t2 7), 

[Fj+ 3,(3] = ~(Gool Gjj )1/2(Gkk GI/) 7i , 

(A l"p] = (i/2 GkkGI/) 72 Fj, 

[Al,,-t;;3] = (iGjj I2Goo ) 72Fj+3' 

j,k,! = 1,2,3 (cyclically), a, {J = 1,2. 
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The elements of the metric tensors hand g in this case 
become 

_ {4Gnn Gpp ; m.n.p = 1.2.3 (cyclically). 

hmm - 4GooGm_3.m-3; m =4.5.6. 

hmn = 0; m=/=n. m.n = 1.2 ..... 6. (35) 

and 

gkk 

{
~GilGmm; k,l.m = 1.2.3 (cyclically). 

= GOOGk _ 3.k- 3{4 - ~(GI_ 3.1- 3G", _ 3.m- 3/Gk_3.k_ 3 )1/2}; 

k,l.m = 4.5.6. (cyclically) 

g7H = - gX7 = -!!3 + Gil G ~2 + G ~2 G ~3 + G ~3 Gil ]. 

g77=gXX=gk7 =gk8 =g7k =gSk =0. gkl =0. 

k =/=1. k,l = 1.2 ..... 6. (36) 

It is evident from Eqs. (28)-(30) that when we take 

Goo = Gll = G22 = G33 = 1. 

- Goo = Gil = G22 = G33 = 1. 

(37a) 

(37b) 

- Goo = Gll = G22 = - G33 = 1. (37c) 

the elements I M
J

• N j I} = 1.2.3] defined through Eqs. (24)
(27) generate respectively the LA'sso(4). so(3.1) and so(2,2).It> 
Thus if (3 and (3' are two commuting para-Bose operators of 
the same order or different orders the elements 

QI = !(Gn Gd l/2( /3(3 - /3 +(3+ + (3 '(3' - (J'+(3 '+), 

Q2 = £i(G33GII )1/2((3(3 +(3 +(3 + +(3'(3' -(3'+(3'+). 

Q3 = MG II G2i/ 2
( /3/3 + + /3 +(3 + /3 '/3 ,+ + (3 '+/3 'i. 

Q4 = !(G
O
(/GI.)l!2(GzzGd( (3(3 - (3 +(3 + - (3 '(3' + (3 '+(3 '+). 

Qs = 1i(Gon/Gn)1/2(GUGII)((3(3 +/3 +/3 + -(3'(3' -(3'+(3'+). 

Qf! = !(GoO/G]])1/2(GIIGZZ)((3(3 + +/3 +(3 -(3'(3'+ -(3'+(3'). 

(38) 

represent the generators of certain GLA's with the LA's 

i.} = 1.2 ..... m. 

so(4). so(3, 1) and so(2,2) as their Bose sectors when (Goo. Gil, 
Gn • Gd take values as (1.1.1.1), (- 1.1.1.1). and 
( - 1.1.1. - I) respectively and the corresponding structure 
constants are given by Eqs. (32)-(34). If we replace (3 by (3' in 
the definitions of VI and V 2 in Eq. (38) similar results are 
obtained. 

In all three cases of the above GLA's associated with 
so(4). so(3.1). alld so(2.2) the metric tensors hand g are such 
that 

detllh II =/=0. detll gil =/=0. (39) 

as it is seen from Eqs. (35) and (36). Here again it is interesting 
to note from Eqs. (34) and (37) that while in the case of the 
above GLA with the compact LA so(4) as Bose sector the 
relation of the type in Eq. (18) is satisfied with 

(40) 

m = 1,2 •...• 6., a, /3,eT = 1.2. 

there does not exist a similar relation in the cases of the above 
GLA's with the noncom pact LA's 80(3.1) and so(2.2) as Bose 
sectors. 

5. REPRESENTATIONS IN TERMS OF BILINEAR 
EXPRESSIONS OF BOSONS AND FERMIONS 

Let us take m pairs of fermionic creation and annihila
tion operators, [aj + ( + ). aj ( + ) I} = 1.2, .... m] and n pairs of 
bosonic creation and annihilation operators 
I a/ ( - ). ak ( - )Ik = 1.2 .... n] or a set of m pairs of bosonic 
operators, (a/ ( - ), aj ( - )Ij = 1,2, ... ,m 1 and n pairs offer
mionic operators, I a k+ ( + ). a k ( + ) I k = 1.2, ...• n]. These 
operators are such that 

[aj ( ± )at( ±) ±ak+( ± )aj ( ±)] =8jk , 

[aj(±)ad±)±ad±)aj(±)]=O (41) 
't/j.k. 

Following Freund and Kaplanskyl we shall define 

i = 1.2 ..... m. } - m = 1.2 ..... n. 
(42) 

i - m = 1.2 .... ,n. } = 1,2 .... m, 

i - m, } - m = 1.2 .... ,n 

Freund and Kaplanskyl have shown that in the case ofa set 
of m fermions and n bosons corresponding to the choice of 
upper signs in all the brackets in Eq. (42) above. the 
operators 

and 

[Rij.Rm+k.m+/Ii.}= 1.2 ..... m. 

k.! = 1.2 ..... n) 

[R i •m + k' Rm + IJ Ii.} = 1.2 ..... m. 

k,l = 1.2 .... ,n) act 

respectively as even and odd generators of a GLA and under 
the corresponding commutation and anticommutation rela-
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tions the set of all elements [Rij Ii.} = 1.2 .... m + n) behave 
exactly like the matrices [Ej Ii.} = 1.2, ... ,m + n) with the 
correspondence! Rij-Eij ), where Eij is the matrix with 
"1" in the (i J)-position and "0" everywhere else. Now it is 
easy to see from Eqs. (41) and (42) that in general the set of 
operators (Rij Ii,) = 1,2, ... ,m + n I has this property for the 
choice of either upper signs or lower signs in all the brackets 
in Eq. (42). From this it is obvious that if a GLA has an 
(m + n)-dimensional matrix representation r with even 
generators! Qk Ik = 1,2, .. ,D I and odd generators 
{ Va la = 1,2, ... ,d ) represented by matrices of the type 

(
Ak 0) 

r(Qd = 0 B
k

' k = 1,2, .... D, (43) 
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and 

a = 1,2, ... ,d., (44) 

whereA 'sarem Xm matrices,B 'saren Xn matrices, C'sare 
m Xn matrices,D 'saren Xm matrices andO's are null matri
ces of suitable dimensions, then the operators 

m + n 

Qk = L r(Qk)ijR ij , 
i,j= 1 

m + n 

Va = L r(Vu)jjR,j' (45) 
i,j= 1 

k = 1,2, ... ,D, a = 1,2, ... ,d, 

form a representation of the generators of the given GLA. 

For example let us consider the case of the GLA 
osp(2, 1), with so(3) as its Bose sector, considered in Sec. 3. A 
three-dimensional matrix representation of the generators 
[Q"Q2,Q3,v,,v21 of this GLA can be written as2

,7,'3 

r(Q,) ~ +G ~ ~). r(Q,) ~ ; G ~ I ~). 

rIQ,) ~ +G ~ I ~). 
r(V,) = J..(~ ~ ~) r(Vz) = J..( ~ ~ O~)' 

2 0 1 0 2 -1 0 

Then it follows that the representations 

r'(QI) = (Gn G]3)' rZr(Q,), 

r '(Qz) = (G33GlI )'
r2r (Qz), 

r'(Q3) = (GIIGZZ)'/2r(Q3)' 

r'(V,) = r(V,), r'(V2) = r(Vz) 

(46) 

(47) 

correspond to the generators of the G LA with structure con
stants given by Eqs. (21a)-(21c), Hence employing the above 
procedure we can conclude that the operators 

QI = !(G22G33)'r2 

X [a,+( ± )az( ±) + at( ± )a,( ± )], 
Qz = !i(G33GII )'J2 

X [ai1-( ± )a,( ±) - at( ± )az( ± )], 
Q3 = !(G'IGZZ)'/2 

X [at (± )a,( ±) - at (± )az< ±)], 

V, = Hat (± )a,( +) + at (+ )az< ± )], 
Vz = Haz+ (± )a,( +) - at( + )a,( ±)], (48) 

represent the generators of the GLA's with so(3) and so(2, 1) 
as Bose sectors respectively when G" = G22 = G33 = 1 and 
G" = Gzz = - G33 = L 

Using a procedure similar to that adopted in Sec. 4 for 
obtaining the representations of the GLA's with so(4), so(3, 1) 
and so(2,2) as Bose sectors from the representations of the 
GLA's with so(3) and so(2, 1) as Bose sectors we can conclude 
as follows. If we take two commuting sets of operators 
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[a/( ±), a j ( ± ),a,+ (+), all +)Ii = 1,21 and 
[ak + ( ± ), ak( ± ), a; + (+), a; (+ )Ik = 1,21, such that 

[a j ( ± )a/( ±) ±a/( ± )a j ( ±)] =Oij, 

[all ± )aj ( ±) ± aj ( ± )a;( ±)] = 0, 

[a I. ( ± )a; + ( ± ) ± a; + ( ± )a I. ( ± )] = D kl' 

[ak ( ± )a;( ± ) ± ai( ± )ak ( ± )] = 0, 

[all ± )ak( ±) - ak( ± )a;( ±)] = 0, 

[aft (± )ak( ±) - ak( ± )a/( ±)] = 0, 

[all ± )ak( +) - ak( + jail ±)] = 0, 

[a/( ± )ak( +) - ak( + )a;+( ±)] = 0, 

i,j,k,l = 1,2, 

then the operators defined by 

Q, = ~(G22Gd'/Z[a,+( ± )a2( ±) + az
t (± jail ±) 

+ a; t ( ± )a; ( ± ) + a; + ( ± )a; ( ± )], 

Q2 = 1i(Gu G ,,)'/2[at (± jail ±) - at (± )a l ( ±) 
+ a; t ( ± )a; ( ± ) - a; + ( ± )a; ( ± )], 

Q., = 1(G II Gd 1/2 [at (± jail ± ) - at ( ± )az( ± ) 
+ a; + ( ± )a; ( ± ) - a; + ( ± )a; ( ± )], 

(49) 

Q4 = !(GOO/GII)'/2(G2ZG33j[at( ± )a2( ±) + a2+ (± jail ±) 
- a; + ( ± }a; ( ± ) - a; + ( ± )a; ( ± )], 

Q" = !i(Goo/G22 )'/2(G"G, d [at ( ± jail ±) - a,1 ( ± )a2( ± ) 
- a;+ ( ± )a; ( ± ) + a; + ( ± )a; ( ± )], 

Q6 = !(Goo/Gd'/2(G II Gn j[a,+ ( ± )al( ± ) - at ( ± )a2( ±) 
- a; + ( ± )a; ( ± ) + a; + ( ± )a; ( ± )], 

VI = Hal t ( ± )a, ( + ) + a ,1- ( + )a 2( ± )], 
V1 = Hat ( ± )a I ( + ) - at ( + )a, ( ± )], (50) 

generate a GLA with structure constants given by Eqs. (32)
(34) corresponding to GLA's with so(4), so(3, 1) and so(2,2) as 
Bose sectors when (Goo = G'I = Gn = Gu = I) 
(-GOO=G II =G22 =Gn = 1) and 
( - Goo = Gil = G22 = - G" = 1). In Eg, (50) we may re
place [a;( ±)Ii = 1,21 by [a;( +)li = 1,21, 

It should be noted that even if we have a matrix repre
sentation of the generators of a G LA given as 
[r'(Qm), T'(Vnllm = 1,2, ... ,D.,a = 1,2, ... ,d.1 which are 
not of the block structure prescribed in Egs. (43) and (44), we 
can obtain an operator representation in terms of a mixture 
of bosons and fermions by using the matrix representation 

(

r'(Qm) 

r(Qrn) = 
o 

m = 1,2, ... ,D" 

a = 1,2, ... ,d., 

in Eg. (45) with suitable pairs offermions and bosons. 
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6. CONCLUSION 

In conclusion let us observe the following: 
(i) From Eqs. (Sb) and (Sc) we have 

[! Va' Vf3 J, VI'] = A ';;f3 F':"fl Va' (S3) 

[! Va' Vf3 j, I ~" V,.)] = I [! Va' Vf3I, Vfl]' V,d 
+ HI Va' Vf31, v'd, VI'} 

= A ';;f3 F':,,'l I Va' V,d + A ';;f3F;;'", I V", V,,! , 

m = 1,2, ... ,D., a, /3, A, /-l,a, v = 1,2, ... ,d. (S4) 

Now ifl Qm 1m = 1,2, .. ,Dl can be represented as linear com
binationsof(! Va, Vf31Ia, /3 = 1,2, ... ,d) as a result ofEq. (Sc), 
then Eq. (Sa) should be a direct consequence ofEq. (S4) and 
hence ofEq. (S3). Thus if! Qm 1m = 1,2, ... ,D J have realiza
tions as linear combinations of (! Va' Vf3 J la, /3 = 1,2, ... ,d), 
then the consistency of Eqs. (Sa)-(Sc) implies that the repre
sentations of ! Va la = 1,2, ... ,d ) and hence of 
[Qm 1m = 1,2, ... ,D J can be obtained by solving Eq. (S3) 
alone. Let us apply this consideration to the case of the GLA 
osp(2n,l) described by Bednar and Sachl. I3 This GLA, de
noted also as (sp(2n); 2n) in Ref. 13, is generated by the even 
elements! X'j li,j = - n, ... , - 1, 1, ... ,n J and the odd ele
ments [ Vk I k = - n, ... , - 1, 1, ... ,n j obeying the basic com
mutation and anticommutation relations given as 

[Xu' X kl ] = DkjXU - DUXkj 

+ E,EjD _. l.jXk. _, + EjEJi _ '.kX _j.I' (SSa) 

[X,j,vd = Dkj V, - E,Ej/j_ ,.k~' (5Sb) 

[ Vk , VI I = 2EkXI. _ k = 2EIX,. _ I' (SSe) 

iJ,k,l = - n, ... , - 1,1, ... ,n 

with Ci = 1 for i> 0 and Ei = - 1 for i < O. In this case the 
relation among r Vk Ik = - n, ... ,n) corresponding to Eq. 
(53) becomes 

[! J-j, Vk J, VI] = 2cj/j _j./ Vk + 2Ck/j _ k.1 J-j, (S6) 

j,k,! = - n, ... , - 1,1, ... ,n. 

Now a comparison of Eqs. (1) and (S6) reveals immediately 
that we can represent V's by para-Bose operators of any or
der as 

Vk = 13k' V k =/3t, (S7) 

k = 1,2, ... ,n. 

Then [Xuli,j= -n, ... ,-I,l, ... ,nj can be represented in 
terms of \13" 13 ;+ Ii = 1,2, ... ,n I through Eq. (SSe) This fact 
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has been responsible for the above realizations of the GLA's 
with so(3), so(2, 1), so( 4), so(3, 1) and so(2,2) as Bose sectors 
in terms of para-Bose operators. 

(ii) From Sees. 3 and 4 the following is clear. For both 
the GLA's with the compact LA's so(3) and so(4) as Bose 
sectors the relation in Eq. (18) is obeyed while so(3) and so( 4) 
are simple and nonsimple respectively. In the case of all the 
GLA's with noncompact LA's, so(2,1), so(3,1) and so(2,2) 
as Bose sectors the relation in Eq. (18) is not obeyed while 
so(2, 1) is simple and so(3, 1) and so(2,2) are nonsimple. But 
all these GLA's obey Eq. (16). This pattern seems to suggest 
some connection between the compactness properties of the 
Bose sector of a G LA and the existence of a relation of the 
type in Eq. (18) between the structure constant matrices! F I 
and [A 1 ofthe GLA. Hence it should be worthwhile to study 
in more detail the above examples of GLA's from the view 
point of the connection between the structure of a G LA and 
the existence of a relation of the type in Eq. (18) as given by 
the so called C-theorem of Pais and Rittenberg2 later gener
alized by Scheunert et al.6 
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We investigate particles which can be described in terms of plane waves and find that the number 
of topologically distinct such particles is the same as the number of disconnected pieces of the 
gauge group or structure group of the appropriate fiber bundle. 

PACS numbers: 14.60.Gh, 02.40. + m 

1.1 NTRODUCTION 

The different neutrinos (ve' VI" V y) are perplexing since 
they are all apparently neutral, spin 112, left handed, appar
ently massless (experiments 1 suggesting neutrino oscilla
tions and a nonzero neutrino mass have not been confirmed 
and have come under increasing criticism) particles which 
are nonetheless distinct in their interactions. 2 With all these 
attributes in common, one is hard put to imagine structural
ly how they differ from one another. Similar remarks can be 
made about other families of closely associated particles 
such as the charged leptons or the various quarks. We can, of 
course, describe such a situation through a separate flavor 
group or a "horizontal" group unified with the other gauge 
interactions. 3 A more exciting possibility, however, which 
we address in this paper, is that in some cases such particles 
may be represented through topologically inequivalent fiber 
bundles. Thus the difference between V e , VI" and Vy may be 
in the inequivalent topological twists of some appropriate 
bundle. Rather than analyze some particular gauge theory in 
detail, we will leave the gauge group G as general as possible 
and delimit the situation by focusing our attention on parti
cles which can be represented as plane waves. For any phys
ical class of plane-wave particles such as neutrinos, we even
tually will conclude that the number of topologically 
inequivalent such particles, related to G through an associat
ed fiber bundle, is the same as the number of disconnected 
pieces in G. The results of this paper arose out of an attempt 
to establish a more detailed one-to-one correspondence be
tween specific neutrinos and various twists of a principle 
fiber bundle with a connected gauge group. This interesting 
possibility died on the rocky ground of Steenrod's classifica
tion theorem used later, when the various configurations 
were found to be topologically equivalent. 

In Sec. II, we discuss the fiber bundle description of 
gauge fields and the concept of particles as cross sections of 
associated vector bundles. We particularly concentrate on 
particles which can be represented as plane waves. In Sec. 
III, we enumerate the topological varieties of fiber bundles 
associated with such particles. 

II. FIBER BUNDLES AND GAUGE FIELDS 

Our starting point will be a principal fiber bundle I!: 
with structure group G, projection fT, and with Minkowski 
space, M as the base space. fT: f!...-B is a Coo-surjection of f!... 
onto M. Gauge potentials associated with the four basic in
teractions of physics are then connections in P and gauge 
fields are curvature 2-forms of J!...4 This is just the usual de-

scription of a gauge theory5 in terms of a fiber bundle. P can 
be viewed as a generalized and possibly nontrivial topologi
cal product of G and M. (see Fig. 1.) Notice that for the base 
space we explicitly use Minkowski spaceM rather than R 4 or 
R 4-1 ball around origin 1 as more commonly done. UsingMis 
clearly preferred physically and will be important below. G 
might be SU2 XU 1 X color SU3 , SU5 , SU9 , etc. 

A more explicit definition of a fiber bundle is given in 
the lovely book by Choquet-Bruhat, DeWitt-Morette, and 
Dillard-Bleick. 6 A fiber bundle (P, B, II, G ) is two topological 
spaces P and B (the base space - M in our case) with a 
continuous surjective mapping II: P_B, a typical fiber F 
with a topological group G of homeomorphisms of F onto 
itself, and a covering of B by a family of open sets 
I ~;jE.!~N 1 such that (I) Locally II -I (~) is homeomor
phic to the topological product ~ XF for alljE.!. This ho
meomorphism <Pj:II -I(~)_~ XF has the form <Pjlp) 

d d 

= (IIIp),<P jlp)). IfXE~, <P j.x is a homeomorphism from Fx 
d 

(the fiber over x) onto F. (2) The homeomorphism <P k.x 

d 

o</> j-:X I:F_F is an element of the structural group G for all 

xE~nUk and allj,kE.!. (3) The induced mapping gik: ~nUk 
d d 

_G by x-gjk (x) = <P k.x o</> j.~ 1 is continuous. A principal 

fiber bundle is one in which the typical fiber F and the struc
tural group G are identical and in which G acts on F by left 
translation. 

In the usual gauge theory, particle fields such as elec
trons or neutrinos are sections of a vector bundle associated 
to the principal fibration. From Mayer,5 we can define a 

G 
I 
I 
I 
I ".-1 (x) 
I . 
/ 
I 
I 
I 
I 
I 

: 

• 
xl-' 

p 

M 

FIG.!. Principal fiber bundle P with structure group G, projection II, and 
base space M Minkowski space. 

2300 J. Math. Phys. 22 (10), October 1981 0022-2488/81/102300-03$01.00 © 1981 American Institute of Physics 2300 



                                                                                                                                    

vector space Von which the group G acts on the left by a 
representation r: G-GL(V), where 

r:(g,v)-r(g)v, r(glg2) = r(gl)r(g2)' (1) 

r(e)=/, r(g-I) = [r(g)]-I withg,g"g2EG, (2) 

and VEV. 

On the product of the principal bundle P with V, we define 
the right action of G as -

(x,V)·g = (x'g, r(g-I)v). (3) 

The associated vector bundle is then the orbit space of this 
action, (~X V)lG, with typical fiber V, base space M, and 
projection Wwhere for each pointof(P X V)lGwedenote by 
W(z) = W(x,v) the point of M equal to 1T(X) for all 
(X,V)E(~ X V)lG. More generally, any manifold E for which 
there is a morphismp: P X V-E such that 
p(xg, r(g- I )v) = p(x,v) a~d such that the quotient map 
p:(~ X V )lG-E is a diffeomorphism is called a vector bundle 
associated to the principal fibration. 

Let us be a little more explicit now in regards to the 
gauge group or structure group G and the vector space V. We 
will be interested in a class of similar particles below such as 
neutrinos. These particles must be cross sections of the asso
ciated vector bundle E. Thus G must be chosen in such a way 
that the various relevant properties of the particles which 
distinguish the given class can be encompassed and defined 
by G. G may be something like SU 5 or it may have to include 
gravitation also, through some version of extended supergra
vity/ depending on the specific application. In this paper we 
want to see if we can get anything interesting without specify
ing G in detail, realizing that G contains most of the physics. 
The space V is a multidimensional vector space which is 
associated with G by means of a representation as above. 

The associated vector bundle E, defined above, is too 
general for our purposes. Sections of E describe a general 
particle field over M, as mentioned above (see Fig. 2). Let us 
now further focus our attention on freely propagating parti
cles which can be described by plane wave solutions of the 
form 

IjI = Ne - irE, - p,x1. (4) 
N is a normalizing factor and may contain spinors and var-

v I E 
I 
I w- I 

II 
I 
I 
I 
I I Sect ion 
I 

xl'
• M 

FIG. 2. Associated vector bundle E with typical fiber V, projection W, and 
base space M Minkowski space. A section of E is a general particle field. 
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v I E' 
I 
I 
I W- I (!) 

1/ 
I 
I 
I 
I {section 

FIG. 3. Vector bundle E' with typical fiber V, projection W, and base space 
the circle S 1. A section of E ' is a particle which can be described by a plane 
wave. 

ious group indices. Although no interacting particle can ever 
be truly represented by a plane wave, nonetheless, for space
time regions far removed from previous or subsequent inter
actions, plane waves are a very good approximation. By go
ing to simple wave functions of this type, we hope to extract 
physical results which would otherwise remain obscure. 

Limiting ourselves to particles which can be represent
ed by plane waves leads to strong mathematical constraints. 
Thus, we are interested not in E but in the vector bundle E' 
whose sections are of the form (4). Sections of E' are not 
general functions ofx,t in Minkowski space but functions of 
5 =Et - p·x only. Also IjI is periodic in the one-dimensional 
variable 5 with period 21T so that 5 ± 21Tn = 5 as far as the 
particle wave function (4) is concerned. Thus we can take E' 
to be a vector bundle with typical fiber the multidimensional 
vector space Vand base space the one-dimensional circle S I 
representing the variable 5 (see Fig. 3). 

Sections of the bundle E' describe particles which can 
be described by free plane-wave wavefunctions. Locally 
these sections look like sections of simple products of Vand 
S I (fiber bundles are always locally trivial). Globally, howev
er, E' need not be trivial. As a simple example, a cylinder is a 
trivial vector bundle with a one-dimensional interval/ eRas 
typical fiber and S I as the base space. Using the same typical 
fiber and base space we can also construct the Mobius strip 
which is a nontrivial bundle. The twisting of the Mobius 
strip is tied up in the relationship between the homeomor-

..l ..l 

phisms <P j,x and <P k.x mentioned above in the definition of a 

fiber bundle. Locally, the Mobius strip and the cylinder are 
equivalent, but they are not equivalent globally. 

III. CLASSIFICATION OF THE FIBER BUNDLES 

We have now distilled the problem down to enumerat
ing the number of possible global topological varieties of the 
associated bundle E '. This should tell us the number of to po
logically distinct particles (in a given class specified by G) 
which can be represented by a plane wave. The problem of 
classifying fiber bundles over N-dimensional spheres has 
been solved. We have the following theorem from Steenrodx: 
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"The equivalence classes of bundles over S n with group G 
are in one-one correspondence with equivalence classes of 
elements of fln _ I (G) under the operations of flo(G). Such a 
correspondence is provided by (!g -X (a), where a is a gener
ator of Iln (S n) and x: fln (S n)_fln _ I (G) is a characteristic 
homeomorphism of (!g." For our present application, we are 
interested in equivalence classes of bundles over S I and 
hence equivalence classes of elements of flo(G) under the 
operations of flo(G) (an abelian group), where G is the origi
nal gauge group or structure group we started with. The 
zeroth homotopy group flo measures connectedness.s Thus 
flo(O(n)) = Z2 for n;;;d since 0 (n) consists of two disconnect
ed pieces with positive and negative determinants. On the 
other hand, flo(SO(n)) = flo(U(n)) = flo(SU(n)) = 0 for n> 1 
since these groups are all connected. 

We thus conclude that the number of inequivalent topo
logical varieties of our associated bundle E ' is simply the 
number of disconnected pieces in the original structure 
group or gauge group G that we started with. Thus the num
ber of topologically distinct particles which are associated 
with the gauge group G as above and which can be represent
ed as a plane wave is the same as the number of disconnected 
pieces in G. As an example of this result, if G is chosen such 
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that the cross sections of the associated vector bundle E ' 
represent neutrino plane waves, then the number of topo
logically distinct neutrinos is just the number of pieces in G. 
If the appropriate G is disconnected, this paper suggests that 
neutrino flavor may have a topological origin. The hard part, 
of course, is to find the G that nature has chosen. 
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A new method of constructing the symmetry coordinates of molecular 
vibrations based on the correspondence theorem 
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A general method of constructing the symmetry coordinates of moleclAlar vibrations is presented 
via the correspondence theorem which describes the parallelism between a SALC (symmetry 
adapted linear combination) and an elementary basis function belonging to the same irreducible 
representation of the symmetry group of the molecule. 

PACS numbers: 33.1O.Gx 

I. INTRODUCTION 

In the theory of molecular vibrations of a polyatomic 
molecule belonging to a point group G, the primary step is to 
construct the symmetry coordinates of molecular vibrations 
belonging to the irreducible representations (irreps) of the 
group G. These are the symmetry adapted linear combina
tions (SALC's) of the external or internal vibrational coordi
nates of the molecule. 1 Ordinary, these are constructed by 
means of the so-called projection operator method. 1,2 This 
method is very general and powerful but it is often extremely 
laborious to use, 

Recently, the author has introduced a general 
method3

,4 of constructing the SALC's of equivalent basis 
functions of point groups. It is based on the correspondence 
theorem which describes the parallelism between a SALC 
and an elementary basis function belonging to the same irrep 
ofG, Here, the latter means a basis function given by a homo
geneous polynomial in the spatial coordinates x,y,z. More 
specifically, the linear coefficients of the SALC's are deter
mined from the property of the elementary basis set on the 
equivalent points with respect to the group G. It does not 
require the explicit matrix representations of G, unlike the 
projection operator method. The effectiveness of this meth
od has been demonstrated by actual constructions of the 
symmetry adapted LCAO-MO's, hybrid AO's, and lattice 
harmonics, etc,3,4 The present work applies this method to 
the construction of the symmetry coordinates of molecular 
vibrations, restricting the vibrations to be small. 

For this purpose, it is necessary to characterize the 
transformation property of a set of equivalent vibrational 
coordinates of a molecule under consideration by a set of 
equivalent basis functions located at equilibrium points de
fined on the molecule. For example, the transformation 
property of an infinitesimal atomic displacement can be 
characterized by a set of p orbitals (Px, Py' pz) located at the 
position of the atom. Such characterizations are also possible 
for internal vibrational coordinates, even though they are 
given by the linear combinations of two or more atomic dis
placements. This then enables us to write down the general 
expression for the internal or external symmetry coordinates 
in terms of the elementary basis functions or basis operators 
of the group G. 

In Sec. 2, the correspondence theorem will be discussed 
to the extent which will be needed in the present work. Then, 

the external symmetry coordinates are expressed as the 
SALC's of equivalent atomic displacements, For the internal 
coordinates, we shall first show how to characterize a set of 
equivalent ones by a set of equivalent basis functions, then 
establish the rule of characterization for each type: The types 
of internal coordinates which will be considered are the bond 
stretchings, valence-angle-bending, bond-plane angle 
changes (the angle between a bond and a plane defined by 
two bonds), and bond twistings (or torsions). The accurate 
definitions of these coordinates are given in the classic work 
of Wilson et al. 1 It will be shown that the general expression 
for the internal symmetry coordinates takes a particularly 
simple form since the intrinsic symmetry property of any 
internal coordinate is one dimensional. Simple illustrative 
examples are given in Sec. 3. Here, we shall characterize the 
irreps of G by their elementary basis functions. 

II. THE GENERAL EXPRESSIONS FOR THE SYMMETRY 
COORDINATES 

We shall first discuss the correspondence theorem in a 
form which is most suitable to the present problem. Let 
slnl = ! r~;v = 1,2 ... ,n l be a set of symmetrically equivalent 
points on a molecule belonging to a point group G. Then, the 
set S Inl constitutes a transitive G space such that the transfor
mation of S Inl define a n X n permutation representation 
L1 Inl(R), 

R r~ = i r~L1(7vlnl(R) v = 1,2 ... ,n (2.1) 
u=1 

for all 3 X 3 orthogonal transformations REG. Let [/:(r) l 
be a basis set of the space vector r belonging to a unitary 
representation D A (R ) (of dimension dA ) of G, then, the set 
! I:(r - r~) l defines a set of equivalent basis functions be
longing to the direct product representation 
L1 Inl(R )XDA(R), 

d A n 

I:(R -I r - r~) = I I/t(r - r~) L1 ~~(R) Dts(R). 
k~I(7~1 

(2.2) 

Accordingly, all SALC's of these equivalent basis functions 
are classified by the irreps contained in L1 Inl(R ) X D A (R ). 
Let D Y(R ) be one of these irreps, then a set of SALC's be
longing to D Y(R ) is given by 

d A n ') 

J/li(r) = L L [Ti(r)g;t(r)*L~r~/1(r-r~), (2.3) 
s= 1 V= 1 
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provided that the set is not null. Here, Tnr) is a basis set of 
operators4 belonging to D Y(R ) acting on a basis set 
!~(r) lED A (R ) and the asterisk denotes the complex conju
gate. The basis operators inr) are easily constructed by re
placing part of the Cartesian coordinates in the correspond
ing elementary basis functions Tnr) by their differential 
operators. It can be shown4 that if D Y(R ) is contained in 
Lllnl(R ) xD A (R ) ny times, one can construct ny linearly in
dependent sets ofSALC's by means of(2.3). This expression 
represents a special case of the correspondence theorem4 in 
the sense that tPnr) transforms like inr). It is noted that the 
set of equivalent points S Inl plays a crucial role in determin
ing the linear coefficients in (2.3). Thus, it is essential for the 
present work to characterize a set of equivalent vibrational 
coordinates by a set of equivalent basis functions defined on 
equivalent points on the molecule. In the following, this will 
be achieved for the external coordinates first then for the 
internal coordinates under the asumption that all vibrations 
considered are small. 

A. The external vibrational coordinates 

The external coordinates are defined by the atomic dis
placements in the Cartesian coordinates fixed in the molecu
lar frame at equilibrium. Their transformation properties 
are characterized as follows. 

The Cartesian displacement Dr v of the vth equivalent 
atom transforms like a vector quantity pv(r) = r - r~, where 
r~ is the equilibrium position of the vth atom. 

Let D (JI(R ) be the three dimensional representation of 
the orthogonal transformation REG. Then !p,,(r) J provides 
a basis for Llln)(R ) X D (31(R ). Let D Y(R ) be an irrep con
tained in this direct product representation, then a set of 
external symmetry coordinates belonging to D Y(R ) is given 
by 

n 

Sr = L inrHr.Drvll r~ r~' (2.4) 
v=l 

We shall not discuss this case any further, since it is the same 
problem as the problem of constructing the SALC's of the 
equivalent p orbitals, which are fully discussed in the pre
vious work.4 

B. The internal vibrational coordinates 

We shall first show how to characterize, in general, a set 
of equivalent internal coordinates of a molecule by a set of 
equivalent basis functions defined on the molecule. Let! S v I 
be a set of n-equivalent internal coordinates. Then under the 
symmetry operations R 's of G, the set transforms according 
to a direct product representation Lllnl(R ) X D 5 (R ), where 
D 5 (R ) is a one dimensional representation of G intrinsic to 
the type of the internal coordinates S v and Ll In)(R ) is the 
n X n matrix representation of REG, which describes the 
permutation of the absolute values Is v I of the coordinates. 
Then, this definition of Ll (nl(R ) determines the correspond
ing set of equivalent points Sin) = ! r~;v = 1,2 ... ,n l on the 
molecule: It is given by a set of n-equivalent points generated 
by all REG from a single point which is invariant under the 
operations which leave one of Isv I invariant. It is also evi-
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dent that there always exists a basis function S (r) belonging 
to a one dimensional representation D 5 (R ) of the point 
group G. Accordingly, the set Is (r - r~) I defined on S Inl 

gives a required set of equivalent basis functions which char
acterizes the transformation property of the set ! S v l. The 
following are the rules which define the basis set! S (r - r~) l 
corresponding to each type of the internal coordinates [Sv I 
most frequently encountered in molecular vibrations: 

(1) A bond-stretching transforms like a scalar function 
located at the midpoint of the bond. 

(2) A valence-angle-bending (the change in the angle 
between two valence bonds) transforms like a scalar function 
located at a point on the line which bisects the angle in the 
plane of two bonds, Evidently, the actual point on the line 
must be chosen in accordance with the rest of the equivalent 
angles. 

I t should be noted here that depending on the molecular 
symmetries it is possible to choose alternative sets of loca
tions [r,:l I for the scalar functions in (1) and (2). 

(3) Let a" be the bond-plane angle defined by three 
bonds meeting at the vth equivalent atom, the three bonds 
being initially on a plane perpendicular to the z axis. Then, 
the change of the angle a v between one bond and the plane of 
the remaining two bonds transforms like z" = z - z~); i.e., it 
transforms like the pz atomic orbital located at the vth atom. 

This rule is easily understood from the observation that 
the angle change a" can be regarded as an infinitesimal lift
ing of the vertex atom out of the plane leaving the rest of the 
three atoms in the plane. Consequently, this rule holds also 
for lifting a vertex atom where more than three bonds in a 
plane meet at the vertex atom. 

(4) A bond-twisting (or torsion) transforms like a pseu
doscalar with respect to the point group G located at the 
midpoint of the bond. 

Here, a pseudoscalar with respect to a point group G 
means a function of the space vector which is invariant under 
all proper rotations of G and changes its sign under all im
proper rotations of G if these are contained in G. Simple 
examples of the pseudoscalar functions for Oh and Td in
clude xyzxyi and xyi, respectively. Here i = xy' - yx', etc., 
and the coordinate systems are taken as given by Koster et 
al. 5 Note that Td is a subgroup of Oh and xyz is invariant 
under all operations of Td • For the case of D nh , an elemen
tary basis zi is a pseudoscalar of the group, the z axis being 
along the prinicipal axis. 

Finally, we shall write down the general expression for 
the symmetry coordinates of ! sv I E Lllnl(R ) X D S (R ). Let 
D "(R ) be an irrep contained in Ll Inl(R ) and let I V 7(r) I be an 
elementary basis set of D O(R ). Then a set of symmetry co
ordinates belonging to D O(R ) X D ;; (R ) is given by 

s:' = t V:'(r~)sv; i = 1,2, ... ,d" (2.5) 
I 

provided that the set I Vi(r?,) I is not null. Such a basis set is 
called proper on S Inl. It has been shown 1 that if D n(R ) is 
contained in Ll (nl(R ) n" times, there exist n" linearly inde
pendent proper basis sets on Sini. According to (2.5), for the 
construction of the symmetry coordinate of 5v it is most 
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convenient to classify the irreps of G by the direct product 
D aIR ) X D 5 (R ); this is always possible since the intrinsic 
representation D S (R ) is one dimensional. Application of 
(2.5) will be discussed in the next section. 

3. ILLUSTRATIVE EXAMPLES 

With use of the general expression (2.5) and the rules of 
characterization (1 )-(4), the problem of constructing the in
ternal symmetry coordinates for small molecular vibrations 
becomes almost trivial. Nevertheless, it seems worthwhile to 
discuss some illustrative examples and make additional re
marks through examples. 

We shall first consider the small vibrations of the ben
zene molecule belonging to D 6h • This problem has been 
throughly discussed in the treatise given by Wilson et al. ' We 
shall discuss here only the construction of the internal sym
,netry coordinates. lt serves as an excellent example for com
parison with the ordinary method as well as for the use of the 
rules (1)-(4) since it requires all of them. Let us place the 
origin of a Cartesian coordinate system at the center of the 
benzene molecule and let the z axis be perpendicular to the 
molecular plane and the y axis pass through a carbon atom. 
The irreps of DOh are characterized by the elementary basis 
functions as follows: 

r ,+;1 

r t ; i or r _1 X r ,;
r ,+ ; z(x3 

- 3xy2) 

r 4+ ; z(/ - 3yx2
) 

r s" ; (xy) or z(y, - x) 
r 6+; (x" - y2, 2xy) or 

i(2xy, _ (x 2 _ y2)) 

r,-;zi 

r 2-;Z 

r )-;y3 _ 3yx2 

r 4-; x 3 
- 3xy2 (3.1) 

r 5- ; (x,y) or t(y, - x) 
r 6- ; Z(X2 - y2,2xy) or 

zi(2xy, _ (x 2 _ y2)). 

Here, the notations r 's for the irreps are those of Koster et 
al. 5 and x = yz' - zy', etc. For later use, we have introduced 
extra basis sets for some of the irreps with the correct orien
tations for degenerate cases: for example, two basis sets (iy) 
and z(y, - x) in r t tell us that r / is equivalent to 
r 2 X r 5- and that (i, y) and (zy, - zx) belong to the same 
irrep up to a phase factor. 

LetS (6) be the set of the equilibrium positions [ r~ 1 of the 
six carbon atoms and their x,y coordinates be as follows, in 
the order r~ ~ r~ , 

(0.1), (~v3,!), (!v3, - !), 

(0, - 1), ( -! v3, - !), ( - !v3,~). (3.2) 
Let SIOI be the set of the midpoints of the six C-C bonds given 

by r,~ = W~ + r~ f I); r~ = rli, v = 1,2, ... ,6. (3.3) 

It will be seen that these two sets define all sets of equivalent 
internal coordinates of the benzene molecule. LetLl (6) (R ) and 
j"(6)(R ) be the permutation representation via S 161 and Slnl, 
respectively. Then, the irreps contained in these permuta
tions are given as follows. 

L\ 16
1(R)=rt +r 3- +r 5- +rt,(3.4a) 

1 (y1 _ 3yx2) (x, y) (x2 - y2, 2xy) 

j"(6)(R) = r 1+ + r 4- + r 5- + r 6+' (3.4b) 

(x' - 3xy2) 
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where we have also given the respective elementary bases 
sets which are proper and hence will be used for Uf(r) of 
(2.5). 

lt is most convenient to introduce the following nota
tions for the symmetry coordinates belonging to D aIR ) 
XDS(R), 

s u:' = I U7(r~)sv' if D aIR ) E Lllnl(R ), 

(3.5) 

L:- = IUf(~)s,., if Da(R) E,~P(R), 
,. 

where the difference occurs only in the arguments of the 
linear coefficients. 

Since the benzene molecule is planar, we shall discuss 
the in-plane and the out-of-plane modes separately. 

A. The in-plane modes 

From the rule (1), the six C-H stretches s,. and the six 
C-C stretches tv belong simply to their respective permuta
tion representations. 

r s,. J E Ll 161(R ); [tv I E XI6l(R ). (3.6) 

Thus, one can immediately write down their SALe's using 
(3.4) and (3.5). The 12 equivalentC-C-H valence angle bend
ings (in-plane) are regarded as six equivalent subsets 
[()YI' ()v21, v = 1,2 ... 6; each subset belonging to the sub
group C2v of D 6h . Then, the induced representation onto D6h 

via the irreps of C2v lead to the following two basis sets on 
Slo!, 

a,. = Bv' + Bv2 E Lllo)(R ), 

/3,. = By, - B"2 E Lllo)(R) Xr t. (3.7) 

Again, one can write down the corresponding SALe's using 
(3.4) and (3.5). To classify the SALe's of /3v 's in terms of the 
original irreps given in (3.1) one may need 

Llln)(R)Xr 2+ =rt +r 4 +r5 +r6+' (3.8) 

Collecting the results obtained thus far we have the follow
ing sets of the symmetry coordinates belonging to the in
plane modes of vibrations, 

r t;sl,~,a, 

r ,-- ;sIY' _ _ hY') , a IY , - 3yx') 

r 4-; t;x' _ hy') , /3IY' - 3yx'l 

r 5- ;(Sx ,Sy)' (~,~), (ax, a y )' ifJy, - /3x) 

r n+ ; (Sx' _. y" Shy)' (~, _ y', t2xy ), (ax' __ y" a 2xy ), 

ifJ2xy,-/3x'-y')' (3.9) 

Here, it is noted thata, = Oand oneof(ax,ay)and(~,~) are 
redundant. The above results are consistent with the direct 
decomposition of the in-plane mode r in , 

rin = 2r t + r t + 2r 3- + 2r 4' + 3r 5-

+ 4r 6+' (3.10) 

Shoon K. Kim 2305 



                                                                                                                                    

B. The out-of-plane mode 

Let (Yv 1 be the bond-plane angle bending at the six 
carbon atoms and (7 v I be the torsions of the six C-C bonds. 
According to the rules (3) and (4) these are represented by 
(zv 1 on S (6) = (r~ 1 and ((zzL 1 on S(6) = (?;, 1, respectively. 
Thus, from (3.1) and (3.4) we have 

(Yv1EL116)xr2- =r 2- +r 4+ +rs+ +r 6-,(3.11) 

(7v 1 E.J (6)xr 1- =r 1- +r 4- +rs+ +r 6-. (3.12) 

The corresponding symmetry coordinates are again written 
down with use of (3.4) and (3.5). The final results for the out
of-plane modes are summarized as follows: 

r 1-;T1 

r 2-; Y1 

r 4+ ; Y(y' - 3yx'p T(x' - 3xy') 

r s+ ;(Yx,Yy ), (Ty, - Tx) 

r 6; (Yx'-y" Y2xy), (T2xy , - Tx'_ y')' 

(3.13) 

Here, one of the two bases belonging to r 5+ is redundant 
and also T1 = 0, on account of the ring structure of the ben
zene molecule. The above results are again consistent with 
the direct decomposition of the out-of-plane modes given by 

rout = r 2- + 2r 4+ + r 5+ + 2r;; . (3.14) 

We shall not write down the final explicit forms of these 
symmetry coordinates, which are trivally obtained with use 
of (3.2) and (3.3). The explicit results thus obtained are con
sistent with the well known results given by Wilson et a/. 

Evidently, we can treat any planar molecule in the anal
ogous manner as given above. Next, we consider the vibra
tional coordinates of the methane molecule CH4 E Td • Here, 
it is necessary to construct the symmetry coordinate for the 
four C-H stretches and six valence angle bending ofH-C-H. 
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Since these are represented by scalar functions, the problem 
is reduced ot that of constructing the SALC's ofthes orbitals 
located at the four equivalent positions (r?" v = 1,2,3,4j of 
the H atoms and at the six equivalent positions 
! W?, + r~ );v# f11 given by the midpoints of two different H 
atoms, In the analogous manner one can construct the inter
nal symmetry coordinates of a molecule XY6 E Oh' 

The symmetry coordinates thus far discussed are not 
the normal coordinates which completely diagonalize the 
respective Hamiltonian, in the case when there exist more 
than one set of symmetry coordinates belonging to an irrep. 
In such a case it is necessary to solve the respective secular 
equation for each irrep. It is noted here that there exists a 
simple algebraic method of matrix diagonalization intro
duced recently by the author. 6 According to this method, 
one can write down the transformation matrix explicitly 
from the reduced characteristic equation of the matrix 
which is to be diagonalized, 
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A new model of the electromagnetic field is postulated. The model is designed within the 
conceptual framework of the quantum field theory of particles of indefinite mass. The model is 
built around an interaction Lagrangian of the type !f I = ~pV - JI"AJ1-' where (JI"; p) is a 
conserved c-number 5-current. A gauge invariance principle is thereby built into the theory. The 
object! V is a new 5th component of the vector potential. Due to the use of the new evolution 
parameter 7, second quantization in the Lorentz gauge JJ1-AI" = 0 parallels Coulomb gauge 
quantization in ordinary quantum electrodynamics. The Hamiltonian of the free electromagnetic 
field is negative definite and has the physical interpretation of minus half the sum of the squares of 
the masses of the photons present. The inner product in Hilbert space is not positive definite, 
spacelike states with timelike polarization having negative norm. 

PACS numbers: 41.10. - j, 11.10. - z 

I. INTRODUCTION 

A number of authors 1-7 have investigated new forms of 
relativistic quantum theory based on Fock type wave equa
tions. Such theories are a form of "proper time theory" in 
which the evolution of the system is described by a param
eter independent of the space-time coordinates. The wave 
functions in these theories are true space-time amplitudes 
subject to the normalization condition Sd 4xl¢> 12 = 1, the in
tegration being over all space-time. 

Here we continue the work of Ref. 7, in which such a 
theory was built up from rigorous correspondence argu
ments, starting with a classical theory of particles of indefi
nite mass. A quantum field theory based upon this classical 
foundation describes particles of indefinite mass in which 
spin zero bosons obey a second order Fock equation, our 
Eq. (2.9) 

In Sec. II we attempt to model the electromagnetic field 
within the framework of this formalism. Our new theory of 
electromagnetism is built around the interaction Lagrangian 
(2.1), in which the conserved 5-current (2.2) characteristic of 
indefinite mass theory is coupled to as-potential 

(A I";V 12). 

A principle of gauge invariance is thereby built into the the
ory. In the complete Lagrangian (2.10) of the electromagnet
ic field, the free field part is chosen to be a gauge invariant 
structure that leads to wave equations that are second order 
Fock equations. The theory presented here is essentially 5-
dimensional in nature. This is reflected in the fact that the 
potentials acquire a new 5th component, V 12, not present in 
conventional electrodynamics. The new electromagnetic 
equations are presented in 3-dimensional form in Eqs. 
(2.23)-(2.29), and in 4-dimensional form in Eqs. (2.30)-(2.34). 
It is recognized that the model embodied in the new equa
tions may be provisional, since much more will need to be 
investigated before it becomes clear whether the new equa
tions can be a correct law of nature and whether they can be 
equivalent to the usual electromagnetic theory in a suitable 
limiting case. With this proviso, we proceed to take our mod
el seriously, and to investigate its consequences. 

Quantization of the new equations is carried out in Sec. 
III. Because our evolution parameter is independent of the 
space-time coordinates, the Lorentz gauge condition 
JI' A I" = 0 can here be treated like the Coulomb gauge of con
ventional electrodynamics. Accordingly, our quantization 
procedure parallels Coulomb gauge quantization in ordi
nary electrodynamics. Generalized coordinates qQ(k,7) are 
introduced (Sec. III A) in terms of which the potential has an 
expansion (3.13) in which the eQ (k)1" are polarization 4-vec
tors, and thef(k,x) are the real basis functions (3.9). Conju
gate momenta (3.23) can be defined in the usual way (Sec. III 
B) and simple canonical quantum conditions (3.24) can be 
imposed, thereby defining the operator structure of the the
ory. The implied quantum conditions in coordinate space, 
Eq. (3.43) of Sec. III C, have a form familiar from conven
tional Coulomb gauge quantum theory.8 An unpleasant re
sult of our quantization procedure is the use of an indefinite 
metric in Hilbert space, spacelike states with the timelike 
polarization vectors having negative norm. As a kind of 
compensation for going over to an indefinite metric, the free 
photon Hamiltonian (3.42) turns out to be negative definite 
for all states, including the "bad" states mentioned above. In 
Sec. IV the photon propagator is calculated. This has a form 
[see Eq. (4.5)] containing additional terms of a type familiar 
from conventional Coulomb gauge quantum theory. Pre
vious experience with conventional Coulomb gauge field 
theory suggests the possibility of removing the additional 
terms in Feynman integrals by use of current conservation 
and suitable integrations by parts. This procedure is iIlus
tr'ated with the example of the vacuum-vacuum amplitude 
and leads to a simplified effective photon propagator, Eq. 
(4.16), for use in Feynman integrals. 

In Appendix A we explore the physical interpretation 
of the 5-current conservation law, Eq. (2.2). We find that this 
conservation law can be understood in simple classical 
terms, assuming the 4-current density JI" to be only a partial 
current density due to some but not all of the particles pre
sent. The ideas developed in Appendix A are proven out in 
Appendix B, where we calculate cross sections for scatter
ing, pair production, and pair annihilation, using the indefi-
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nite mass formalism. The model considered [see Eq. (B1)] is 
that of a particle obeying the first order Fock equation and 
interacting with a conventional arbitrary external c-number 
electromagnetic field. Results in agreement with the usual 
quantum theory of particles of definite mass are obtained, 
and this agreement holds to all orders in the interaction. 

We continue to use the same notation as in Ref. 7: 
Heavyside-Lorentz units are used, with fz = c = 1; and the 
metric in Minkowski space has 
goo = - gil = - gcc = - g.n = 1. The Einstein summa
tion convention is assumed throughout. 

II. GENERALIZATION OF MAXWELL'S EQUATIONS 

We will here attempt within the framework of the in
definite mass formalism of Ref. 7 to model the electromag
netic field interacting with a prescribed c-number source. 
We shall assume that a principle of gauge invariance remains 
meaningful in the new formalism. Accordingly we expect a 
gauge invariant interaction Lagrangian in which a potential 
is coupled to a conserved current. Now in indefinite mass 
theory we have no conserved 4-current, but we do have a 
conserved S-current. Therefore, the postulated interaction 
Lagrangian will take the form 

./", = _p!V-A,JII, (2.1) 

in which p and JI' form a conserved S-current: 

ap + a,J11 = 0. (2.2) 
aT 

Our model of electromagnetism will be built around the in
teraction Lagrangian (2.1). It is evident that the potential of 
the electromagnetic field has acquired a new degree of free
dom, V /2, not suggested by Lorentz invariance alone; and 
that our theory will be five-dimensional. 

The electromagnetic field tensor FAn is identified with the 
curl of the five vector potential, 

.on=(AI,;!V), 

B = 0, I, 2, 3, 4, 

FA/I=dA.o IJ -dIJ.oA, 

A, B = 0, 1,2,3,4, 

formed using the five gradient operator: 

d l -(all ;a4 ), 

A = 0, 1,2,3,4; a4=alaT. 

Equation (2.4) is equivalent to the pair of equations 

F,,,. = aliA,. - a,.AII 

and 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

in which the dot signifies differentiation with respect to evo
lution time. From Eq. (2.4), the generalized homogeneous 
Maxwell's equations 

(2.8) 

are immediate. 
Next we consider the inhomogeneous Maxwell's equa

tions. The option of writing down an electromagnetic theory 
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fully covariant under a S-dimensional Lorentz group has 
been suggested earlier by Katayama, Sawada, and Tagagi;' 
and leads to five-dimensional wave equations of the Klein
Gordon type. Because of the rigorous correspondence limit 
established in Ref. 7 for Fock type indefinite mass equations; 
we here wish to investigate the possibility of generalizing 
Maxwell's equations in such a way that the wave equations 
of the new theory will be of the Fock type. Since we want to 
describe a real field obeying Bose-Einstein statistics, the sec
ond order Fock equation [Eq. (4.21) of Ref. 7, repeated here 
for convenience] 

- +- dJ-O {( 
02 )C aC

}_ 

2 aT2 (2.9) 

is appropriate. We thus expect a wave equation in our new 
electromagnetic theory of the general form 0.0 = r, in 
which r is a source term and 0 is an operator which is sec
ond order in the evolution time but fourth order in ai' . A 
gauge invariant Lagrangian that meets these requirements is 

f = 1(,1 - la VIlA I' - l()iIV) 
2 Jl :2 It 2 

- l()i'F a F?'" - pI V - A JI'. X Ill'.Ii. 2 f1 (2.10) 

The implied Lagrangian equations of motion are 

{( OC)2 aC
} _ - + - A - - JII + ,,_1 all (,,_1020.A + V) 

2 aT2 I' 

(2.11 ) 

and 

~02V= -p + D·..\.. (2.12) 

In a "Lorentz type" gauge, 

~020.A + V = 0, (2.13) 

the equations of motion (2.11) and (2.12) go over into simple 
inhomogeneous second order Fock equations 

{( 
0")2 a

2 }A = + a 7 I' 2 T-

(2.14) 

and 

{ ( 
02 )2 a2

} _ 0
2 

- + - V- - p, 
2 aT" 2 

(2.15) 

thereby justifying our choice (2.10) of the Lagrangian densi
ty. The form of the inhomogeneous equations for the gener
alized Maxwell field tensor F AIJ is implicit in Eqs. (2.11) and 
(2.12). They are quite simply expressed through the use of a 

"contravariant" analog 

(2.16) 

A = 0, 1, 2, 3, 4, 

of the five-dimensional gradient operator (2.5). In terms of 
d A we can write the inhomogeneous Maxwell's equations as 

dApIII = -r/l' 

in which 

rll-(JII ;(0
2/4)p), 

B=0,1,2,3,4, 

(2.17) 

(2.18) 

are the "covariant" components of the five current density. 
By application of the operator d IJ on both sides ofEq. (2.17) 
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and contracting on B the five current conservation law 

dBrB = 0 (2.19) 

can be derived [written out in component form Eq. (2.19) 
reads (021 4)iP + a 1.1 ") = 0). By working with the operators 
d A and d A we are thus able to create the illusion of imitating 
the familiar Maxwell theory while staying within the frame
work of Fock type equations. Of course there is no underly
ing five-dimensional manifold that could give our terms "co
variant" and "contravariant" their usual meaning in the 
sense of Riemannian geometry.9 That the terms covariant 
and contravariant seem apt however, is illustrated again in 
the identity 

(2.20) 

showing that the "Laplacian" of our theory is precisely the 
relevant wave operator of our theory; i.e., the wave operator 
of the second order Fock equation. 

Next we write out our generalized Maxwell's equations 
in three-dimensional form. We define electric and magnetic 
field vectors ~ a and :!iJ a through 

Wa Faa' :!iJ a - !EabcFbc' (2.21) 

a,b,c=I,2,3. 

The new components F41, of the generalized field tensor are 
written in terms of a three vector Na and a scalar Was 
follows: 

F40 W, F4a - N a , (2.22) 

a=I,2,3. 

In terms of the fields (2.21) and (2.22) the homogeneous Max
well's equations (2.8) take the form 

affiJ 
Vx~ = - -, (2.23) at 
V·.J/} = 0, 

. aN 
~=-VW-at ' 
~ =VxN, 

(2.24) 

(2.25) 

(2.26) 

in which the dot signifies differentiation with respect to evo
lution time. 

The new vector N and scalar Ware seen to be a vector 
and scalar potential describing the change of ~ and :!iJ with 
evolution time. Note, however, that in contrast to the origi
nal five potentials (2.3) the potentials Nand Ware physical 
gauge invariant objects. From the inhomogeneous Max
well's equations (2.17) we get 

and 

V·N = p - awlat, 

!02V.W = - Jo - W, 
(2.27) 

(2.28) 

(2.29) 

In 4-dimensional form the new Maxwell's equations read 

F;,v = a}1Nv - avN}1' 

a}1FVA + aVFAI, + aAF
"
" = 0, 
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(2.30) 

(2.31) 

and 
102a AF - (J + N· ) 4 AI' - -}1 I' , 

where 

Ill. SECOND QUANTIZATION 
A. Generalized coordinates 

We will work in the Lorentz gauge, for which 

(2.32) 

(2.33) 

(2.34) 

ef'A '1 = O. (3.1) 

Because of the use of our new evolution parameter T, the 
constraint equation (3.1) is holonomic. Accordingly, inde
pendent generalized coordinates of the field can be found 
that obey the constraint equations identically. In this respect 
quantization in the Lorentz gauge is for us like Coulomb 
gauge quantization in ordinary quantum electrodynamics. 
As indicated in the introduction, however, the parallel is not 
perfect, since we will require the use of an indefinite metric, 
in contrast to the case of ordinary Coulomb gauge quantiza
tion. We use a special symbol (5 to denote the adjoint of an 
operator 0 acting on a Hilbert space with indefinite metric. 
Thus the reality of the 5-potential is ex pes sed in the form 

A" =A
"

, !V= W. (3.2) 
To find generalized coordinates of the field we go over 

to momentum space, defining 

A = J d 4 k a (k T)e - ik·x 
I' (21T)4Ik211/2 I" • 

The Fourier amplitudes a}1 (k, T) obey the constraint 
equations 

(3.3) 

a}1(k,T) = ;;,,( - k,T) (3.4) 

expressing the fact that the field A" is real. This constraint 
equation is equivalent to the two relations 

"'}1(k,T)1 = a}1( - k,T)1 

and 

f7}1(k,Tb = - a,,( - k,Tb 

on the real and imaginary parts of a,l: 

(a,,) I =~(a" + ;;,,), (ai' b=!i(;;" - a,,). 

(3.5a) 

(3.5b) 

The relations (3.5a) and (3.5b) express the fact that the real 
and imaginary parts of the Fourier amplitUde are even and 
odd, respectively, in k. This suggests expressing the real and 
imaginary parts of ai' as the even and odd part, respectively, 
of a general real function Q" (k,T): 

ai' (k,T)I=!(Q,,(k,T) + Q,,( - k,T)), 

al'(k,Tb-!(Q"(k,T) - Q,,( - k,T)). 

(3.6) 

(3.7) 

The constraint equations (3.5a) and (3.5b) are automatically 
obeyed if we work in terms of the coordinates QI'. In terms of 
the Q" the representation (3.3) becomes 

A = kT kx J d4k 
I' (21T)4Ik211/2Q,,( , If( , ), (3.8) 

in which the functionsf(k,x) are 
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f(k,x)=!(1 + i)e - ;k·x + ~(1 - i)e;k.x. (3.9) 

The real functionsf(k,x) form an orthonormal set: 

f d 4xf(k2,x)f(k"x) = (21T)484(k2 - kIlo (3.10) 

The representation (3.8) is a general representation of a real 
field, AI" For the case at hand we require the further relation 

kl'Q..,(k,r) = 0, (3.11) 

expressing the Lorentz gauge condition (3.1). To integrate 
the constraint equation (3.11) we introduce three real orth
onormal basis vectors ea (k) (a = 1, 2, 3 for k 2> 0; a = 0, 1, 2 
for k 2 < 0) orthogonal to k, and expand Q.., as 

Q..,(k,r) ea(k)..,qa(k,r). (3.12) 

The qa(k,r) thereby introduced are true generalized coordi
nates of the electromagnetic field: the qa(k,r) are real and 
independent, and the potential 

(3.13) 

obeys all the needed constraint equations identically. For 
future reference we note the relations 

a,~ 

C' 0 

~J 
ao 

ea, (k)·ea , (k) = ; 0 -1 

0 0 
=ga a (k 2), ,. , (3.14) 

k2>0 
a,---* 

and a,( 0 

~J ea, (k)-ea , (k) = ~ 0 -1 

0 0 

=ga"a, (k 2), (3.15) 

k2<0. 

For timelike k the ea (k) are three spacelike vectors; but for 
spacelike k one unit vector, chosen to be eo(k), must be 
timelike. 
B. Lagrangian and quantum conditions 

It is a straightforward matter to substitute the represen
tation (3.13) into the Lagrangian (2.10) and integrate over all 
space-time to obtain the total Lagrangian in the form 

L-'" d
4
k { ("a'b_ Ik

2
12 a b) (3.16) 

- L (21T)4Ik 21 gab '1q q 8 q q 

k 2 

- qaea·J(k,r) + ~ - [V(k,rW 
- 4 

- ~(k,r)V(k,r)}, 
in which V(k,r), J(k,r), and p(k,r) are defined through the 
equations 

f d4k 
V(x,r)- 41 21'/2 V(k,r)f( - k,x), 

(21T) k 
(3.17) 

f 
d4k 

J(x,r)== 41k 01'/2 J(k,r)f(k,x), 
(21T) -

(3.18) 
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and 

f 
d4k 

p(x,r)== (21T)4Ik 21'12 p(k,r)f( - k,x). 

To obtain Eq. (3.16) the relation 

a..,J(k,x) = k..,J( - k,x) 

was required. 

(3.19) 

(3.20) 

Since the velocity V (k, r) does not appear in the Lagran
gian (3.16), the Lagrange equation for V degenerates into a 
constraint equation. This constraint equation, k 2~ V = p, can 
be integrated to give 

V(k,r) = (21k 2)p(k,r). (3.21) 

Of course, in the Minkowski metric the quantity 11k 2 is sin
gular. We must therefore provide a prescription defining the 
singularity. Since we require 11k 2 in Eq. (3.21) to carry a real 
function into a real function, we assume a prescription such 
as 

(3.22) 

This prescription will be implicitly assumed in subsequent 
occurrences of 11k 2. 

The conjugate momenta Pa _aL lail, where L is the 
Lagrangian (3.16), are found to be 

P = d
4
k 'b (3.23) 

a (21T)4Ik 21 gabq . 

Canonical quantum conditions can be imposed in a straight
forward way, the only nonzero commutators being 

(3.24) 

Substituting the expression (3.23) for Pa into (3.24), and pass
ing to the continuum limit, gives 

[qa(k2,r);l/ (k\,r)] = ilk \ Igah (21T)48 4(k2 - k\) (3,25) 

gah_ gab · 

The Hamiltonian H =='i.ilaL lait - L, where L is the La
grangian (3.16) has the form 

H=Ho+H1NT 

in which 

is the interaction Hamiltonian. 

(3.26) 

(3.27) 

(3.28) 

We introduce raising and lowering operators that pro
vide a factorization of the free photon Hamiltonian (3.27): 

aa(k,r)==~qa(k,r) - (illk 21)qG(k,r), (3.29) 

(ia(k,r) = ~qa(k,r) + (illk 2IW(k,r). (3.30) 

The commutation relations for the creation and annihilation 
operators are 

[aa(k
2
,r);(ib(k\,r)] = - gab (21T)484(k2 - k l ). (3.31) 

In view of the relation gab = gah and Eqs. (3.14) and (3.15), it 
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is apparent that the sign of the commutator in Eq. (3.31) is 
positive except for spacelike 4-momenta with timelike polar
ization vector eo' Therefore the operators aa,aa are clearly 
lowering and raising operators, respectively; except for the 
"bad" states mentioned above having spacelike 4-momen
tum and timelike polarization vectors eo. Now in order to 
obtain a Lorentz invariant propagator, we find it necessary 
to continue to treat aO as an annihilation operator. It is at this 
point that we encounter the need for a Hilbert space with an 
indefinite metric. In order to continue to treat aO as an anni
hilation operator in the face of the commutation relation 

[aO(k2,1-j;UO(kl ,r)1 = - (21T)484(k2 - k l ), (3.32) 

k 22 < 0, k 2 I < 0; 

we assume an indefinite metric in our Hilbert space, along 
the lines of Gupta and Bleuler. For our present application 
we need not enter into great mathematical detail on the in
definite metric, 10 but it is worth pointing out that in this 
Gupta-Bleuler scheme it is not a<) aO but its negative, - UO aO, 
that is a positive definite operator. As a result all states, in
cluding the bad states, contribute -! I k 21 to the free photon 
Hamiltonian (3.27), 

(3.33) 

The free photon Hamiltonian in this scheme is thus a nega
tive definite operator. 

C. Traveling wave representation, return to coordinate 
space 

The canonical variables having served their purpose of 
determining the basic commutator structure of the theory; 
we now make a canonical transformation to a more conve
nient representation. We solve Eqs. (3.29) and (3.30) for q a 

and q U in the form 

(3.34) 

and 

(3.35) 

Using the representation (3.13) of Ail in terms of the canoni
cal variables, we find the following traveling wave represen
tations of A" and A,,: 

A = J d 4 k U 8C'.) {a a(k r)e - ik·, + ;:?a(k r)e1k.,} 
I' (21T)4Ik211/2"' 1" , 

(3.36) 

and 

(3.37) 

in which 

aU(k,r)=aU(k,r)!(l + i) + Eu (k 2)aU( - k,r)!(l - i) (3.38) 

and 

;:?U(k,r) = aa(k,r)!(1 - i) + Ea(k 2W( - k,rH(1 + i). 
In these equations Eu (k 2) is the parity of ea (k): 

eat - k)=Ea(k 2)ea(k). 
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(3.39) 

(3.40) 

It can be verified that the new operators introduced through 
Eqs. (3.38) and (3.39) are again a set of raising and lowering 
operators: 

[aa(k2,r);;:?b(k l ,r)1 = - gab (21T)484(k2 - kl)' (3.41) 

The free particle Hamiltonian (3.33) goes over into a similar 
structure, 

(3.42) 

when expressed in the new representation. 
The one-evolution-time coordinate space commutation 

relations, 

(3.43) 

can be derived quite simply by use of the traveling wave 
representations (3.36), (3.37), and the commutation relations 
(3.41) for the raising and lowering operators. We have here 
returned to the coordinate space picture with which we start
ed. For completeness we also present the free photon Hamil
tonian (3.27) and the interaction Hamiltonian (3.28) in co
ordinate space: 

(3.44) 

and 

(3.45) 

IV. VACUUM-VACUUM AMPLITUDE AND FREE FIELD 
PROPAGATOR 

It is straightforward to obtain the equation of motion 
~a = i!lk 21 aa of the lowering operator in the free field case. 
The evolution-time development of the free field lowering 
operator is thus 

(4.1) 

in which the initial values aa(k,O),aa(k,O) are a set of evolu
tion-time independent raising and lowering operators obey
ing the commutation relations (3.41). The representation 
(3.36) can now be rewritten in the form 

A = J d 4k e (k) {aa(k Ole - Ik·, + ilk "7/2 
i' (21T)4Ik 211/2 a I' ' 

(4.2) 

which exhibits the evolution-time dependence for free fields 
explicitly. Next we consider the propagator 

iDF (2, 1)l'v=(OI T(AI' (2)A,,( 1))10) 

(4.3) 

in which Ail is given by (4.2). Since the calculation of a vacu
um expectation value such as (4.3) is quite standard, H we omit 
the details. The end result is most simply expressed in mo
mentum space. We define 
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and find 

iDF(k,N)fLY = (- gfLY + kfLkjk 2)iDF(k,N), (4.5) 

in which iDF(k,N) (without Lorentz indices) is the scalar 
propagator found in Ref.7,11 

(4.6) 

In coordinate space this scalar propagator is a solution of the 
inhomogeneous second order Fock equation 

[(!022)2 + a~2 ]DF (2,1) = <5
4(X2 - X1)O(72 - 71), (4.7) 

The additional term, proportional to kfLky in the ex
pression (4.5) for the full tensor photon propagator is the 
analog of an additional kikj term in the transverse photon 
propagator of ordinary Coulomb gauge quantum electrody
namics. In ordinary Coulomb gauge quantum electrody
namics the additional term mars the manifest Lorentz in
variance of the theory. However, as is known, manifest 
invariance can be restored in Feynman integrals, since the 
additional term can be eliminated by use of current conser
vation and suitable integrations by parts. For the case at 
hand the additional k"k y terms pose no threat to manifest 
Lorentz invariance. On the other hand, it is expected that in 
Feynman integrals the additional terms could still be elimi
nated, with some resultant simplification of the propagator. 
In the following we illustrate this for the simple example of 
the vacuum-vacuum amplitude in the theory with c-number 
source terms restored. 

In order to calculate the amplitude for the vacuum to 
remain a vacuum in the original theory with c-number 
source terms present, it is necessary to go over to an interac
tion representation. Our interaction picture parallels exactly 
the interaction picture familiar from ordinary field theory, 
and differs from the latter only in our use of the new evolu
tion parameter 7. The vacuum-vacuum amplitude thus has 
the familiar structure 

(O,out\O,in) = (O,in\S \O,in), (4.8) 

in which 

(4.9) 

is the S matrix. Ifwe substitute the expression (3.45) for Hint' 

Eq. (4.8) becomes 

(O,out\O,in) 

= (O,in\T {exp[ - is'''- oc (d7{J
"
N\, - ~ ~2 p)]} \O,in). 

Here we have employed the shorthand notation 
(4.10) 

(4.11) 

Here Ain is the free field that reduces to the Heisenberg field 
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in the remote past as regards evolution time. Since the factor 
exp(iS(d7)~O-2p) has no operator structure, it can be 
brought outside the time ordering sign, and outside the ma
trix element. The factor 

(O,in\ T [exp( - is(dr)J,,AfLin) I\O,in) 

is evaluated by expanding the exponential, using Wick's 
theorem, term by term, and summing the resultant series of 
c-numbers. The end product of these transformations is 

(O,out\O,in) 

= exp[ - Vf(d7tl(d72)JfL(2)DF(2,I)fLJY(1) 

+ if(d7)~0-2p}. (4.12) 

The photon propagator iDF (2, 1 )IlY in Eq. (4.12) originated 
from the Wick pairing of two photon fields in accordance 
with Eq. (4.3). Next we substitute 

iDF(2,1),,,, = ( - gl'Y - a21,a1yO-\)iDF(2,1) 

[a coordinate space form ofEq. (4.5)] in Eq. (4.12) and move 
the factors a21l and a1y to the currents by integration by 
parts. The 5-current conservation law (2.2) and two further 
integrations by parts then gives 

(O,out\O,in) 

= exp [ - !J(d7d(d72)J1'(2)( - g"y)DF(2,llt(l) 

- ~J(d7tl(d72)P(2)[ 0-\( a~J2DF(2' 1)]P(I) 

+ J(d7)~0-2p]. (4.13) 

A final step in the reduction uses the differential equation 
(4.7) of the scalar propagator to eliminate the operator 
(a /a72)2 in (4.13). The delta function term from the differen
tial equation is found to exactly cancel the last factor 
exp(iS(d7)~0-2p), and we obtain the rather simple result 

(O,out\O,in) 

= exp { - !J(d71)(d72) [J,,(2)( - gl'Y)DF(2,I)Jv(l) 

-p(2)!0\DF(2,I)p(I)]}. (4.14) 

This result justifies for this example the above suggestion 
that the k"k" term is the propagator (4.5) can be dropped in 
Feynman integrals. Note, however, the attendant modifica
tion of the p dependent terms in the amplitude. The transi
tion from (4.12) to (4.14) parallels exactly the transition in 
ordinary field theory from a Coulomb gauge Feynman inte
gral to an equivalent Feynman integral in the Lorentz gauge. 
To exhibit this parallel more explicitly we cast Eq. (4.14) in 5-
dimensional form as follows: 

(O,out\O,in) 

= exp{ - !z-j(d7 tl(d72JFA (2)DF (2, I)ABr B( I)}. (4.15) 

Here r A denotes the 5-current (2.18), and the components of 
the propagator D 1'(2, I )AB are 
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o 2 )DF (2,1). 
-4/D 2 

(4.16) 

It is the S-dimensional propagator (4.16) that corresponds in 
the present formalism to the Lorentz gauge propagator of 
conventional quantum electrodynamics. 

APPENDIX A: PHYSICAL MEANING OF THE 5-
CURRENT CONSERVATION LAW 

Observationally, we are bound to view phenomena as 
"evolving" in observer's time. We shall therefore attempt to 
interpret the 5-dimensional conservation law [Eg. (2.2) re
written here for convenience] 

ap ar 
- + - +V'·J=O 
a7 axo 

(AI) 

from this point of view. Our interpretation will be in essen
tially classical terms. First we integrate (A 1) over a volume V 
of 3-space and over an interval 71 < 7 < 72 of evolution time. 
The result is 

1= II + III, (A2) 

(A3) 

(A4) 

:md 

(AS) 

Figure 1 suggests a photograph of the particles in V taken by 
an observer at one observer's time, xo. Each particle is 
equipped with a clock reading its own evolution time, 7. Be
cause of the indefiniteness of the relationship between ob
server's time and evolution time, the clocks show a statistical 
distribution of values of evolution time. We denote by S (71, 
72) the subset of particles in Vwhose clocks read in the range 
71 < 7 < 72, In Fig. 1 these clocks are represented by solid 
circles. 

We know that the usual four-current density obeying 
a~fl =Ois 

f = f: oc d7J1'. 

We assume this usual four-current density to describe the 
total four-current of all particles in V, irrespective of the 
values of their evolution times. The representation ofr as an 
integral suggests that d7 JI' describes the partial four-current 
arising solely from particles in V, whose evolution times lie 
in the range (7, 7 + d7). Accordingly, we interpret the 
integral 

iT'd7Jfl, 
T, 

which appears in expressions I and II, as the partial current 
due to only the particles present in V that belong to the sub
setS(71,72 )· 

Now consider the terms I, II, and III ofEg. (A2). Term I 
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FIG. I. Five-dimensional current conservation law. Each particle is 
equipped with a clock reading its own evolution time. The current density 
f~~ dr J" refers to only a subset of particles in V(see text discussion), depicted 
here as the subset S, whose evolution times lie in the range "12 o'clock" to 
"6 o'clock". In addition to simple transport across the boundary, the num
ber f"d Jrf~~drJo of particles in Scan change if the evolution times of inter i
or particles change in such a way as to fall within the requisite range. This 
"selection" mechanism accounts for the term - ap/ar in the current con
servation law aJo/axo = - V·J - ap/ar. 

is the (net) rate of increase per unit of observer's time of the 
population of the subset S (71, 7 J There are two mechanisms 
that contribute to this rate of increase. There is the simple 
transport into or out of V of particles having their evolution 
times in the requisite range (particles 1, 2, and S in Fig. 1) to 
belong toS (71,72), The rate per unit of observer's time due to 
this transport mechanism is represented on the right hand 
side of Eq. (A2) by the term II. 

Now consider particle 7 in Fig. 1. This particle is within 
Vbut at observer's time Xo does not have its evolution time in 
the requisite range to belong to S (71,72)' Classically speak
ing, however, for anyone particle a small increase in ober
server's time will imply a small increase of evolution time. 

By observer's time Xo + dxo, therefore, particle 7 will 
have its evolution time in the requisite range and, being still 
within V, will join S (7 I' 72), Particle 4 is an example of the 
reverse process. We have here a second mechanism, a "selec
tion" mechanism, whereby particles can join or leave the 
subset S (71,72), 

We can calculate the rate at which particles are added 
to S (71,72 ) through the selection mechanism. We have an 
interpretation of p as a space-time probability density. From 
the standpoint of our observer, who is bound to see events as 
evolving in observer's time, the quantity 

dx°ivd 3rp(X,7d 

will measure the number of additional particles having evo
lution time 71 that are seen during the interval of observer's 
time dxo. But these are precisely the particles that will join 
S (71,72) during the interval dxo of observer's time. Dividing 
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by dxo gives 

Ld 3rp(X,7tl 

equals the rate, per unit of observer's time, of additions to 
S(7), 72) due to the selection mechanism. This accounts for 
the lower limit of the term III in the current conservation 
law (A2). Similarly, the rate at which particles leaveS (7),72) 
through the selection mechanism is 

f/ 3rp(X,72). 

This accounts for the part of III corresponding to the upper 
limit. 

APPENDIX B: SCATTERING CROSS SECTIONS 

Armed with the physical picture of the S-dimensional 
current conservation law developed in Appendix A, we are 
now in a position to calculate scattering cross sections. The 
first order Fock equation of Ref. 7 will be used as an exam
ple. For simplicity we use first quantization techniques. The 
wave equation t ,be solved [Eq. (3.16) of Ref. 7] is 

(Bl) 

V=lie(A "a + a A") - le2A I'A -2 I' I' 2 1" 

In order to establish contact with the familiar results of con
ventional quantum theory of particles of definite mass, we 
neglect the new Sth component of the potential and assume 
that AI' is independent of evolution time. Otherwise A" can 
be an arbitrary space-time function. 

Equation (B 1) can be integrated using the standard lore 
of scattering theory, but with 7 as evolution parameter in
stead of xO. Thus, the first step is to convert Eq. (B 1) into an 
equivalent integral equation: 

rp +;(2) = rp;(2) + f d 4x)d7)Go(2,1)V(I)rp +;(1). (B2) 

Here rp + ;(2) denotes the exact solution of the wave Eq. (B 1) 
that reduces in the remote past of evolution time to the plane 
wave rp; (2). The function Go(2, 1) is the free particle Green's 
function of Ref. 7 with the momentum space representation 
[Eq. (4.19) of Ref. 7, but with a new normalization] 

Go 1/[~2 - ~N(l - iE)]' E>O. (B3) 

The probability amplitude to see the state rpJ in the remote 
future of evolution time is given by the inner product 

(B4) 

It will be convenient to transform (B4) using standard reduc
tion techniquesK into the form 

Sfi = - J d4X2d72rpJ*(2{ - ~D\ - + a~2 )rp; +(2), 

f#i. (BS) 

In order to guarantee the interpretation ofthe dot prod
uct (B4) as a probability amplitude, it is necessary to require 
the plane wave states to be orthonormal with respect to the 
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metric (rpb;rpa) = f d 4Xrpb *(x)rpa (x) appropriate to the wave 

equation (B 1). Accordingly, the plane wave solutions of the 
free particle Fock equation are written 

rp;(x) = e- ,1'·, + ;m"TI2/( VT) )/2, 

pO + (m 2 + PaPa)), 

(electrons); 

and 

p o= + (m 2 + PaPa);' 

(B6) 

(B7) 

(positrons); and similarly for rpj. Periodic boundary condi
tions in a space-time box are assumed. Next, we need the 
current of the initial state (B6) or (B7). The discussion of 
Appendix A indicates that the experimentally observed cur
rent will be the total current of all particles seen at one ob
server's time, irresrective of the values of their evolution 
times: J = Sd7!rpj *( - i)Vrpj. Substituting either (B6) or (B7), 
we find 

(BS) 

in which A represents the duration in evolution time of the 
scattering. 

Note that we did not encounter an overall sign change 
in Eq. (BS) for negative frequency final states, in contrast to 
the corresponding situation in conventional quantum me
chanics of particles of definite mass. This absence of a sign 
change reflects the fact that the boundary conditions in evo
lution time are strictly retarded boundary conditions for all 
timelike states. Accordingly, the initial state at 7 = - 00 

can for us be either an electron state (B6) or a positron state 
(B7).1t is known2

,7 that these strictly retarded boundary con
ditions in evolution time for the timelike states imply the 
usual Feynman boundary conditions in observer's time, 
Evolution time 7 = - 00 thus corresponds to observer's 
time Xo = - 00 for electrons and to observer's time 
XO = + 00 for positrons,)2 In either case 7 = - 00 is the 
initial point on the world line of the particle in a convention
al Feynman diagram. Similarly, 7 = + 00 is always the final 
point on the world line in a conventional Feynman diagram. 

To proceed, we solve Eq, (B2) by iteration in the usual 
way, obtaining 

rp / (2) = fd4X)d7)G (2,1)( - !D2) - (1 - iE) ~~) 
I a7) 

Xrpj(I), (B9) 

in which G (2, 1) is the fully interacting Green's function of 
our wave equation (Bl): 

G (lJJ JJI'-(I-iE)~~)-I. 
2 I' i a7 

(BIO) 

Substituting the result (B9) into Eq. (BS) for the transition 
amplitude gives 
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Sfi = - if d4X2dT2d4XldTlifJ/(2) 

x ( - !022 - (I - ic) ~ ~ ) 
/ aT2 

XG(2,1)( - !02 1 - (1- ic)~~)ifJi(I), (BII) 
/ aTI 

f=l=-i. 

Under our assumption that the 4-potential shall not contain 
the evolution time, the operator sandwiched between the 
states ifJ/ and ifJi in Eq. (BII) is diagonal in the mass
squared. We can thus perform the TI and T2 integrations in 
Eq. (B II) explicitly. Substituting plane wave states and inte
grating leads to 

Sfi = - :T f d4X2d4Xlf dT2dTI 

Xei<?fX
, - im'r,12( - !022 - (I - ic) + a~2 ) 

xf dN eiN(r,-r,)l2G(X2,XpN) 
41T 

X - 1 - - /c - - e , ( 0 2 (I .) I a ) - i<,P,x, + im',r,/2 
2 I i aTI 

which reduces to 

. 4m5(m2j - m 2
i ) 

Sji = -/ Mfi, 
VT 

M =fd4 d 4 i<?rX'T(2 I 2)e- i <;P,x, ji- X2 xle , ,m , , 

(B12) 

(BI3) 

f=l=-i, ciJ=I(electrons), ciJ= - I(positrons), 

T(2,I,m 2
i )=( - ~022 - (I - ic) ~~)G(X2'XI,m2i) - / aT2 

x( - !02 1 - (1- ic) + a~J· 
(BI4) 

In the derivation leading to Eq. (BI2) the TI integration gives 
a factor 4m5(N - m 2

i ). The N integration then collapses, 
with a replacement of N by m i 2 throughout. The factor 
4m5(m2j - m 2

i) results from the final T2 integration. The 
mass-squared representation G (x2,x l ,m

2
i) of the fully inter

acting propagator G (2, I) is defined through the equation 

G(2,1)=f dN eiNlr,-r,)I2G(X2,XI,N). (BIS) 
41T 

The Green's function G (X2,x I,N) is two times the familiar 
interacting Green's function of the Klein-Gordon equation 
with mass-squared N: 

r !ll22 - ~(I - ic)N]G (X2,x I,N) = 15 4(X2 - XI)' (BI6) 

To go over from a probability amplitude to an actual 
probability we take the absolute square ofEq. (BI2). Using 
the replacement 41T15(m2 = 0) = fdT = A, we find 

41T15(m 2j - m 2
i )A 

ISji 12 = V 2T2 IMfi 12, (BI7) 

f=l=-i. 

Next, we divide by Tto obtain the transition probability per 
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unit of observer's time, and divide again by the magnitude of 
the incident current (BS), in order to convert the transition 
probability per unit of observer's time into an equivalent dif
ferential cross section 

41T15(m2 - m 2.) 
dO" = j 'IMfi 12, f=l=-i. 

VT 2 Pi 
(BIS) 

Note the complete disappearance of the evolution time from 
the calculated differential cross section: the expression (B IS) 
involves the familiar space-time degrees offreedom only. 
The mass-squared conserving delta function in Eq. (B IS) will 
have the effect of limiting the scattering of a timelike initial 
state to timelike final states of the same mass-squared. To get 
the scattering cross section familiar from conventional quan
tum theory of particles of definite mass, we sum 150'/ over a 
small range of final mass-squared values centered on the 
value m 2

i. There are d 4nj = VTd 4pj/(21T)4 states in the 
range d 4PJ of the 4-dimensional final energy-momentum 
space. Using the identity d 4p = dm 2d 3p/2E, we find 

dO'_d4n~0" = (VT /(21T)4)(d 3p/2Ej ) 

Xdm 2j 41T15(m 2j - m 2
i)IMfi 12/(VT 2Pi )· 

This simplifies to 
d'P 1M 12 

dO' = j _fi_ f=l=-i . 
(21TfEjPi T 

(BI9) 

Equation (B 19) is our final answer for the scattering cross 
section for scattering oftimelike states of mass m i into a final 
state whose 3-momentum Pj lies in the range d 'Pj' 

It is worthwhile writing out explicitly the matrix ele
ment (B 13) for the various possible processes. From 
Eq. (BI3) we find 

M - fd 4 d 4 iP(X'T(2 I 2) - iP,x, ji - X2 xle , ,m i e 

(electron-electron scattering,J =l=-i), 

M fd
4 d4 -iPr X'T(21 2) ··iP,x, ji = x 2 xle . "m i e 

(pair annihilation), 

Mji = f d4x2d4xle,PrXT(2,I,m2i)e'p,X, 

(pair production), 
and 

(B20) 

(B21) 

(B22) 

Mji = f d 4x 2d
4xI - e 'P r XT(2,I,m 2

i )e'p,X, (B23) 

(positron-positron scattering, f =I=- i). 
These integrals are set up starting with a conventional 

Feynman diagram. The T = - 00 state is taken to be the 
plane wave describing the particle or antiparticle found at 
the beginning of the world line, in accordance with our earli
er discussion. Similarly, the T = + 00 state corresponds to 
the particle or antiparticle found at the end of the world line. 
The expressions for dO' computed by substituting Eqs. (B20)
(B23) into Eq. (BI9) will be found to be identical to the ex
pressions obtained for the same processes by use of the con
ventional quantum theory of particles of definite mass. x 
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momentum space form 

(
_ !k2"",. 

gAB = 4 15 

° ~) 
can be the metric tensor of an ordinary Riemannian manifold. This obser
vation could perhaps point the way to a 5-dimensional in variance group of 
our equations, but this has not as yet been pursued further. 

IOFor an exposition of the Gupta-Bleuler method a convenient reference is 
J. M. Jauch and F. Rohrlich, The Theory of Photons and Electrons 
(Addison-Wesley, Reading, MA, 19551. 

"Equation (4.39) of Ref. 7. Note, however, the new normalization: the pre
sent iD F is twice that of Ref. 7. 

'2This point was recognized earlier in Ref. 5, where an alternative treatment 
of the scattering problem will be found. 

Levere Hostler 2316 



                                                                                                                                    

Analytical solutions of geometric optics with an approximation of diffraction 
P. Hillion 
Institut Henri Poincare. 75231 Paris, France 

S. Quinnez 
Faculte des Sciences Mirande, 21000 Dijon, France 

(Received 21 August 1979; accepted for publication 19 June 1980) 

In the first part of this paper, starting with geometric optics equations, we give some simple 
formulas for the intensity of collimated and focused beams when the refractive index has the 
special form n(r) = 1 + E,u(r), where E is a very small number. In the second part, we deal with 
diffraction as a perturbation of the refractive index and give corresponding formulas for 
essentially transversally bounded beams, i.e., beams with smooth boundary and most of the 
intensity near the propagation axis. 

PACS numbers: 42.lO.Dy, 42.lO.Hc 

I. GEOMETRIC OPTICS 

A.lntroduction 

In this paper, starting with the geometric optics ap
proximation of the scalar Helmholtz equation, we prove that 
for a light beam propagating in a medium with refractive 
index: 

n(r) = 1 + E,u(r), (1) 

where E is a very small parameter and ,u(r) a real function, 
the intenstiy J (r) can be written in the form 

J(r) = Ioexp[F(r)j, F(r)= I EnFn(r). (2) 
n=O 

Here we assume the convergence of the series~: ~ o~Fn(r) 
(this difficult question will be discussed more in detail else
where) and we compute FI(r) for collimated and focused 
beams. 

Then, in a second part, we show that diffraction can be 
accounted for as a perturbation of the refractive index using 
instead of n(r) 

n(r) = 1 + E,u(r) + (1/2K~)(1/VI(r)).1 (VI (r)). (I') 

In Eq. (1'), .1 is the Laplacian operator and Ko the wave 
number. The results obtained in this paper have been applied 
to the propagation of a laser beam; in Ref. I we discuss ther
mal blooming and in Refs. 2 and 3 we examine the propaga
tion in a random medium. 

B. Geometric optics approximation 

If we look for a solution of the scalar Helmholtz equa
tion (.1 + Kon2(r))¢(r) = 0 in the form ¢(r) = u(r)eik"Slrl, 

where u(r) and S (r) are real functions, we obtain two 
equations: 

ajs (r)ajS (r) = n2(r) + (1/ K ~ u(r))ajaj u(r), 

2a jS(r)aj u(r) + u(r)ajajS(r) = O. 

(3) 

(4) 

In Eqs. (3) and (4) aj is the derivative a laXj , the indexjtakes 
the values 1,2, and 3 and the usual summation convention is 
used, and r denotes an arbitrary point in R 3. Geometric op
tics is obtained in the lim Ko-oo, so that Eq. (3) reduces to 

ajs (r)ajS (r) = n2(r). (3') 

Remark: We are well aware that this derivation of geo-

metric optics originally due to Sommerfeld and Runge4 is 
open to many criticisms but that is irrelevant for our pur
pose; for a more rigorous derivation see Ref. 5. 

When one substitutes the intensity I (r) = n(r)u2(r) of the 
light beam5

•
6 into Eq. (2), it becomes 

ajs (r)aj [I (r)ln(r) 1 + (I (r)/n(r))ajajs (r) = O. (5) 

As is well known7 Eq. (3') can be solved using the method of 
characteristics. If we denote by s the arc length along the 
rays, we have 

and 

d~(s)/ds = (1/n(s))ajS(s) j = 1,2,3 

dS(s)/ds = n(s), 

(6 a) 

(6 b) 

(6 c) 

Xj'} = 1,2,3 denote the components of the vector r and to 
simplify we write ~ (s), S (s),n(s) instead of 
Xj (r(s)),s (r(s)),n(r(s)). Then Eq. (5) takes the form ofa conser
vation law 

a
j 
( I(S)(d~(S)ldS)) = O. 

Since d Ids = (dXj(s)lds)a j, Eq. (7) becomes 

dI(s)lds + I (s)a1(dXj(s)/ds) = 0, 

and this leads to 

{ is dX(s) } 
I (s) = I (so)exp - a j 

_J_ dO' . 
s. ds 

Substituting (1) into (6 b) gives 

S (s) = S (so) + (s - so) + E L,u(O') dO'. 

(7) 

(8) 

(9) 

The wave fronts are the surfaces S (s) = const and the light 
rays are their orthogonal trajectories with tangent vectors 

ajs (s) = ajs + E {ajs ,u(s) + Laj,u(O') dO'} , (lO) 

so that substituting (lO) into (6a) and using (1), one has 

dX(s) { f' } -;f;- = ajs+EJs.aj,u(O')dO' (1 +E,u(S))-I. (11 ) 
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Then Eq. (2) follows from (8) and (11) when (1 + E,u(S»-1 
is approximated by a power series expansion. 

In the following two sections, we compute the first two 
terms Fo(r),F1(r) ofEq. (2) for a collimated beam and for a 
focused beam. The case of isotropic beams is given in Appen
dix B. 

C. Collimated beam 

Let us remark that in Eq. (11), Jjs does not depend on E, 

which implies that Jj is the derivation operator along the 
unperturbed ray; from now on, to avoid confusion, we de
note this operator by aj' keeping Jj for the derivation opera
tor along the perturbed ray. Then Eq. (11) becomes to first 
order 

(11') 

For E = 0, the unperturbed wave front is planar and we have 
a)s = aj; dXj(s)/ds = aj' where aj is a constant vector such 
that JjsJjs = 1 and (dX j(s)/ds)(dXj(s)/ds) = 1, which im
plies aja) = 1. For E#O the latter relations become, to first 
order approximation, 

JjsJjs = 1 + 0 (E2) 

(dX j(s)/ds)(dXj(s)/ds) = 1 + 0 (E2). 

(12 a) 

(12 b) 

This suggests taking ajs = aj (1 + Eb (s)) + 0 (E2) and deter
mining the function b (s) by (12 b). Using the relations 

one obtains easily 

b (s) = ,u(s) - ,u(so) + 0 (E), 

which leads to 

and after integration, 

Xj(s) = Xj(so) + aj(s - so)n(so) - E 

X (a) L,u(a) da - Ld7 f Jj,u(a) da) + 0 (E2), 

( 14) 

j = 1,2,3. (15) 

In Appendix A, we show that the derivation operator Jj is 

J) = { [1 - E,u(So) + E,u(S)]Djk - Eaj LJk,u(a) da} 

X _J_ + 0 (E2), (16) 
J(aks) 

where Djk is the Kronecker symbol. Then it is easy to check 
(12.a) since one has Jjs = aj + 0 (E). Using (16) and this last 
relation, one obtains easily 

2218 J. Math. Phys., Vol. 22, No. 10, October 1981 

+ fJjJj,u(a) da] + 0 (E2) 

= E fJjJj,u(a) da + 0 (~). 
Then Eq. (8) becomes 

I (s) = I (so)exp [ - E fd7 f JjJj,u(a) da] + 0 (~). (17) 

In Eqs. (14), (IS), and (17),,u(s) is defined by the relation 

,u(s)=,u!Xj(so)+aj(s-so)l + o (E), (17') 

which follows from Eq. (15) to zero order. 

These results depend on the parameters aj which are 
determined by the boundary conditions; then, considering a 
collimated beam as focusing to infinity in the Oz direction, 
we shall see that one has aa = 0, a = 1,2 and a3 = 1. So Eq. 
(IS) gives for j = 3, s = z + 0 (E2) and for a = 1,2, 

Xa(z) = Xa(ZO) + EIds f Ja,u( 0 d; + O(~), a = 1,2, 

(18) 

with, according to (17'), 

,u(s) = ,u(x,y,z) + 0 (E), 

while Eq. (17) becomes 

I (x,y,z) = I (xo,Yo,zo)exp 

(18') 

X [ - E Ids f JjJj,u(x,y,O d; + 0 (~)] . (19) 

Now, provided that I (x,y,zo) has first order continuous par
tial derivatives, one deduces from (18): 

I (xo,yo,zo) = I (x,y,zo) - EauI (x,y,zo) 

X Ids fJa,u(X,y,O d; + O(~) 
that we write since I (x,y,zo) and I (xo,yo,zo) must be some 
positive quantities: 

I (xo,yo,zo) = I (x,y,zo)exp [ - E Ids f 
X JaI(x,y,zo) J",u(x,y,;) d; + 0 (~)] . 

I (x,y,zo) 

Substituting this last relation into (19) gives 

[ iZdf;- is [ au I (x,y,zo) Ip (x,y,z) = I (x,y,zo)exp - E ~ 
z" z" I (x,y,zo) 

X Ja,u(x,y,O + JjJj,u(X,y,;)] d; + 0 (E2)] . 

(20) 

In these relations the index a takes the values 1,2 and the 
summation convention is used; the index p of Ip means that 
the unperturbed wave front is planar. Equation (20) is used 
in Refs. 1 and 3 to discuss thermal blooming and random 
propagation. 

D. Focused beam 

1. Using s as parameter 

We proceed as for a collimated beam but the derivation 
is a bit more combersome. For E = 0, the unperturbed light 
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rays are straight lines converging to the focal point (of pa
rameter sf); then one may introduce a unit vector 

r/s) ,rj(s)rj(s) = (1 _ ~)2 
1 - sisf Sf 

such that 

drj(s) 
-Sf-- = const =a· j= 1,2,3. 

ds 1 

(21) 

For £#0, we take in Eq. (11') 

a r/s) (1 + Ed (s» + 0 (E2), 
jS = 1 _ sis

f 
where the function d (s) is determined so that Eq. (12 b) is 
fulfilled, which gives 

d~(s) rj(s) ['''() (» rj(s) 
-- = + E II'" So - P S 

ds 1 -sisf l-slsf 

+ Laj,u(o) da] + 0 (E2) j = 1,2,3. (22) 

Using (21) a straightforward integration of (22) results in 

Xj(s) = Xj(so) - sfn(sO)(rj(s) - rj(so)) 

+ E(rj(s)vo(s) + vj(s)) + 0 (E2), j = 1,2,3, (23) 

which is nothing but Eq. (15) written in a different form. In 
Eq. (23), one has 

vo(s) = - ,uta) da 1 is 
1 - slsf So 

(24) 
(S (' 

Vj(s) = )..ds ).. aj,u(a) da, j = 1,2,3. 

The function vo(s) satisfies the following relation: 

vo(s) _ (1 _ ~) dvo(s) = p(s). (24') 
Sf Sf ds 

For a beam converging to the focus on the Oz axis, one has 
Xa(sf) = O,a = 1,2,X3(sf) =/ Then theparametersaj andsf 
are given by the relations which follow from (23) with E = 0: 

(23') 
ajaj = 1; f = X 3(so) + a3(sf - so)· 

In Appendix A, we show that the derivation operator in 
terms of a larj(s) is 

aj = - ~ { [1 - E,u(So) + £vo(s) ]Ojk _ Erj(S) 
Sf Sf 1 - sisf 

x [rk(s) dvo(S) + dvk(s) ] } _a_ + 0(E2) 
ds ds ark (s) 

j = 1,2,3. (25) 

Then using the following straightforward relations: 

d d~(s) rj(s) 
-d = -d-aj = 1 / aj + o (E), (26 a) 

s s - s Sf 

rj(s) dv/s) 

1 / 
-d- = ,u(s) - ,u(so) + 0 (E), (26 b) 

-s Sf s 
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it is also proved in Appendix A, that the aj operator (25) 
applied to Eq. (22) gives 

. dX/s) a1 --_ = 
ds 

- - +E--2 [1 dvo(s) ] 
Sf 1 -slsf ds 

+ E Lajajp(a) da + 0(£2). (27) 

Using definition (24) of vis) and substituting (27) into (8) we 
get 

IAso)(l - sofsf)2 [ 2£ 
lAs) = 2 exp ---

(I - sis f) Sf - s 

X L,u(a) da - E Lds f ajaj,u(a) da + 0 (C)] , 

(28) 

with 

p(s)=p!~(sO)-sfrj(s)+sfrj(sO)J + o (E). (28') 

The index fin If means that one considers a focused beam. 
As expected, one has lims!""" lAs) = lp(s). 

2. Using z as parameter 

For a beam propagating along the Oz axis, it is easier to 
work with z as parameter. Now, as noticed in the previous 
section, Eqs. (15) and (23) are equivalent, so we can use Eq. 
(15) which gives for j = 3 to zero order: 

z - Zo = a3(s - so) + 0 (E), (29 a) 

and using this last result to first order 

Z - Zo = a3(s - so) + E [(Z - zo),u(so) - is,u( s) ds + -\-
So a3 

X rds (5 a,u(;) d;] + 0 (E2). (29 b) 
Jzo lz. a; 

From now on, we take for simplicity Zo = So = 0 and we set 

liZ Ilz lsa r(z) = - ,u( s) ds - -2 ds -p( ;) d;, 
Z 0 a3 z 0 a a; (30) 

so that Eqs. (29 b) and (30) lead to 

s = (zla3 )[1 - E,u(O) + Er(Z)] + 0 (E2). (31) 

Using (31), the two other components, a = 1,2, ofEq. (15), 
become 

while the boundary conditions are 

aa Xa(O) _ 2 XU(O)Xa(O) 
- = - --; a 3 = 1 + (32) 
a3 f' f2 

which leads to 

XU(z) = X a(O)-Xu (O)J(I- ;V3(Z)) 

+ EVa(Z) + o (E2), a = 1,2, 

with according to (24) and (29 a): 
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Vj(z) = a3- 2 IdS fajll(;) d; j = 1,2,3. (33') 

Let us note that one has 

a Xu (0) 
aZ Xu(Z) = - f + o (E), a = 1,2. (33") 

Let us then substitute these results into (28); according to (31) 
and to sf = /la 3 , one has 

(l-slsf f= [1- J. + EJ.(,u(O)-Y(Z))f , 

exp {-~ (SIl(lT) dlT} 
sf - s Jo 

= exp {- 2E 1 rll( ;) d; + 0 (E2)} . 
/ 1 - zl/ Jo 

Using these two relations and Eq. (29 a), Eq. (28) becomes 

I (x(z),y(z),z) 

with 

= I (x(O),y(O),O)F(zl/)exp [- ~ rds 
a3 Jo 

X is ajajll(X( ; ),y( ;), ;) d; + 0 (E2)] , (34) 

F(zl/) = exp [ - (2d/)(1I1 -zl/)fll(;) d; + O(~)] 

X [1 - J. + E J. (,u(0) - y(z)) r ' 
where we write in (34'), Il( ;), 1l(0), y(z) for Il(X( ; ),y( ; ),;), 
Il(X(O),y(O),O), y(x(z),y(z),z). 

Now, from (33), it follows that one has 

Xu(z) - evu(z) Xu(z) - EVa(z) 
Xa(O) = ------

1 -zl/ + (d/)v3(z) D,(z) 

z e 
where D,(z) = 1 - - + - V3(Z). (35) 

/ f 
Then I (x(O),y(O),O) becomes 

I (x(O),y(O),O) 

= I (x(z)lD" (z), y(z)/D" (z),O) - EVa(z)aa 

Xl (x(z)/D, (z), y(z)lD, (z),O) + o (E2), 

that we write as for a collimated beam 

I (x(O),y(O),O) = I (z)exp { _ e va(Z;~;)I (z) + 0 (E2)} , 

with I (z) = I (x(z)1 D £ (z), y(z)l D, (z),O). Substituting this last 
result into (34) and taking (33') into account, we get 

If(x(z),y(z),z) = I (z)F(zl/)exp {- ~ rds 
a3 Jo 

X r; [JUI(Z) aall(;) + ajajll(;) d;] + 0 (e2)} , Jo I(z) 

(36) 

where the index/in If means a focused beam. In Eq. (36) the 
term 1l(0) in the denominator of F(zlf) becomes: 
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ll(x(O),y(O),O) 

= Il(X(z)lD.(z), y(z)lD.(z),O) + 0 (E). (36') 

Equations (34) and (36) can be compared respectively with 
(19) and (20) for a collimated beam; except for D.(z) and 
F(zl/) the results are similar. 

Remark I: Let us prove that for /-'> 00, the expressions 
(31) and (33) for s(z) andXa(z) become those of the collimated 
case. Indeed, according to (32), one has 

lim a3 = I, lim aa = 0, a = 1,2 
f '00 f-oc 

and since one has 

lim r [all(; )la;] d; = Il(Z) -1l(0), 
f~oo Jo 

it follows from (30) that limf~oo y(z) = 1l(0), which leads to 
s = z + o (e2

) while from (33) and (33'), one has 

y~ Xa (z) = Xu (0) + E f ds f;aall(;) d; + 0 (e2), 

which is the result obtained for a collimated beam. 
Remark 2: As mentioned at the end of Sec. B, the ana

ical solutions for isotropic beams are discussed in Appendix 
B. 

II. EXTENSION OF GEOMETRIC OPTICS 

A. Generalities 

1. Geometric optics with an approximation of diffraction 

Let us now come back to Eqs. (3) and (4); we proved 
that for Ko-'>oo, this system can be written as [see Eqs. (3') 
and (5)]: 

ajs (r)ajS (r) = n2(r), 

ajs (r)aj(I 00 (r)ln(r)) + (1= (r)ln(r))ajajs (r) = 0, 

where in this part II, we note by 100 (r) the intensity supplied 
by geometric optics. It is easy to see that Eqs. (3) and (4) can 

also be written for K ~ #0: 

ajs (r)aiS (r) = fi2(r), (37 a) 

ajs(r)aj(~~~D+ ~~~~ ajajS(r) =0, (37 b) 

where one has 

1 . 
fi2(r) = n2(r) + aJaju(r) = 0 

K~u(r) 

I (r) = fi(r)u2(r). (38) 

Of course fi2(r) is unknown but it is easy to find an 
approximation 

fi~ (r) = n2(r) + ;~ (I:(~~) y!2 ajaj (I ;(~) y!2 , (38') 

and the solution of Eqs. (37) and (38') by the method of char
acteristics used in part I will supply an approximation 1\ (r) of 
the diffracted intensity I (r), exact to first order 0 ((K ~a2) - I), 
where a is the e - \ width of the light beam. The process can 
be iterated: let I,(r) be the approximation obtained after I 
iterations, I, is exact to the order 0 ((K 6a2) - ') and I, + \ (r) is 
obtained by solving (37) and (39) with 
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n7+ I (r) = n2(r) + ~ (n[(r))112 ajaj (I[(r) )112 
K 0 I[(r) n[(r) 

(39) 

Of course, one must have 

1

_1 (~)112 aja. (II(r))
I12 I<I, 

K6 I[(r) ) n[(r) 
(40) 

with a similar condition for 100 (r). [We shall see that it is 
difficult to fulfill (40) for a focused beam.] We assume here 
the convergence of this iterative process (This question will 
be discussed elsewhere) and we therefore write 

lim II(r) = I(r). 
1-.00 

An important point here is the existence of ajaj (I[(r)ln(rW 12, 
which requires that I[(r), 100 (r) and nl(r), n(r) be sufficiently 
smooth functions. In the next section, we discuss a particular 
kind of light beams such that this existence is guaranteed. 

2. Essentially transversally bounded beams 

In this section, we assume n(r) = 1 and we only consider 
cylindrical beams. (For rectangular beam see Ref. 2). 

Since n(r) = 1, one has for a collimated beam according 
to (19): 

Ipoe (x,y,z) = I (x,y,O), (41) 

while from (8/) one has 

E I/. (r) - 1 1 aaa [I (r)] 1/2 (41/) 
dr-d - 2K 6 [Ipoo (r) ] 1/2 a Poo , 

where the index d means that the perturbation of the refrac
tive index is due to diffraction and where a takes the values 
1,2, since Ipoe (r) does not depend on z. Using (18) and (19), 
this gives 

Ipl (x,y,z) = I (x - EdV1d(Z),y - EdV2d (Z),O) 

X exp[ - Ed (z2/2)aaaaf..ld(r) + O(E~ll, (42) 

with 

(42/) 

An essentially transversally bounded beam2 is defined by the 
following conditions: Let p,z be be the usual cylindrical co
ordinates and let U = pia be a dimensionless parameter 
where a is the e- I width of the light beam. We assume that 
I ( p,O) has the form 

I(p,O) = I oexp[2G(ull = Ioexp {- 2Jg(U)dU} , (41") 

such that G (u) and g(u) have the following properties: 
(i) g(u) is a C 4 function; 
(ii) G (u) < ° for u_ 00 and there exist Uo such that most 

of the intensity is found inside a cylinder with radius Uo (this 
condition need not be made more precise). Then a simple 
computation gives 

Because of the properties g(u), f..ld (u) is a bounded function 
for u < Uo so that the condition (40) is fulfilled, since 
(2K 6a2

) - I is a very small number for a light beam. 
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Moreover we assume that the following conditions are 
fulfilled: 

Vad 2 
Ed> 0, aaaaf..ld(r) > 0, - > 0, a = 1, 

Xa 
and these qualities remain bounded for Xa -0. (44) 

The conditions (i), (ii) and Eq. (44) define an essentially trans
versally bounded beam and we proved in Ref. 2 that the 
Kogelnik-Li solutions8 for a laser beam have this property. 

According to (44), one has 

Xa(O) =Xa -EdVad(Z)+O(~) 

= X a/[ 1 + ~: Vad (Z)r
2 
+ O(E~) (42") 

and 

exp[ - Ed (z2/2)aaaaf..ld(r) + O(~)l 

= 1/[ 1 + Ed z; aaaaf..ld(r)] + O(~). 
Substituting (42") and (42"') into Eq. (42), one sees that 
I p , (x,y,z) is a bounded positive quantity 

1 
I (x,y,z) = -------

p, 1 + Ed (z2/2)aaaaf..ld(r) 

(42/") 

XI( [l + (2!X):d Vld(Z)] 1/2 ' [1 + (2IY)~dV2d(Z)r/2 ,0) 
+O(E~) (45) 

but, according to (43), one has 

Ed = l/2K6a2, f..ld(U) = g2(U) + g'(u) + (l/u)g(u), (43/) 

while Eq. (42/) gives 

and 

Z2 
Vpd(Z) = -f..ld(U) 

2a 

(46) 

In these relations, the derivative is taken with respect to u. 
Using (46), Eq. (45) becomes 

1 
I ( z) - 0 

p, p, - 1 + (z2/4K6a4)(,u;(u) + (l/U)f..ld(U)) 

xex
p{[2G( [[1 + (Z2/2K~;)]Lud(U)lU]lI/2)] 

+ 0 (K~a4) } , (45') 

while the conditions (44) are 

U-1f..ld(U»0 f..l; + U-1f..ld(U»0. (44/) 

We shall now prove that for a Gaussian beam Eq. (45/) gives 
the same result as wave optics. Indeed for a Gaussian beam, 
one has 

I (p,O) = Ioexp( - u2
), U = pia; 

that is with previous notations 

G(u) = - u2/2, f..ld(U) = u2 
- 2 

f..l;(u) = (l/U)f..ld(U) = 2. 
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One can easily see that conditions (44) are fufilled. Then, 
substituting (47') into (45') gives: 

which is the exact result supplied by wave optics. 

As previously stated, the problem is not so easy for a 
focused beam since the condition (40) cannot be fulfilled for 
any z. Let us for instance consider a Gaussian beam. Accord
ing to (36), one has instead of (41) 

Ijoo (x(z),y(z),z) = 10 2 exp (-
(1 -z/f) 

Xa(z)Xa(z) ) 

a2(1 -z//f 
(49) 

and, after some computations, one obtains 

1 
€d,ud(X(Z),y(z),z) = 2K~a2(1 _Z/f)2 

X { Xa(z)Xa(z) -2}. 
a2(1 - Z/f)2 

(50) 

It is clear that the factor (1 - Z/f)2 makes it impossible to 
satisfy (40) except for z//<1. Then, we shall deduce the dif
fracted intensity Ij(x(z),y(z),z) for a focused beam from the 
corresponding quantity for a collimated beam by the follow
ing ansiitz: 

10- 10 2' K~_K~(1-Z/f)2, 
(1 - z/f) 

(51) 
Xa(z) 

Xa- , a= 1,2, 
l-z// 

which can be justified by the following arguments: 
(i) For zI/small enough so that Eq. (40) is fulfilled, one 

obtains the same result starting directly from (49), (50) or 
using (45), (51). We shall not prove this fact here to avoid 
uninteresting computations. 

(ii) Using (51), Ij(x(z),y(z),z) is bounded and positive 
for any z, moreover for a Gaussian beam, one also obtains the 
exact result of wave optics. Indeed, applying (51) to (48) 
gives 

}. (52) 

The idea to consider diffraction as a perturbation of the re
fractive index was also mentioned in Ref. 9. 

B. Approximation of diffracted intensity for a Gaussian 
beam 

1. Collimated beam 

In the previous section, € was zero while we now assume 
€#O. Then, according to (38'), (41'), and (47'), the perturbed 
refractive index becomes 

n7 (r) = n2(r) + (l/K~a2)(p2/a2 - 2), p2 = Xaxa , 

that is, 
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nl(r) = 1 + l[i(r) + 0 (~) 

= 1 +€,u(r)+(1/2K~a2)(p2/a2-2)+O(~), (53) 

while Eqs. (18) and (19) becomes 

Xa(z) =Xa(zo) +lfdt faa,u(Odt+O(~), (54) 

ip (x,y,z) = 1 (zo,yo,zo) 

X exp { - l f dt f ajaj[i(x,y,t) dt + 0 (~)} , 
(55) 

where i means that diffraction has been taken into ac
count.To simplify we now write d 2(z) = 1 + z2/K~a4 and 
since a Gaussian beam is essentially transversally bounded, 
we may write similary to (42") and (42"') 

Xa(z) = -1-IXa(z) - €Va(z)! + o (c), 
d(z) 

(56) 

va(z) = f dt faa,u(t)dt , 

Substituting (56) and (56') into (55) gives 

~ _ 1 (Xa(Z) - €Va(z) ) 
Ip(x,y,z) - -2 -I ,0 

d (z) d(z) 

X exp { - € f dt fajaj,u(x,y,t) dt + 0 (€2)} , 

(57) 

which we also may write in the same form as Eq. (20): 

ip (x,y,z) = d ;(Z) 1 (d~Z) , ~Z) ,0) 
{

_ iZdf:'iS[J"/(X/d(z),Y/d(Z),O)a ( !-) X exp € !> a,u x,y,!> 
o 0 1 (x/d (z),y/d (z),O) 

+ ajaj,u(x,y,;)] d; + 0 (€2)} . (57') 

For a Gaussian beam, this last expression becomes 

This formula can be used, for instance, to discuss thermal 
blooming in the propagation of a Gaussian laser beam. 

2. Focused beam 

As for € = 0 and for the same reason, we shall use some 
ansiitz to obtain the diffracted intensity of a focused beam 
directly from (57). Using (34) and (35) one has instead of 
(51) 
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(59) 
XU(z) VU(z) 

XU(z)---, VU(z)---, a= 1,2, 
D.(z) D.(z) 

with F(zIJ) andD.(z) respectively given by (34') and (35). Of 
course, fore_O, Eqs. (59) reduce to (41). Applying (59) to (56) 
gives 

1 2 Xu (zo) = -,.-- (Xu(z) - Va (z)) + 0 (e ), 
D.(z) 

(60) 

with according to (35), 

A 2 2 Z2 
D. =D.(z) + --. (60') 

K~a4 

Now let us remark that using (30) and (30'), the expression 
(34') of F(zIJ) can be simplified if the exponential term is 
expanded in a power series and one obtains 

F0) = .1.- 2(Z) 

= [1 - J. + j.(z,u(O) + v3(z)) + o (e2
)] -2. (61) 

So according to (59) and (61), the term I (xo,yo,zo)d - 2(Z) of 
(57) becomes 

I (xo,Yo,zo) 
--~~~'------- -
1 +z2IK~a4D;(z) .1 ;(z) 

with 

I (xo,yo,zo) 

.J ;(z) 

A 2 2 z2.1 ; (z) 
.1 (z) =.1 (z) + ----. 

• • K~a4 D;(z) 

(62) 

(62') 

Then, according to (57), (60), and (62), the diffracted intensity 
of a focused beam is 

if(x(z),y(z),z) 

_ 1 (Xu(Z) - eVu(Z)) { e iZ 

- -A- I • ,0 exp - - ds 
.1 ;(z) D.(z) a~ ° 

X fajaj,u(x( ~ ),y( ~ ),~) d~ + 0 (e2
)} , (63) 

with according to (33) a3- 2 = 1 + XU(O)Xa(O)/P. 
For a Gaussian beam, Eq. (63) becomes 

i;-x(z),y(z),z) 

= _A_l_ ex (_ XU~)Xu(Z») 
.1 ;(z) p D ;(z) 

xexp {e f'ds IS [~~~ ~) au,u(x( Oy( ~),~) Jo Jo aD .(z) 

- a\ ajaj,u(x( O,y( ~ ),~) ] d~ + 0 (e2
) } • (64) 

Then we obtain a slightly more intricate formula than for a 
collimated beam. 

III. CONCLUSION 

As proved by Kline 10 the general solution of Eqs. (3') 
and (4) requires the principal radii of curvature along the 
light rays but the previous sections show that this solution 
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becomes rather simple to first order when the refractive in
dex has the form (1) and that it leads to analytical expressions 
which are tractable in those cases we considered. Even when 
diffraction is approximated as a perturbation of the refrac
tive index, these expressions remain manageable provided 
that one considers essentially bounded beams, a class not as 
restricted as might be thought (see Ref. 2). These analytical 
expressions are used in Refs. 1 and 3 to discuss thermal 
blooming oflaser beams and the propagation oflight in tur
bulent medium. As previously said we intend to discuss else
where the convergence of iteration process used here. 

APPENDIX A 

In this Appendix, we compute the operator aj along the 
perturbed rays. According to Eq. (15), one has for a collimat
ed beam 

dXj(s) = {( 1 + e,u(so) - e,u(S))Djk + eak {aj,u(O') dO'} 

X d (aks) + 0 (e2
), j = 1,2,3, 

which gives at once 

aj = {(1 - e,u(so) + e,u(S))Djk - eaj {ak,u(O') dO'} 

X _a_ + 0 (e2 ), j = 1,2,3, 
a(aks) 

where Djk is the Kronecker symbol. Now using the relation 
alaj = 1, one may write 

ajs = aj(a'a,s) = a'aj(a,s), 

= a'Dk, { (1 - e,u(so) + e,u(S))Djk - eaj 

X {ak,u(O') dO'} + 0 (e2
) = aj + 0 (e2

), 

where we used the relation 

ajaj,u(s) = d,u(s)/ds + 0 (c), j = 1,2,3. 

For a focused beam, the computations are similar. Accord
ing to (23), one has 

j = 1,2,3, 

which leads to 

and this results in 
k = 1,2,3, 

aj = - ~ { [1 - e,u(so) + eVo(s) ]Djk _ Hj(S) 
Sf Sf I - slsf 

X [rds) dvo(s) + dvds) ] } _a_ + 0 (e2), 

ds ds a1"ds) 

j = 1,2,3. 
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Then using (24') and (26b), it is easy to prove that one has 

ajs= Tj(S) + o (e2). (AI) 
1 - sisf 

Let us then consider the quantity ajdX;(s)lds. For the last 
term on the right-hand side ofEq. (22), one has 

a j ( Tj(S) ) = ajTj(S) + Tj(S) ajs 

1 - sisf 1 - sisf sf (1 - slsf )2 

ajTj(S) r 
_~_ + 1 + 0 (e2). (A2) 
l-slsf sf(l-slsff 

Now, using (24') and (26b) one has 

a j () 1 {3 3 () 3vo(s) Tj S = - - - 'f.l So + -- - e 
sf Sf 

X [ (1 _ !-) dvo(S) + Tk (s) dVdS)]} + 0 (e2 ) 

sf ds 1 - sisf ds 

= _ ~ [3 - 2eJl(so) + 3Vo(S)] + 0 (e2). 

sf Sf 

Substituting this last result into (A2) gives 

aJ ( Tj (5) ) = ~ [1 _ E,u(So) + EVo(s) J + 0 (e2). 

1 - slSf sf - S Sf 
(A3) 

For the second term, on the right-hand side ofEq. (22), one 
has 

a j {(,ursa) - ,u(s)) Tj(S) + ISaj,u(u) dU} 
1 - sisf s" 

= _ ~ _a_ [(,u(SO) _ ,u(s)) Tj(S) ] 
sf aTj(S) 1 - sisf 

+ ajSaj,u(s) + {aJaJ,u(u) du + 0 (E) 

= __ 2 _ [,u(so) _ ,u(s)] _ d,u(s) + d,u(s) 
sf - S ds ds 

+ {ajaJ,u(u) du + 0 (E) 

= __ 2 _ [,u(so) - ,u(s)] + ISajaj,u(u) du + 0 (E), 
Sf - S So 

(A4) 

where we used the relation 

1 ds Ti(s) 
- - -- = a·s = ---':---

Sf dTj(S) 1 1 - sisf 
Combining (A3) and (A4), one obtains for aJdXj(sl/ds 

aJ dXj(s) = __ 2_ [1 _ e,u(s) + E vo(s) ] + E 

ds Sf - S Sf 

X fajaJ,u(u) du + 0 (e2
) 

= _ ~ [ 1 + E dvo(S) ] + e 
Sf 1 - slsf ds 

X fajaj,u(u) du + 0 (e2
). (A5) 

2324 J. Math. Phys .• Vol. 22. No. 10. October 1981 

APPENDIX B: ISOTROPIC BEAMS 

We proceed as for collimated and focused beams. For 
e = ° the unperturbed wave fronts are spherical, so one has 
ajs = pj(s)ls = aj with Pj (s)p J(s) = (S2). Then for E:;iO, we 
take in Eq. (11') ajs = (pj(s)ls)(1 + €C(s) + 0 (E2) and we de
termine the function cIs) so that the condition (12b) is ful
filled which gives, 

d.lj (s) _ Pj (s) [(p() ( )) Pi (s) -- - -- +e So -,us --
ds s S 

+ J.:aj,u(u) dU) + o (e"), j = 1,2,3. (BI) 

Since one has 

Pj(S) dpj(s) 
-- = -- =const=a·, 

S ds J 

the integration ofEq. (A6) gives 

Xj (s) = XJ (so) + [ Pj (s) - Pj (so) I n(so) 

- e[ Pj(s)v(s) - VJ(s) I + 0 (E"), j = 1,2,3. 

The functions vJ(s) are defined as in (24) and one has 

vIs) = ~ i~(U) du 
s So 

with both relations: 

dv(s) 
vIs) + s - = ,u(s) 

ds 

(B2) 

(B3) 

(B4) 

(B5a) 

. dv(s) 
pl(S) -' - = s [,u(s) - ,u(so) 1 + 0 (E). (B5b) 

ds 

We shall prove later that the a
J 

operator is 

{ 
ePJ(s) aJ = (1 - e,u(so) + eV(S))Ojk + -s-

X (Pk(S) dv(s) _ dVk(S))} _a_ + o (el ) (B6) 
ds ds apds) 

and that one has 

dX(s) 2 
a' _J_ = - [1 + ElvIs) - ,u(s))) 

ds s 

+ J.:ajaj,u(u) du + 0 (e2
) 

= ~ [1 - eS dv(s) 1 + r'aJaj,u(u) du + 0 (e2). 
S ds l. 

(B7) 

Since one has v(so) = 0, Eq. (8) becomes for s?s[)?o, 

[sp(s) = [(so) s~ exp { - 2ev(s) - ei'dS 
2 ·'n 

X f a'aj,u(u) du 1 + 0 (e
2

), (B8) 

which can be compared with Eqs. (19) and (28). In (B8) one 
has 

,u(s) =,u(.lj(s) +Pj(s) -Pj(so» + o (e). 

Let us now prove (B6) and (B7). It follows from (B3) that one 

has 
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which leads to 

{ 
tp.(S) 

dpds) = [I - t,u(so) + tv(s)]8jk + ---;-

X [Pk (S) dv(s) - dvds) ] } dX j(s) + 0 (t2). 

ds ds 

Eq. (B6) follows from the relation aj = (dpk(S)/dXj(s)] 
a/apk (s) and it is trivial to show that one has 

as = Pj(s) + o (t2) 
J s 

so that Eq. (12a) is fulfilled. Let us now prove (B7). For the 
first term on the right-hand side of(Bl), we get 

1 a· 1. - Jpj(s) - z-p(s)aj(s) 
s s 

1 a· 1· - Jpj(s) - 3 pJ(S)Pj(s) + o (t2
) 

s s 

but, according to (BSa) and (BSb) one has 

ajpj(s) = 3 + t [3(V(S) - ,u(so)) + s dv(s) 
ds 

P j(s) dVj(s) ] 2 
----- +O(t) 

s ds 
= 3 + 2d vis) - ,u(so)] + 0 (t2

) 
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(B9) 

The second term of Eq. (Bl) gives 

{ 
p.(s) r } 

a
j 

(P(so) - ,u(s)) ~ + j,. aj,u(u) du 

= _a_ {(p(so) _ ,u(s)) Pj(s) } + ajSaj,u(s) 
apj(s) s 

+ fajaj,u(u) d(T + 0 (t), 

= ~ ((P(so) - ,u(s)) _ d,u(s) + d,u(s) 
s ds ds 

+ fajaj,u((T) d(T + 0 (t) 

(BIO) 

where we used the relation ajs = as/apj(s) + 0 (t) = Pj(s)/s 
+ 0 (t) which follows from (B6) and frompj(s)pj(s) = S2. 

Combining (B9) and (BIO) gives (B7). 
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Shift operator techniques for the classification of multipole-phonon states. 
VIII. R(S) ! SU(2) ® SU(2) reduction for obtaining quadrupole Of eigenvalues 
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With the aid of previously derived expressions for the reduced matrix elements of the R (5) 
generators, which are obtained by consideringR (5) t SU(2) ® SU(2) reduction, a method is set up 
to evaluate analytical expressions for the eigenvalues of the quadrupole scalar shift operator O~. 
Explicit expressions are listed for states with angular momenta I = 2v - k (k = ° up to 13). 

PACS numbers: 03.65.Ca, 63.20.Dj 

I. INTRODUCTION 

In a set of previous papers 1-.' part of the quadrupole 
eigenvalue spectrum of the R (3) scalar shift operator 0 7 has 
been derived by means of relations existing between product 
operators O~ " k 0 ~ ( - 3 <), k < 3, and 0< I} + k 1< 5), the 
shift operator 0 7 and, if} + k = 0, the seniority operator V *. 
In the first series of three papers 1-3 have we restricted our
selves to the use of R (3) scalar product operators. A tree 
generating mechanism has been developed by which it was 
possible to determine in an easy way 07 eigenvalues for 1-
nondegenerated states. By introducing the nonscalar R (3) 
product operators4

•
5 the tree generating mechanism could be 

completely abandoned and new formulas for the 0 Y eigen
values valid for all possible seniority v could be derived. As 
an example of an I-degenerated case the I = 2v - 6 state has 
been considered. Although the shift operator technique ap
plied to the symmetric irreducible representations ofthe R (5) 
group is self-consistent, as was proved in Ref. 5, it is a recur
sive method where a certain 0;1 eigenvalue al'.i can only be 
derived if all at .. !' with I' > I are already known. In this paper 
we wish to discuss another method by which the at.,! values 
can be obtained in a direct way, without having knowledge of 
other eigenvalues. 

It will be proven that the 07 eigenvalues are propor
tional to the reduced matrix elements of the R (5) generator 
qll [see Ref. 1, expression (1.7)] between physical states, i.e., 
states with a definite angular momentum. Analytical expres
sions for such reduced matrix elements are available in the 
literature. 6 These results were obtained by using a "natural 
basis" in which the representations of R (5) are fully reduced 
with respect to the subgroup R (4) = SU(2) ® SU(2). The 
R (5)-R (3) basis function, used for the evaluation of these ma
trix elements, have been projected from a small subset of the 
natural basis functions by Hill-Wheeler type integrals. In 
Sec. II we shall review the formulas we need for further use 
and rectify some results erroneously given by Williams and 
Pursey.6 The 0 7 eigenvalues for I-nondegenerated states will 
be derived in Sec. III, while the case where theR (3) represen
tation I occurs at most twice in theR (5) representation (v,O) is 
treated in Secs. IV and V. 

"'Bevoegdverklaard Navorser N.F.W.O. (Belgium). 

II. BASIC FORMULAS 

Using the explicit expressions given in Ref. 1 for the 
shift operators 07 (k = - 3, - 2, - 1,0,1,2,3), applying 
the Wigner-Eckart theorem and introducing the analytical 
expression for the occurring 3-j symbol, it is easy to verify 
that 

a", I ==(v,l,ml 07Iv,/,m) 

_8_/(1 + 1)(/- 1)(1 + 2)(2/- 1)(2/ + 3) 
yl5 (21 + 1)1/2 

x (v,/llqllv,/)A 30(l), (2.1) 

where Ajk (I) is defined as follows 7: 

[
(21 +) + k + 1)12j + I) ] - 112 

Ak(/) = 
] 21 + 2k + I ' 

(2.2) 

with ljlX) = U( U - 1)···( U - x + 1). Here Iv,/,m) is a short
hand notation for the quadrupole phonon state of seniority v, 
angular momentum I, and projection m. 

By considering the R (5)tSU(2) ® SU(2) reduction Wil
liams and Pursey6 introduce functions t/J(v,v,/,m), which 
span the entire representation space of the irreducible repre
sentation (v,O) of R (5): 

t/J(v,v,/,m) = J D ::,K(fl )Xn(v,v)dfl, (2.3) 

where the label v is introduced to resolve the degeneracy of I. 
It takes the values 

v = 0,1,2, ... ,[vI3], (2.4) 

where [vI3] denotes the integral part of v13. The D ~,K(fl ) is 
an ordinary rotation matrix, while the X (v, v) denotes the "in
trinsic states," which form a small subset of the natural basis 
functions. Williams and Pursey6 clearly prove that K, the 1-
projection of the intrinsic states, can take the values 

K = v - 3v, (2.5) 

while the possible values of I are 

1= 2K, 2K - 2, 2K - 3, ... ,K (2.6) 

The functions t/J(v,v,/,m) defined by Eq. (2.3) are not normal
ized, and if two of them differ only in the value of v, they are 
not orthogonaL Therefore, one has defined the Hilbert-space 
integral 

A ~(v',v)=(t/J(v,v',/,m), l/I(v,v,/,m)). (2.7) 
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When v' = v, A nv,v) is the square of the normalization con
stant, and we have adopted the convention of taking the posi
tive square root. For v' =1= v, (2.7) is the overlap integral for 
states of common I but different v belonging to the irreduci
ble representation (v,O). Williams and Pursey6 derive several 
analytical expressions for the A ~(v', v) of which we withhold 
the following one: 

2v' ~ v 

A V(v' v) - ------
1 , - (21 + I)(K - K ')! 

X [(V - v)!(v - v')! v! v'! (/ - K ')!(/ + K )!] \12 

(I + K')!(/- K)! 
( - 4r~/3 

X ~ (v _ v - v' + /3)!(v' - /3)!(v - /3)!/3! 

X i\dZ(I_zflv-v-v'+/3)z3IV'-/3)(I_4Z)"~V-V'+/3 

X 2F\(K -I,K + 1+ 1; K -K' + I;z). (2.8) 

This quantity is evaluated under the condition v'>v. If v' is 
smaller than v, Eq. (2.8) still applies, but with v'+--w. This 
is equivalent to the symmetry rule 

A Y(v',v) =A f(v,v'). (2.9) 

This last relation was erroneously formulated by Williams 
and Pursey.6 The authors present an expression for the re
duced matrix elements of the generator qll with respect to 
the basis functions (2.3). The second term in this expression, 
which is based upon Eq. (23) in Ref. 6, is not correct. This can 
be easily understood as follows. The ten R (5) generators in 
the SU(2) ® SU(2) reduction are rearranged into twice three 
generators satisfying the SU(2) Lie algebras and four gener
ators forming a bispinor. H The incorrect term follows from 
the application of the bispinor component T \~2\~2J to the 
intrinsic state function X,(v, v). By considering very carefully 
the explicit matrix elements of the T [~!f/~~J \12 we find that 

TI\~\~2JX(V,V) = - [vl(v - v + I)]\ /2X (v,v - 1), 
(2.10) 

an expression which replaces the erroneous Eq. (23) in Ref. 6. 
Taking into account (2.10) and the results of Williams and 
Pursey6 the reduced matrix element of qll with respect to 
(2.3) reads, in the present notation, 

(v,v',1 '1Iqllv,v,/) 

2327 

= [(21 + 1)110]\/2 

xU - [Sv(v - v + IW/2(IK331/' K + 3) 

- [Svl'(/' + 1)l3(v - v + IW /2 

X (I' K + 3 1 - III' K + 2) 

X (IK 321/' K + 2) JA r,(v',v - 1) 

+ [5(v - v)(v + 1)j112 

X (IK 3 - 311' K - 3)A ~,(v',v + 1) 

+ ![~/'(l' + 1)]\/2(I'KIII/' K + 1)(IK3III' K + 1) 

-[~I'(I'+I)]\/2(I'KI-III'K-1) 

X (lK 3 - III' K - 1) 

- (2v - v)(IK3011'K) jA ~,(v',v)). (2.11) 
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From the conditions (2.4)-(2.6) one finds for large 
enough v-values that all states with I = 2v - k 
(k = 0,2,3,4,5, and 7) exist and are nondegenerated, that all 
states with I = 2v - k' (k' = 6,8,9,10,11 and 13) exist and are 
doubly degenerated, .... In the following chapters we wish to 
study the O? eigenvalues for the classes of nondegenerated 
and doubly degenerated states. 

III. THE av.t-VALUES FOR THE NONDEGENERATED 
STATES WITH v = 0 

For the case v = 0, which implies, due to (2.S), K = v, it 
follows that the normalized wave function for the states with 
angular momentum I = 2v - k (k = 0, 2,3,4,S, and 7) can be 
defined as follows: 

I v,l,m) = [A nO,O)] - \ 12t/t(v,0,I,m), (3.1) 

and that the reduced q matrix element reads 

(v,/llqllv,/) 

= [1/ A Y(O,O)] (v,O,lllqllv,O,1 ) 

= [(21 + 1)11O]\ /2h/5v(lv3 - 31/ v - 3)A Y(O,I)IA r(O,O) 

+ ![F(l+ I)]\/2(lvlll/v+ 1)(lv311/v+ I) 

-[F(/+I])\/2(lvi -Il/v-I)(lv3 -Il/v-1) 

- 2v(lv301Iv) J). (3.2) 

The occurring Clebsch~Gordan coefficients can all be writ
ten down analytically.7 The expressions for the A ~(v', v) di
rectly follow from (2.8). For A ;'(0,0) one finds 
A ~(O,O) 

= _1_ f dZ (1 - z)2V(I - 4z)" 2F \(V -I, v + 1+ I;I;z), 

21 + 1 0 (3.3) 

an expression which can be transformed with the help of 
partial integration into 

A ~(O,O) = ~ v! 
21 + 1 (I - v)!(2v - /)! 

X f(I-4Z)2V-IZI-"(I-z)l+vdZ. (3.4) 

On the right-hand side we recognize an integral representa
tion of the hypergeometric function, so that A Y(O,O) finally 
takes the form 

A V(O 0) _ 4
1

- v v!(1 + v)! 
1 , - (21 + If (2/)!(2v -I)! 

X 2F\(1 - 2v, 1- v + 1; 21 + 2; 4). (3.5) 

One can also remark that A ~'(O,O) becomes identically zero, 
for I < v, I> 2v, and I = 2v - 1, which shows that the I v,l,m) 
states with these specific I-values do not exist. 

The determination of A ;'(0, I) = A ;'( 1.0) progresses 
along the same lines as was the case for A ;'(0,0). From (2.8) 
with K = v and K' = v - 3 one obtains 

A;(I,O)= 2 [V(l-V+3)!(/+V)!]1/2 
(21 + 1)3! (I + v - 3)!(/- v)! 

X (dz(I - Z)21' Ilz'(I - 4z)' 
10 

X 2FI(V - I, v + I + I; 4; z), (3.6) 
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which again can be transformed into the simpler expression 

A nl ,O) = 2·4
/
-

u
-

1 
(v - I)!(v + 1- 3)! 

(21 + 1 f (2/ )!(2v - 1 )! 

x [v(/ - v + 3)!(1 + V)!] 1/2 
(/ + v - 3)!(1 - v)! 

X ! v 2F dl - 2v, I - v + 4; 21 + 2;4) + 3(2v - I) 

2F l(/- 2v + 1,1- v + 4; 21 + 2;4)}. (3.7) 

Furthermore, it can be proven that for the I-values under 
consideration the following identity is valid9 : 

v 2FI(/- 2v,l- v + 4; 21 + 2;4) + 3(2v - 1) 

X2FI(/- 2v + 1, 1- v + 4;21 + 2;4) 

= ! 51 + 9v + 16[ I - ( - I) IJ I 
X ]Fd/- 2v, / - v + 1;21 + 2;4) 

(2v - 1= 0,2,3,4,5,7) . (3. 8) 

Substituting (3.5), (3.7), and (3.8) into (3.2) and replacing the 
occurring Clebsch-Gordan coefficients by their analytical 
expression, the reduced matrix element of q with respect to 
the normalized states (3.1) for I = 2v - k (1;= 0,2,3,4,5 ,7) 
takes the following form: 

(v,ll Iq 1/ v,l) = [(21 + l)/lOJ 1/2A 30(1) 

X ! 5(/ - v + 3)(3)[51 - 9v + 16(1 - ( - 1) I)] 

- [1(/+ Ijp+21(/+ 1)[15v2 + 15v+ 1] 

- 5v(v + 1)(9v2 + V + 211. (3.9) 

By this the O? eigenvalue expression (2.1) reduces to the 
simple form 

au.! = (1/10v'2)[5(/- v + 3)0) 

X 51-9v+ 16(1-(-1)1)] 

- (/(1 + If + 2/(/ + 1)(15v2 + 15v + 1) 

- 5v(v + 1)(9v2 + V + 2)] 

for I = 2v - k (k = 0,2,3,4,5,7). (3.10) 

The reader can convince himself that this single formula as
sumes all eigenvalues previously derived by means of the 
shift operator technique [Ref. 2, Eqs. (4.1)-(4.5); Ref. 5, Eqs. 
(2.4), (2.8), (3.15), (3.19), (3.20), (3.31)]. 

IV. DERIVATION OF av,l FOR DOUBLY DEGENERATED 
STATES: GENERAL THEORY 

As already men tioned in Sec. 2, one can derive from 
(2.4)-(2.6) that for large enough v all states with { = 2v - k' 
(k ' = 6,S,9, 10, 11,13) are doubly degenerated. It is only for 
small v that states with these angular momenta a re non de
generated. These cases can be treated separately. Since the 
formulas of O ~)-eigenvalues for these cases where v < 9 are 
already obtained by another method ,C we shall restrict our
selves here to the general si tuation . 

For the doubly degenerated states, which we wish to 
consider here, we have at our disposal two basis functions of 
the type (2.3), i.e., the ones with v = 0 and v = 1. These basis 
functions are not normalized and are not orthogonal to each 
other. By using a suitable Hilbert-Schmidt procedure one 
can construct out of the basis functions two normalized and 
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mutually orthogonalwavefunctions: 

I 
<I> (v,!,I,m) = [v ] 1/2 tP(v,O,/,m), (4.1) 

A 10,0) 

<P (v,l,n,m) = [A ~(0,OJr/2 
!A ~(1,llA 1(0,0) - (A ~(O,IWII / 2 

X I tP(v, I,1,m) - [A ;(O,I)/A ;'(O,O)]¢(v,O,l,mll . (4.2 ) 

These functions are found by construction eigenvectors of 
the Casimir operators of the R (5), R (3), andR (2) groups, but 
not of 0 ~). The matrix elements of O ~) with respect to (4. 1)
(4.2) can be written down, due to (2. 1), as follows: 

(u,/,i,m \0 \'\v,lJ,m ) 

_ 8 1(/ + 11(/- 1)(1 + 2)(2/- 1)(21 + 3) 
- v5 (21 + 1)1 12 

X A,o(/ )(v,l,il lq ll v,l,j) for i,j = I and II. (4.3) 

The following is due to (4.1) and (4.2): 

(v,l,IlIq llv,l,I) = l lA ;'(O,O)(u,O,l llq ll v,O,l). (4.4) 

(v,l, II Ilq ll v,l,II ) 

=A ~(O,O)/[A Hl,llA ~(O,O) - (A HO,I)f] 

X! (v,l,! I/ql/v,I,l) 

+ [A ~(O, 1)/ A ~(O,0)]2(v,O,lllqllv,O,1 ) 
- [A ~(O,l)/A ~(O.O)][ (v,I,l l lqllv,O,l) 

+ (v,O,/ IIqllv, 1,1) ]j, (4.5) 

(v,/,II Iql Iv,l,II) 

and 

= II [A ~ (l, 1 lA ~(O,O) - (A ~(0.1 ))2] 112 

X [(v,O,! 1 Iql lv, 1,1) 

- [A~(O,l)/Ar(O,O)](v,O,lllq ll v,O,l)], (4.6) 

(v,/,IIllqllv,l,I) 

= 1/[A ~( I,I)A r{O,O) - (A ~(0,1))2 r /2 

X [(v, 1,l ll qll v,O,l) 

- [A ~(O,I)/A ,(O,O)](v,O,lllqilv,O,/). (4.7) 

By this it is possible to construct explicitly the two by two 
matrix whose eigenvalues correspond to the a , . .1 values we 
are looking for. 

Although the described method is completely general 
and also applicable to cases of higher degeneracy, it gives rise 
to very complex calculations due to the complicated struc
ture of each of the occurring matrix elements. Therefore, we 
prefer to develop in case of double degeneracy an alternative 

method to derive the 0 \' eigenvalues. For this purpose we 
shall reformulate the problem. We try to determine two mu
tually orthogonal eigenvectors of the angular momentum 
operator L ", the R (5) Casimir operator V *, and 0 jl with re
spective eigenvalues l(l + I ), - ~v(v + 3), and Cl:~.J/' In other 
words, we look for states Iv,l,i) such that 

o \'lu,/,1) = a~~." Iv,/,1) (i = I or 2). (4.S) 

Since these 1 v,l,i) states as well as the previously introduced 
4> (v,lJ,m) (j = lor II) states form a complete set of orthonor
malized basis vectors, in terms of which theL :. and V* eigen-
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states can be developed, there exists a simple relation be
tween both sets: 

II 
iv,!,i) = LSij([>(v,!J,m) (i= 10r2). (4.9) 

j~1 

Due to the fact that both sets consist of orthonormalized 
vectors, the sij describes a simple rotation in two dimensions, 
further on defined in terms of the angle e. 

Using (4.3), (4.8), and (4.9), one easily deduces that 

(v,l,ii 0 ~iv,lJ) = K LS;nSjm (v,l,n iiqii v,l,m), (4.10) 
n.m 

where 

K = _8_/(1 + 1)(/- 1)(/ + 2)(2/- 1)(21 + 3)A
3o

(/), 

liS (21 + 1)1/2 . 

(4.11) 

and where iJ take the values 1 and 2, while nand m can 
become I or II. For i =) one obtains the following relations: 

a~n = K( cos2e (v,l,Iiiqiiv,I,I) 

+ sin2e (v, ,l,lIii qiiv,lI) 

+ cosesine [(v,l,II iiqii v,l,I) 

+ (v,l,Iiiqiiv,I,II)] 1. 
and 

a~~) = K( sin2e (v,l,I iiqii v,I,I) 

+ cos2e (v,l,IIiiqj jv,l,I1) 

- cosesine [(v,l,II iiq iiv,l,!) 

+ (v,l,Iiiqiiv,/,II)] l· 

(4.12) 

(4.13) 

From (4.12) and (4.13) it follows that the sum of the two 
eigenvalues, which is dependent of e, is given by 

a~,~) +a~~) =K[(V,l, Iiiqiiv,I,I) + (v,l,IIiiqiiv,I,II)]. 
(4.14) 

Assuming in (4.10) i#} and taking into account that 
both basis sets consist of orthornormalized states, one ob
tains two other relations: 

- sinecose (v,!,I j jqi jv,!,I) 

- sin2e (v,/,lIiiqiiv,l,I) 

+ cos2e (v,/,Iiiqiiv,/,II) 

+ sinecose (v,I,lIiiqiiv,l,II) = ° 
and 
- sinecose (v,I,lj jqiiv,l,I) 

+ cos2e (v,!,lIiiqj Iv,!,I) 

- sin2e (v,l,lj iqiiv,/,II) 

+ sinecose (v,/,IIiiqiiv,l,II) = 0. 

(4.15) 

(4.16) 

Adding first and subtracting then (4.15) and (4.16) results in 

(v,/,lIiiqliv,l,I) = (v,/,Iiiqj Iv,I,II), (4.17) 

and 

2cos2e (v,I,Iiiqiiv,!,II) 

= sin2e[(v,l,Iiiqiiv,l,I) - (v,l,lIiiqliv,I,II)], (4.18) 

respecti vely. 
Taking into account (4.12), (4.13), (4.17), and (4.18), one 

can deduce that 
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aL~) - aL~) = K( [(v,l,Iliqllv,I,I) - (v,I,1I1 jqilv,I,II)]2 

+4(v,l,lIjjqiiv,/,I)2l'/2. (4.19) 

The eigenvalues we are looking for follow immediately from 
(4.14) and (4.19). The last-mentioned relations can all be ex
pressed, on account of(4.4)-(4.7) in terms of (v,i,/iiqiiv,},/) 
(i,) = 1 and 2), which are generally defined in (2.11). By in
troducing the i'.nalytical expressions for the occurring 
Clebsch-Gordan coefficients,? these matrix elements can be 
written in the following compact form: 

(v,O,liiqii v,O,l) = [(2/ + 1 )110] II2A30(l) 

X [Q(lV,v)A ~'(0,1) + Q(2)(l,v)A ~(O,O)] (4.20) 

(v,I,/liqiiv,I,/) =[(2/+ 1)/10]'/2A3o(/) 

X [Q (3)(/,v) A ~(O, 1) + Q (4)(l,v) A ~(1,2) + Q 15l(l,V) A Y(l, 1)] , 
(4.21) 

(v,O,liiqiiv,I,l) = [(2/ + 1)/IO]'/2A3o(l) 

X [Q(lV,v)A nl,1)QI21(I,v)A nO,I)] 

(v,l,1ilqiiv,O,/) = [(21 + l)1IO]'/2A3o(l) 

(4.22) 

[Q (3)(/,v)A ~(O,O) + Q 141(/,v)A Y(0,2) + Q ISV,v)A Y(O, 1)], 
(4.23) 

where 

QIII(l,V) = lO[v(/ - v + 3)131(/ + V)13I]1/2, (4.24) 

Q I21(I,v) = - [/(/ + 1)]2 + 2/(l + 1)(15v2 + 15v + 1) 

- 5v(v + 1)(9v2 + V + 2), (4.25) 

Q (3)(l,v) = (2/v) Q II)(/,V), 

QI41(l,V) = 10[2(v - 1)(/ + 6 - v)(3)(l + v - 3)131]1/2, (4.26) 

QISV,V) = - [/(/ + lW + 2/(1 + 1)(15v2 
- 45v + 1) 

+ 15(v - 3)( - 3v3 + 17v2 
- 22v - 8). (4.27) 

Note that from (4.17), (4.6), and (4.7) it directly follows that 

(v,O,liiqiiv,I,l) = (v,I,/iiqjiv,O,l). (4.28) 

This property however cannot be observed at first sight by 
comparing (4.22) and (4.23). In what follows we shall take 
profit of (4.28). The occurring A ~(v',v) terms can be directly 
deduced from (2.8) by using analogous techniques as the ones 
leading to the results (3.5) and (3.7) for A Y(O,O) and A Y( 1,0) 
respectively. The remaining A Y(v',v) factors have the follow
ing form: 

4/- v
- I (v - l)'(v + 1- 3)' A"(11)- " 

1 , - (21 + 1 f (2l)!(2v - I)! 

X (v(v + 3)141 2Fdl - 2v,/- v + 4;21 + 2;4) 

+ 3(2v -/)(v + 3)141 2Fd/- 2v + 1,1- v + 4;21 + 2;4) 

- 6(v - 10)(2v - I )12)(V + 1)(2) 

X 2F,(/- 2v + 2,/- v + 4;21 + 2;4) 

- 2(5v - 59)(2v - I )13)v 

X 2FI(l- 2v + 3,1- v + 4;21 + 2;4) 

+ 3(7v + 20)(2v - 1)141 

X 2FI(l- 2v + 4,1- u + 4;21 + 2;4) 

- 9(2v _1)151 2F,(/- 2v + 5,1- v + 4;2/ + 2;4)j, 

(4.29) 

G. Vanden Berghe and H. E. De Meyer 2329 



                                                                                                                                    

A i'(2,1) = 2·4'- v-- 2 (V - 2)!(v + 1- 6)! 

(21 + 1)2 (21 )!(2v - I)! 

and 

X [(V - 1)(/- V + 6)1(1 + V - 3)!]'/2 
2(1 + V - 6)!(/- V + 3)! 

X [v(v + 3)15) 2F,(/- 2v,l- V + 7;21 + 2;4) 

+ 6(2v - I)(v + 3)15) 2F,(I- 2v + 1,1- V + 7;21 + 2;4) 

+ 3(v + S8)(2v _1)12)(V + 1)(3) 

X 2F,(/- 2v + 2,1- V + 7;21 + 2;4) 

- 4(7v - 149)(2v - 1 )(3)VI2 ) 

X2Fd/- 2v + 3,1- V + 7;21 + 2;4) 

- 9(v - 92)(2v - I )14)(V - 1) 

X 2F,(/- 2v + 4,1 - V + 7;21 + 2;4) 

+ S4(v + 7)(2v - 1)15) 

X 2F,(I- 2v + S,I- V + 7;21 + 2;4) 

- 27(2v -I )16) 2F,(I- 2v + 6,1 - V + 7;21 + 2;4) I, 
(4.30) 

A V(2 0) = 4'- t' -, (v - 2)!(1 + V - 6)! 

" (21 + 1)2 (21 )!(2v - I)! 

[
V(V -I )(/- V + 6)!(/- V)!] '12 

2(1 + V - 6)!(1 - v)! 

X! Vi:» 2Fd/- 2v,l - V + 7;21 + 2;4) + 6(v - 1)(2v -I) 

X 2F,(/- 2v + 1,1- V + 7;21 + 2;4) 

+ 9(2v -1)12) 2F, (I - 2v + 2,1 - V + 7;21 + 2;4Jl. 

(4.31) 

Due to (4.20)-(4.23), Egs. (4.4)-(4.7) transform into 

(v,l,Illqllv,I,I) 

= [(21 + l)1lO]' /2A}o(l) 

X [Q")(/,v)A 1(0,I)lA 1(0,0) + QIZ)(I,v)), 

(v,l,1I1 Iql Iv,I,II) 

= [(2/+ l)1lO]' /2A,()(/)( - Q")(/,v)A 1(0,I)lA 1(0,0) 

+ Q141(/,v)[A 1(1,2)A 1(0,0) -A 1(0,2)A 1(0,1)]/ 

(4.32) 

{A ;'(1,I)A ;'(0,0) - [A 1(0,I)P} + QI51 (/,v)], (4.33) 

(v,l,Illqllv,l,II) = (v,l,IIllqllv,l,I) 

= [(21 + l)1lO]l/lA3o(l) 

X [A 1(1,1)A r(O,O) - [A nO,IJ]21'/2/A nO,O)XQI''(!,v). 
(4.34) 

By this the expressions for the sum and difference of the 
eigenvalues reduce to simple forms: 

a~'.! + a~~! 

and 

2330 

= K[(21 + 1 )/10]' 12A3o(/)(Q (2)(l,v) + Q 151(/,v) + Q 141(/,v) 

X [A 1(1,2)A nO,O) -A ,(0,2)A nO,I)]/ 

{A 1(I,I)A nO,O) - [A nO,I)J2}), (4.3S) 
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a~n - a~~! 
= K[(21 + 1)110] ' /2A}o(1) [X(/,vf + [4QIII(/,v)lA nO,O)] 

X [A ;(1,O)X (/,v) + A ,(I, I)Q 1 J)(l,v)] 1'12, (4.36) 

where X (l,v) is defined as 

X (l,v) 

= Q'21(/,v) - Q'41(/,v)[A 1(1,2)A ,(0,0) - A 1'(2,0)A 1(1,0)]/ 

X{A 1(1,I)A 1(0,0)- [A I'(O,I)P}- QISI(l,V). (4.37) 

V. DERIVATION OF a v,' FOR DOUBLY DEGENERATED 
STATES: APPLICATION 

Starting from the formulas (4.3S)-(4.37) it is possible to 
derive all a::.', values for states with angular momenta 
1= 2v - k (k = 6,8,9,10,11, and 13). For these specific I-val
ues the term composed of A i(v',v) factors and which occurs 
in (4.3S) as well as in (4.37) takes a very simple form, i.e., 

Q 141(l,V) A 1'( 1,2)A 1(0,0)- A i(0,2)A 1'(0, I) 

A 1(1,IIA 1(0,0) - [A I'(O,I)P 

= 10(1 + 6 - v)u'[SI- 9(v - 3) + 16(I - ( - I)')] 

(2v-l=6,8,9,1O,11,13). (S.I) 

Note that the last factor in the right-hand side of (S.I) looks 
very much like the first term in the right-hand side of(3.8); 
only the "v" is changed into "v - 3." Due to (S.I), (4.3S) and 
(4.37) reduce for these specific I-values to 

= K[(21 + 1)/10] 'llA 'O(/){ - 2[1 (l + Ilf 
+41(1+ 1)(ISv2 -ISv+ I) 

- Sv(v + 1 )(9v 2 + V + 2) 

+ IS(v - 3)( - 3v ' + 17v2 
- 22v - 8) 

and 

+ 1O{l+6-vl'''!S/-9(v-3)+ 16[1-1-1)1]/) 
(5,2) 

X (I,v) = 120/(1 + 1) - 5v(v + 1)(9v2 + V + 2) 

- IS(v - 3)( - 3v' + 17v2 - 22v - 8) 

- 10(1 + 6 - v)131[S/- 9(v - 3) + 16[1- (- I)'] I. 
(S.3) 

In both expressions we have introduced the explicit forms 
for the Q (i1(/,v) terms. In fact, for the specific values we con
sider, (S.2) as well as (S.3) reduces to polynomials of the 
fourth degree in v. The only term in the derivation of the 
eigenvalues which we cannot write down in a general way is 
the second term in the right-hand side of(4.36). However, we 
have observed that for the six I-values under consideration 
the numerator is a multiple of the denominator and this ex
pression can be written more simply in the following form: 

4Q"I(I,v) [A 1'(O,I)X(I,v) + A 1(1,I)Q"'(I,v)] 
A 1(0,0) 

= 100! 21 + 4 + [1 + (- Im(l- u + 3)'1iY(I,u), (5.4) 

where Y(l,u) is a polynomial of fourth degree in v, i.e., 

Y(2v - 6;u) = - u4 + 6u' + 745v 2 
- l614u + 1344, (5.S) 

Y(2v - 8;u) = - u4 + 31u1 + 370v 2 
- 2968v + 4416, (5.6) 
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Y(2v - 9;v) = - v4 - 20v3 + 391v2 
- 1498v + 1320, (5.7) 

Y(2v - 1O,v) = - v4 + 56v3 - 419v2 + 1048v - 660, (5.8) 

Y(2v - 11;v) = - v4 + 5v3 + 343v2 
- 2909v + 6162, (5.9) 

ahl
v 0l"621 = y/2 [(16v4 

- 116v3 + 86v2 + 194v - 165) 
5 

Y(2v - 13;v) = - v4 + 30v3 - 119v2 
- 294v + 1344. (5.10) 

Introducing these results into (4.36) and taking into account 
(5.2) and (5.3) we finally obtain the following results for the 
eigenvalues which are generally valid for all v: 

± 5(64v6 
- 960v5 + 6832v4 

- 21312v3 + 32668v2 
- 26292v + 10161)1/2], (5.11 ) 

ai\.or/I= Y/2 [(16v4-180v3+350v1+60v-321) 
5 

± 5(64v6 
- 1728vs + 19696v4 - 94560v3 + 230620v2 

- 304572v + 181449) I /2], (5.12) 

a~I'."'921 = Y/2 [(16v4 _ 172v3 + 74v2 + 1522v - 2265) 
• 5 

± 5(64v6 - 960vs + 10288v4 - 45504v3 + 98332v2 
- 140340v + 123561)1/2], (5.13) 

all or 21 = y/2 [(16v4 _ 244v3 + 806v1 - 1154v + 1515) 
2,.- 10 5 

± 5(64vO - 2496vs + 37936v4 
- 224256v3 + 615292v2 

- 799140v + 405441)1/2], (5.14) 

all or 21 = y/2 [(16v4 _ 236v3 + 386v2 + 1844v - 3975) 
2,.- II 5 

± 5(64v6 - 1728vs + 26608v4 
- 163680v3 + 524380v2 

- 1071804v + 1149561)1/1], (5.15) 

all or 21 = y/2 [(16v4 _ 300v3 + 890v2 + 750 - 2181) 
2" - 13 5 

± 5(641/' - 2496v5 + 48304v4 
- 345216v3 + 1106044v1 - 1697700v + 1139625)1/2]. (5.16) 

Naturally the result (5.11) for the 1= 2v - 6 state is identical 
to the one obtained by the shift operator technique [Ref. 5, 
Eq. (3.30)]. The expressions for the other eigenvalues are 
new. It is striking that there is a great analogy between these 
expressions. In all cases the rational part of the expression 
consists of a polynomial of fourth degree in v and the coeffi
cients of the highest power is always 16, while the irrational 
part is the square root of a polynomial of sixth degree in v 
where the coefficient of the highest power is always 64. 

VI. DISCUSSION 

In the present paper we have developed a method for 
calculating rigorously the expressions for the quadrupole 0 ~ 
eigenvalues. Although the method has been applied only to 
cases where nondegenerated and doubly-degenerated states 
are involved, it is completely general. Since the method is 
based on the fact that their exists a connection between the 
O~) eigenvalue and the reduced matrix element of the R (5) 
generator q,l , it is only useful if analytical expressions for 
these matrix elements can be derived. In the R (5) case this 
problem was already solved by Williams and Pursey by con
sidering the SU(2) ® SU(2) reduction of R (5). We believe that 
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the same method can also yield eigenvalue expressions for 
the scalar shift operators in the G2 and R (7) groups, which 
are involved in the description of the octupole-phonon case. 
However, the subgroup structure of these groups has not 
been studied in so much detail and expressions for the re
duced matrix elements of the occurring generators are not 
available in the literature. The study of these problems will 
be considered in the near future. 
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Shift operator techniques for the classification of multi pole-phonon states. 
IX. Properties of nonscalar R(3) product operators in the G2 group 
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Expressions connecting non scalar R(3) products of operators shifting the eigenvalues of L 2 are 
constructed within the group G z. 

PACS numbers: 63.20.Hp, 02.20.Nq 

I. INTRODUCTION 

In a set of previous papers I-K (to be referred to as I-VIII) 
it was evident that operators shifting the eigenvalues lofthe 
R(3) Casimir operator L 2 could play an important role in the 
classification of multi pole-phonon states. By means of this 
specific technique the quadrupole-phonon state labeling 
problem could be completely solved. 7

•
K 

The symmetry group of the octupole Hamiltonian is the 
U(7) group. The labels specifying its symmetric representa
tions, which are connected to the considered phonon states, 
are usually related to the Casimir operators of groups ap
pearing in the chain 

U(7) :JSU(7):J R(7) :JG2 :J R(3):J R(2). 

Only four independent ones can be deduced in this way. 
In Papers IV and V, Gz and R(7) shift operators, i.e.,P 7 
( - S.;;;k.;;;S) and 07 ( - 3.;;;k.;;;3), respectively, have been in
troduced. It has been pointed out that either the P ~ or the 0 ~ 
operator could be used as fifth label generating operator for 
these U(7) irreps. For the R(7) case expressions connecting 
scalar as well as nonscalar R(3) quadratic products of these 
shift operators have been constructed (V and VI). For the G2 
group up to now only expressions between quadratic opera
tor products of the scalar R(3) type have been reported (IV). 
It is rather important to notice that, in order to achieve prop
er relations between these quantities, one always needed six 
of the available 11 product operators. It then also followed 
that among the various relations which could be constructed 
only six independent ones exist. It was a striking property 
that only three of the six mentioned relations had to be de
duced explicitly. Since by using the fact that every P / k goes 
over in a P { k on replacing I by - (l + 1), one easily derived 
from the first three constructed relations three other inde
pendent equations. 

For the quadrupole case either a tree generating mecha
nism,2 where only relations between product operators of 
the R(3) scalar type were involved, or a self-consistent single 
step algorithm,? where both types of relations were neces-

alResearch Associate N.F.W.O. (Belgium). 
hlResearch Assistant. 

sary, could be applied in order to obtain eigenvalues for the 
scalar R(3) shift operator. For the octupole-phonon situation 
we established that the first-mentioned mechanism does not 
generally lead to the P ~ and 0 ~ eigenvalues. Therefore, a 
study of quadratic product operators of the type P '+/k P ,+ k 

( - 5.;;;), k';;;5 andO < I) + k I.;;; 10) which have no R(3) scalar 
character is of great importance. 

II. THE NONSCALAR R(3) PRODUCT OPERATORS AND 
THEIR MUTUAL RELATIONS 

The quadratic operator P ,+JkP / k ( - 5.;;;), k.;;;5 and 
0.;;; I i + k I.;;; 10) shifts the l values of the state upon which it 
acts by (k + i). With the available shift operators (IV.2.4)
(IV.2.9) and the property (IV.2.3), which contain the compo
nents of the II-dimensional tensor representation PI' ofR(3) 
[for definition, see (IV. 1.5)] to first order only, one can con
struct 11 product operators with s = ) + k = 0, ten with 
s = ± I, nine with s = ± 2, eight with s = ± 3, seven with 
s = ± 4, six with s = ± 5, five with s = ± 6, four with 
s = + 7, three with s = ± 8, two with s = ± 9, and one 
with -; = + 10. For s = 0 (the scalar case) we can refer to IV 
for the ex~ting relations between the 11 product operators. 
It has to be noted that these expressions are only valid when 
they act to the right upon states with angular momentum 
projection m = O. It has been remarked that this seemingly 
drastic condition does not seriously detract from the gener
ality of the presented calculations. Therefore, we shall work 
here also within this same convention. 

The considered quadratic product operators consist of 
terms composed of two Pit and ten or less R(3) generators Ii 
(i = 0, ± ). In order to obtain relations between them, it is 
clear that once again all product operators should be 
brought into a standard form. The procedure to reach that 
form has been fully discussed in I. It is evident, on account of 
the commuting properties of the P generators (see IV), that 
operators where p generators appear linearly can emerge in 
relations between quadratic products of the shift operators 
P7. It is easy to understand that between expressions of the 
form P '+;kP / k, these operators linear in PI' will be P~+ k 

themselves, if they are defined. By straightforward calcula
tion we have arrived at the following final results for the case 
where s <0; 
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(I + 3f(l + 4)2(21 + 5)(21 + 7f(21 + 9)PL IP [- I - (I + 3)(1 + 4)2(21 + 1)(21 + 7)2(21 + 9)(1 + 15)P {- IP7 

+ 201 (I + 4f(l + 8)(21 + 3)(21 + 7)(21 + 9)P [-/1 P /1/(1 + 1)2 

+ 601 (I + 4)(1 + 6)(21 + 1)(21 + 5)(21 + 9)P [~32P / 2/(1 + If(1 + 2f 

+ 301 (I + 1)(21 + 1)(21 + 7)(41 + 21jP '-/3P /3/(1 + 1)2(1 + 2)2(1 + W 
+ 301 (I + 1)(21 + 1)(21 + 3)P ,~54P /4/(1 + If(l + 2f(1 + 3)2(1 + 4)2 

+ (8/21 v3)1 (I + 1)(1 + 2)(1 + 3f(l + 4)2(21 + 1) 

X(21 + 3)(21 + 5)(21 + 7)2(21 + 9)P ,- 1= 0; 

(2/-1)(/+2)(/+W(2/+5)(2/+7)(4/2-8/-171)P~_IP[-1 

- (I - 1)(/ + 3 )(21 + 1 )(21 + 5)(21 + 7)(21 + 9)(2/2 + 171 - 114jP [- IP? 

+ 15(/- 1)(2/- 1)(21 + 3)(1 + 3)(4/3 + 321 2 - 21/- 350jP ,~21 P /1/(1 + If 

+ 301 (1- 1)(2/- 1)(21 + 5)(4/2 + 121- 45)P [~32P /2/(1 + If(l + 2)2 

+ 301 (1- 1)(2/- 1)(21 + 1)(2/- 3jP [~\P [+ 3/(1 + If(1 + 2)2(1 + W 
+ 5(1 + 2)(1 + 3f(21 + 3)(21 + 5)2(21 + 7)P [+12P ,- 2/(/_ If 

+(8/21v3)(/-l)(2/-1)/(2/+ 1)(1+ 1)(2/+3)(/+2) 

x (21 + 5)(1 + 3)2(21 + 7)(4/2 + 41 + 27)P [- I = 0; 

- (I + 2)(/- 2)(2/- 1)(21 + 3)(4/4 - 241 3 - 257/ 2 + 4441 + 2773)pL IP [-I 

+ (I + 2)(/- 2)(21 + 1)(21 - 3)(4/4 + 24f3 - 257/ 2 - 4441 + 2773jP[-IP? 

- 10(/- 1)(/- 2)(2/- 3)(2/- 5)(21 + 3)(1 2 + 21- 20)P '-/1 P [+ 1/(1 + 1)2 

- 10(1- 1)(/- 2)2(2/- 1)(2/- 3)(2/- 5)P [~32P /2/(1 + If(l + 2)2 

+ 10(1+ 1)(/+2)2(2/+ 1)(2/+3)(2/+5)Pi+:23P[-3/(/-lf(l-2)2 

- 10(1 + 1)(1 + 2)(21 + 3)(21 + 5)(21 - 3)(/2 - 21 - 20)P /_12P {- 2/(1- If 

- (8/21v3)1(1- 1)(/- 2)(1 + 1)(1 + 2)(2/- 1)(2/- 3)(21 + 1)(21 + 3) 

X(4/4+ 151 2+ 191jP[-1 =0; 

- (I + 1)(/- 3)(2/- 1)(2/- 5)(2/- 7)(2/- 9)(2l2 - 17/- 114)P? _ I P 1- I 

+ (I - 2)(/- 3)2(2/ + 1)(2/- 5)(21 - 7)(4/2 + 8/- 171jP ,- IP? 

- 5(1- 2)(/- 3)2(2/- 3)(2/- 5)2(2/- 7)P ,~21 P /1/(1 + 1)2 

- 30/(2/- 1)(1 + 1)(21 + 1)(21 + 3jP,+~P,-4/(/_ 1)2(1- 2f(l- W 
+ 301 (I + 1)(21 + 1)(21- 5)(4/2 - 121- 45)P ,~23P ,- 3/(/_ If(/- 2)2 

- 15(1 + l)(l- 3)(21 + 1)(2/- 3)(4/3 - 321 2 - 211 + 350)P /_12P [- 2/(/_ If 

-(8/21v3)/(I+ 1)(/-l)(l-2)(/-3)2(2/+ 1)(2/-1)(2/-3) 

X (21 - 5)(21 - 7)(4/2 - 41 + 27)P ,- I = 0; 

- (/- 3)(1- 4)2(2/- 1)(2/- 7)2(2/- 9)(/- 15)P?_ I P [- I 

+ (I - 3)2(/- 4)2(21 - 5)(2/- 7)2(21 - 9)P ,- IP? 

+30/(l-1)(2/-1)(2/-3)P,~45P,-5/(/-lf(/-2)2(/-3)2(1-4)2 

- 301 (I - 1 )(21 - 1 )(21 - 7)(41 - 21)P /_J4 p ,- 4/(1 - 1)2(1- 2f(/- 3f 

+ 601 (1- 4)(1 - 6)(21 - 1 )(21 - 5)(21 - 9)P ,~23 P ,- 3/(1 - 1 )2(1 - 2f 

- 201 (I - 4f(1 - 8)(2/- 3)(21 - 7)(21 - 9)P,~ 12p ,- 2/(1- 1)2 

- (8/21v3)l(/- l)(l- 2)(/- 3)2(1 - 4f(2l- 1)(2/- 3) 

X (21 - 5)(21 - 7)2(2l - 9)P ,- I = 0; 

(I + 2)(1 + 3)2(1 + 4)(21 + 3)(21 + 5)2(21 + 7)P?_2 P ,-2 

2333 

+ 35(1 + 2)(1 + 3)2(1 + 4)(2l- 1)(2/ + 5)(21 + 7)P , ___ \p ,-I 

+ (/- 1)(1 + 3)(1 + 4)(21 + 1)(21 + 5)(21 + 7)(1 + 10)( - 21 + 21)P ,- 2P? 

+ 15(/- 1)(/ + 3)(/ + 4)(21- 1)(21 + 3)(2/2 + /- 70)P ,~-\p ,+ 1/(1 + 1)2 
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+ 30(/- 1)1 (21- 1)(2/ + 5)(2/2 + 31 - 34)P I~ ip / 2/{1 + 1)2(1 + 2)2 

+ 30(1- 2)(/- 1)/(2/- 1)(21 + I)P 1~53P 1+ 3/(1 + 1)2(1 + 2)2(1 + W 
+ (8/2h/3)(/- 1)1(1 + 1)(1 + 2)(1 + 3)2(1 + 4)(2/- 1) 

X (21 + 1)(21 + 3)(21 + 5f(21 + 7)P 1- 2 = 0; 

(I + 1)(1 + 2)(1 + 3)(21 + 3)(21 + 5)(21 - 3)(2f2 - I - 106)P~ _ 2P 1- 2 

+ 35(1- 2)(/ + 2)(1 + 3)(21- 1)(21 + 3)(2/2 -1- 43)P I-=--\ P 1- I 

+ (I - 2)(1 + 2)(21 - 3)(21 + 1)( - 4/4 + 41 3 + 3791 2 - 64/- 4515)p 1- 2p~ 

+ 10(/- 1)(1- 2)(/- 3)(2/- 3)(21 + 3)(2/2 - 53)P 1~31P /1/(1 + 1)2 

+ 10(1- 1)(1 - 2)(1 - 3)(21 - 1)(2/ - 3)(2/- 5)p I~ 42p 1+ 2/(1 + 1)2(1 + 2)2 

+ 5(1 + 1)(1 + 2)2(1 + 3)(21 + 1)(2/ + 3)(21 + 5)P 1+13P 1- 3/(/_ 2f 

+(8/21i/3)/(/-l)(/-2)(1+ 1)(1+2)(/+3)(2/-1)(2/-3) 

X(2l + 1)(21 + 3)(21 + 5)(2/2 - 51 + 18)P I-
2 = 0; 

(I + 1)(/- 3)(21 + 1)(2/- 3)( - 4/4 + 12J3 + 367/ 2 - 690/- 4200)PL 2P 1- 2 

- 35(1 + 1)(1- 3)(/- 4)(2/- 1)(2/- 5)(2f2 - 3/- 42)P I-=--\ P 1- I 
+ (1- 2)(1 - 3)(1 - 4)(21 - 5)(2/- 7)(21 + 1)(2/2 - 31 - 105)P 1- 2p~ 

- 5(1- 2)(/- W(/- 4)(2/- 3)(2/- 5)(2/- 7)P i-~/IP 1+ 1/(1 + W 
-101(1+ 1)(/+2)(2/+ 1)(2/-5)(212-4/-51)PI~13PI-3/(/-2)2 

+ 101 (I + 1)(1 + 2)(21 - 1)(2/ + 1)(2/ + 3)P 1~24P 1- 4/(1 - 2)2(1 - W 
- (8/21i/3)(/- 1)/(1 + 1)(/- 2)(/- 3)(/- 4)(21- 1)(2/ + 1) 

X(2/- 3)(2/- 5)(2/-7)(2/2 + 1+ 15)P 1-
2 = 0; 

-I (1- 4)(/- 5)(2/- 3)(2/- 7)(2/- 9)(1- 11)(2/ + 19)P~ _ 2P 1- 2 

- 35(1- 3)(1- 4)2(1- 5)(2/- 1)(2/- 7)(2/- 9)P I-=--\ P 1- 1 
+ (/- 3)(/- 4)2(/_ 5)(21- 5)(2/- 7)2(2/- 9)P 1- 2P? 

- 15/(1- 4)(/- 5)(2/-1)(2/- 5)(2/2 - 5/- 67)P1~13PI-3/(/- 2f 

+ 30/(/- 1)(21- 1)(2/-7)(2/2 - 7/- 29)P 1~24P 1- 4/(1- 2)2(/_ 3)2 

- 30/(1 + 1)(/- 1)(21- 1)(2/- 3)p 1~35P ,-- 5/(1- 2)2(/- W(I- 4)2 

- (8/21 i/3)1 (1- 1)(1- 2)(/- 3)(/- 4f(/- 5)(2/- 1) 

X (21 - 3)(21 - 5)(2/- 7)2(21 - 9)P ,- 2 = 0; 

(I + 1)(1 + 2)2(1 + 3)(21 + 1)(21 + 3)(21 + 5)(21 + 7)(1 + 13)P7_ 3P ,- 3 

+ 20(1 + 1)(1 + 2)(1 + 3)(/- 1)(21 + 3)(21 + 5)(21 + 7)(21 + II)P 1-=--12p ,- 2 

- I (I + 2)(1 - 2)(21 + 1)(21 + 7)(4/4 + 40[3 - 145/ 2 
- 32201- 8439)P ,- 3P7 

+5(1-1)(/-2)(2/+ 1)(2/+3)(2/+ 11)(2/ 3+ 11/2-111/-420)P/~4IP/I/(I+ 1)2 

+ 10(1 + 1)(/- 1)(/- 2)(2/-1)(2/ + 21)(2/2 - 5/- 39)P,~52PI+2/(1 + If(l + 2)2 

- (2/21 i/3)1 (l + 1)(1 + 2)2(1 + 3)(21 + 1)(21 + 3)(21 + 5)(21 + 7) 

X (1- 1)(1- 2)(21- 1)(2/2 + 231- 879)P 1- 3 = 0; 

(I + 1)(1 + 2f(l + 3)(21 + 1)(21 + 3)(21 + 5)(21 + 7)P~_ 3P 1- 3 

2334 

+ 20(/- 1)(1 + 2)(1 + 3)(2/- 1)(21 + 3)(21 + 7)(21 + ll)p 1-_2IP 1- I 

+ (I + 2)(21 + 1 )(21- 1)(21 - 3)(21 + 7)( - 13 + 3/ 2 + 1781 + 660)p 1- 3P7 

+51(1-1)(21-3)(2/+3)(2/+ 11)(2/2-15/-98)pI~4IPltl/(/+ 1)2 

+ 10(1- 1)(2/- 1)(21 + 1)(2/- 3)(12 - 51- 42)P i-~52P 1+ 2/(1 + If(l + 2)2 

- (2/21i/3)/(I + 1)(1 + 2)2(1 + 3)(/- 1)(21 + 1)(21 + 3)(21 + 5) 

X (21 + 7)(2/- 1)(2/- 3)(1- 62)P [- 3 = 0; 
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(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 
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(I - 4)(2/- 5)(2/- 3)(2/- 1)(2/- 11)( _/3 + 3/ 2 + 178/- 1020)P?_ 3P 1- 3 

- 20(1 - 1)(/- 4)(/- 5)(2/- 3)(2/- 7)(2/- 11)(2/- 15)P i-~12P 1- 2 

+ (I - 3)(/- 4)2(1- 5)(2/- 5)(2/- 7)(2/- 9)(2/- 11)P 1- 3P? 

- 5(1 - 2)(1 - 1)(21 - 1)(21 - 7)(2/- 15)(2/2 + 7/- 120)P 1~14P [- 4/(/_ 3f 

+ 10(1 - 1)(2/- 3)(2/- 5)(2/- 1)(12 + 1- 48)P 1~25P 1- 5/(/_ 3f(/- 4)2 

+ (2/21Y/3)(/- 1)(/- 2)(/- 3)(/- 4f(/- 5)(2/- 1)(2/- 3) 

X (21 - 5)(21 - 7)(21 - 9)(21 - 11)(1 + 60)P 1- 3 = 0; 

1(/-2)(1-4)(2/-5)(2/-11)(4/ 4-72/ 3+ 1911 2+3192/-15075)PL3 P I- 3 

+ 20(1 - 1)(/- 3)(/- 4)(/- 5)(2/- 7)(2/- 9)(2/- 11)(2/- 15)P / __ 21 P 1- I 

- (/- 3)(/- 4)2(/- 5)(21- 5)(2/- 7)(2/- 9)(2/- 11)(/- 15)P 1- 3P? 

+ 5/(/- 1)(2/- 5)(2/-7)(21- 15)(2[3 - 23/ 2 - 431 + 582)P 1~14P 1- 4/(/- 3)2 

- 101 (1- 1)(1- 3)(2/- 3)(21 - 25)(212 - 3/- 41)P 1~25P 1- 5/(1_ 3f(l - 4)2 

- (2121 Y/3)1 (/- 1)(/- 2)(/- 3)(/- 4)2(1 - 5)(2/- 3) 

X(2/- 5)(2/- 7)(2/- 9)(2/- 11)(2/2 - 31/- 825)P 1- 3 = 0; 

1(1 + 1)(1 + 2)(1 + 3)(2/- 1)(2/ + 1)(2/ + 3)(21 + 5)P?_4PI-4 

+ 360(1 + 1)(1 + 3)(/- 2)(21- 3)(21 + 1)(2/ + 5)p 1 __ 22P 1- 2 

+ 45(1 + 1)(1 + 3)(1 + 6)(1- 9)(2/- 1)(2/- 3)(2/- 5)P 1 __ 31P I-I 

+ (/- 1)(/- 2)(21 + 1)(2/- 5)( - 4/4 + 201 3 + 513/ 2 - 1071/- 10 935)P [-4P? 

+ 5(1 - 2)(/- 4)(1 + 6)(/- 9)(2/- 1)(2/- 3)(2/- 5)P 1~51 P 1+ 1/(1 + 1)2 

- (2/7y/3)(/- 2)(/- 1)/(1 + 1)(1 + 2)(1 + 3)(21- 5)(2/- 3)(2/- 1) 

X (21 + 1)(21 + 3)(21 + 5)(2/- 21)P 1- 4 = 0; 

1(1 + 1)(1 + 2)(1 + 3)(2/- 1)(21 + 1)(21 + 3)(21 + 5)P?_4PI-4 

+ 451 (I + 1)(1 + 2)(1 + 3)(/- 2)(21 + 1)(21 + 5)P 1 __ 13p 1- 3 

+ 45(1 + 1)(1 + 3)(/- 1)(/- 3)(2/- 1)(2/2 - 7/- 50)p 1 __ 31P I-I 

+ (I - 2)(/- 3)(2/- 1)(21 + 1)( - 4/4 + 201 3 + 239/ 2 - 6601- 3375)P 1- 4P? 

+ 201(1 - 2)(/- 3)(/- 4)(2/- 3)(12 - 31- 19)P 1~51P [+ 1/(1 + W 
- (2/7v'3)(/- 3)(/- 2)(/- 1)/(1 + 1)(1 + 2)(1 + 3)(21- 3)(2/- 1) 

X (21 + 1)(21 + 3)(21 + 5)(4/- 25)P 1- 4 = 0; 

I (I - 1 )(21 - 5)(21 - 7)( - 4/4 + 281 3 + 203/ 2 - 8821 - 2988)PL 4P 1- 4 

- 451 (I - 2)(1 - 4)(1 - 6)(21 - 5)(2/2 - 51 - 53)P 1 __ 13p 1- 3 

- 45(1- 1)(/- 3)(/- 4)(/- 5)(/- 6)(2/- 7)(2/- 11)P 1 __ 31P I-I 

+ (/- 3)(/- 4)(/- 5)(/- 6)(2/- 5)(2/- 7)(2/- 9)(2/- 11)P 1- 4P? 

- 201 (I + 1)(/- 1)(/- 3)(2/- 3)([2 - 3/- 19)p 1~15P 1- 5/(/_ 4)2 

+ (2/7Y/3)1 (/- 1)(/- 2)(/- 3)(/- 4)(/- 5)(/- 6)(2/- 3) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

X(2/-5)(2/-7)(2/-9)(2/-11)(4/+ 13)P1- 4=0; (2.16) 

I (I - 1)(2/ - 3)(21 + 3)(21 + 5)(1 + lO)P? _ 5P 1- 5 + 4501 (/- 2)(21 - 5)(21 + 5)p 1 __ 23P 1- 3 

+ 25(/- 1)(1- 2)(2/- 7)(2/- 15)(2/ + 15)P 1 __ 
4
1 P 1- I - (/- 10)(21 - 3)(21 - 5)(21 - 7)(12 + 41- 75)p 1- 5P? 

+ (2/7Y/3)1 (I - 1)(/ - 2)(21 - 3)(2/- 5)(21 - 7)(21 + 3)(21 + 5)(13 - 12[2 - 163/ + 141O)P 1- 5 = 0; (2.17) 

1 (2/- 3)(21 + 5)(21 + 7)P? _ 5P 1- 5 + 251 (2/- 5)(21 + 5)P 1 __ 14 p 1- 4 

+ 25(/- 4)(2/- 3)(2/- 13)P 1 __ 
4
1 P 1- 1_ (/- 4)(2/- 5)(2/- 13)(2/- 15)P 1- 5P? 

+ (4/7Y/3)1 (1- 2)(/- 4)(2/- 3)(2/- 5)(21 + 5)(2/- 13)(/2 - 4/- 57)P 1- 5 = 0; (2.18) 
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1 (1- 1)(1 + 2)(2/- 1)(21 + 3)(21 + 5)PL 5P I~ 5 + 4501 (/- 2)(2/- 5)(21 + 5)P 1-=-3
2 P I~ 2 

+ 25(/- 2)(1- 3)(2/- 1)(2/ + 7)(2/- 23)P 1-=-4,P I~' + (/- 1)(/- 3)(2/- 5)( - 4/ 3 + 561 2 
- 47/- I 61O)P I~ 5p~) 

+ (2/7113)1 (/- 1)(/ - 2)(1 - 3)(1 + 2)(2/- 1)(2/- 5) (21 + 3)(21 + 5)(2/2 - 451 + 343)P 1- 5 = 0; (2.19) 

(I + 1)(/- 1)(1 + 2)(/- 2)P 1-=-'5P I~ 5 - 10(/- 1)(1 + 2)(/- 3)P I-=-~P 1~4 

- 10(/ - 2)(1 - 4)(/- 7)P I~~ ~P 1- 2 - (I - 3)(/- 4)(1 - 6)(1 - 7)P 1-=-5, P 1- 1 = 0; (2.20) 

(I + 1)(/- 2)(/- 1)(1 + 2)(21 + 3)(2/- 3)P 1-=-'5P I~ 5 - 270(/- 1)(1 + 2)(1- 3)(2/- 5)P I-=-33 P I~ 3 

- 10(2/- 3)(2/- 5)(21 - 7)(12 - 51 - 30)P I-=-42p I~ 2 - (I - 2)(1 - 3)(1 - 6)(21 - 7)(2/2 - 111 - 93)P 1-=-5, P 1- , = 0; 
(2.21) 

(/- 2)(21 + 3)P 1-=-25P 1- 5 - 30(/- 3)P I-=-\P I~ 3 - (1- 12)(2/- 7)P 1-=-52p I~ 2 = 0; 

(I + 6)(2/- 5)P 1-=-25 p 1- 5 - 30(/- 3)P 1-=-3
4P 1-

4 
- (1- 4)(2/- 15)P 1-=-52p I~ 2 = 0; 

5(2/- 7)P I-=-~P 1~4 - (l + 1)(1- 3)P 1-=-3
5 P I~ 5 + (/- 8)(1- 4)P 1-=-53 p I~ 3 = 0; 

(2.22) 

(2.23) 

(2.24) 

(2.25) P 1-=-4SP I~ 5 - P I-=-S4 P 1~4 = O. 

For a fixed s, the mentioned relations are all completely inde
pendent. All other existing relations between the considered 
non scalar operators for a particular s value can be derived 
from the cited ones. Using the fact that P / k and P I~ k go 
over into each other on replacing Iby - (I + 1),25 indepen
dent equations can be easily derived from (2.1 )-(2.25). For 
these equations the present s values are essentially positive. 
The reader can easily perform this transformation himself if 
such relations are of importance. 

III. DISCUSSION 

As a first remark we want to draw attention to the fact 
that the total number of independent relations among nons
calar product operators in G 2 is not the one expected on 
grounds of analogy with the SU(3),9 the R(5V' and the R(7) 6 

cases, but is much larger indeed. To be more precise, let us 
recall that for the unitary and orthogonal groups mentioned 
we observed a common pattern in the variation of the num
ber of independent relations among product operators shift
ing I to I + s, when we started at the scalar situation s = 0 
and systematically lowered (raised) s by one unit. Denoting 
for a fixed s the number of independent relations by N(s) we 
found for SU(3), R(5), and R(7) that N(s) = N(O) - lsi if 
1 <s<N(O) and N(s) = 1 for larger permissible lsi values. In 
the present G 2 case, anomalies to this simple rule are en
countered when lsi equals 3,4,5,6, and 7. In fact, the reader 
can easily verify that for G z the foregoing formula should be 
replaced by N(s) = N(O) - [ls1/2] - 1 for 1<lsl<9, where 
square brackets denote the integral part of the number in
side. It remains an open question whether the first formula 
given above applies for all unitary and orthogonal Lie groups 
and hence also whether the exceptional behavior of G 2 

should be attributed to the fact only that it is an exceptional 
Lie group. 

It has been originally pointed out by Hughes and Yade
garlO that it is always possible to turn an I-lowering shift 
operator into and I-raising one and vice versa by a formal 
change of the parameter I in the definition of that shift opera
tor. For G 2 this property can be expressed by the operator 
equality P I~ k = P + ~ _ ,. It has still been noted that on ac-
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count of this equality the relations established in the present 
paper can be simply transformed into relations among prod
uct operators that raise I by 1,2,.··, or 9 units. By setting up 
the relations (2.1)-(2.25), however, we noticed another kind 
of symmetry, which, for practical purposes, is a useful com
plement to the already known shift operator properties. In
deed, we want to conjecture that any of the relations among 
product operators that shift I to I + s can be turned immedi
ately into another relation (or exceptionally the same) of 
similar kind by carrying out the following operations: 

(i) the parameter I in the coefficients and in these only 
should be formally replaced by -/ - s - 1; 

(ii) each operator product of the form PI ++ 'jP 1 + 1 

(j + k = s) should be replaced by the product P t: k P / k; 

(iii) shift operators occurring linearly in the relation 
should be kept unchanged. 
Notice that for s = 0 these operations become equivalent to 
the property P 1- k = P ~ ~ ~, and hence allow us to derive 
one half of the number of scalar relations directly from the 
other half. For s #0, however, we have now also the opportu
nity to set up only [(N(s) + 1)12] relations, after which the 
symmetry operations immediately lead to the complete set of 
N(s) independent relations. Furthermore, the reader can 
convince himself that the type of symmetry discussed here 
equally occurs in the groups SU(3), R(5), and R(7), and hence 
is independent of the particular group under consideration 
and merely a consequence of the fact that one deals with a 
linear Lie algebra of group generators. 

Finally, it should be noticed that the non scalar relations 
presented here occur with I-dependent coefficients, which 
allow much more factorizations than was the case for the 
scalar relations. In a forthcoming paper, we shall demon
strate how the appropriate use of scalar and nonscalar rela
tions leads to very general formulae expressing the P 7 eigen
values and eigenstates. 
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The inverse problem of the shear modulus and density profiles of a layered 
earth-torsional vibration data 
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This paper shows that the shear modulus and density profiles of a layered earth are uniquely 
determined by the torsional stress and displacement on its surface at two frequencies. An 
analytical example is given in which these profiles are deduced from analytic data. 

PACS numbers: 91.60.Ba, 03.40.Dz 

I. INTRODUCTION 

A torsional vibrator in the form of a rigid circular plate 
of finite radius is mounted on the free surface of a layered 
earth and is performing rotational oscillations about its cen
ter. Required are the shear modulus and density profiles of 
the layered earth from the measurements of the torsional 
stress under the vibrator and the torsional displacement of 
the surface of the earth. These data are assumed to be known 
precisely at two arbitrary frequencies. In a realistic geo
physical experiment, the data is, of course, imprecise, and 
there may be in addition some difficulties in coupling tor
sional vibrations into the earth. Similar problems are en
countered with the horizontally polarized shear wave vibra
tors, currently being used by the oil industry. 

The static case corresponding to w = 0 has been already 
treated by Coen, I in which case the shear modulus profile of 
a layered earth is uniquely determined by the static torsional 
stress and displacement of the surface of the earth. 

The equation describing the dynamic torsional dis
placement of a layered earth is transformed to the Schro
dinger equation whose potential is related to the shear mo
dulus and density profiles of the earth and the frequency of 
oscillation of the vibrator. Weidele solved the inverse prob
lem for the Schrodinger equation by modifying the theory of 
Gel'fand and Levitan. 3 Weidelt's2 theory is used in this pa
per to recover uniquely the potential of the Schrodinger 
equation from the torsional stress and displacement of the 
surface of the earth. If the surface data are available at two 
arbitrary frequencies, two different potentials will be recon
structed from which the shear modulus and density profiles 
of the earth can be separately obtained. 

II. SOLUTION OF THE INVERSE PROBLEM 

The dynamic torsional displacement u(r,z,w)==ue(r,z,w) 
in the cylindrical coordinate system (r,B,z) satisfies the 
equation 

a2u 1 au u a2u -+----+ 
a? r ar ? az2 

1 a/-l au w 2 

+ ---+ -, u =0, r,z;;;' 0, (1) 
/-l az az c~ 

where /-l = /-lIz) is the shear modulus profile which is a func
tion of the depth z only, c = c(z) is the shear wave velocity 
profile which may be expressed in terms of the density profile 

p(z), and the shear modulus profile by c2(z) = /-l(z)/p(z), w is 
the frequency, and the displacement u is outgoing as 
(? + Z2) I 12 tends to infinity. 

A rigid torsional vibrator is place on the free surface 
z = 0, and it occupies the region 0 <,r <, a, 0 < t3 <, 21T, 
where a is its radius in meters. The objective is to determine 
the shear modulus profile /-l = /-lIz) and the shear wave veloc
ity profile c = c(z) from the torsional displacement u(r,O,w /), ° <, r < ct:!, and the torsional stress under the vibrator 

au(r,z,w/) I 
r(r,w/) =/-l----

az z~O 
° <, r <, a, 

at two frequencies wpl = 1,2. This is a nonlinear inverse 
problem. The transformation 

(2) 

v(r,z,w) = u(r,z,w )[u(z)/ /-l(0)] 112 (3) 

transform (1) into the equation 

a2v 1 av v a2v - + - - - -::2 + -, + q(z,w) v = 0, z;;;. 0, (4) 
a? r ar r az-

where 

w 2 [(,u(z)) I 12 r 
q(z,w)= c2(z) (,u(z)) I 12 ' z;;;.O, (5) 

{
I - Yt'(z)v(r,z,w) +/-l(z)v'(r,z,w)lz~o' 

r(r,w) = 
° < r <, a, 

0, r> a. 
(6) 

In (5) and (6) the prime and double prime denote the first and 
second derivative with respect to z, respectively. 

Let v(s,z,w) denote the Hankel transform of order 1 of 
v(r,z,w): 

v(s,z,w) = i oc 

v(r,z,w)r JI(rS) dr. (7) 

Equation (4) now shows that 

a2v(s,z,w) 2~ _ -
-=-::-1--'- - S v(S,z,w) - - q(z,w) v(S,z,w), z;;;. 0, (8) 

az-

and (6) transforms to 

i(S,w) = 1 - ~ /-l'(z)v(s,z,w) + /-lIz) v'(s,z,wll z ~ 0' 

° <, S <, 00, (9) 

In terms of the dimensionless function 
f(s,z,w) = v(s,z,w)/v'(s,O,w), Eq. (8) is equivalent to 

f"(S,z,w) - s2f(s,z,w) + q(z,w)f(s,z,w) = 0, z;;;. 0, 
(10) 
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where/satisfies the initial conditions 

, 17'(0) 1 
/(S,O,UJ) = 1, / (S,O,UJ) = - - --, (11) 

1](0) d (s,UJ) 
in which 1](z) = Lu(z)] I 12 and 

d (S,UJ) = _ ,u(O~u(g,O,UJ) = _ ~(s,O,UJ). (12) 
r(S,UJ) u'(S,O,UJ) 

Note that since r(r,UJ) and u(r,O,UJ) were assumed to be 
known, d (S,UJ) is a known function of 5 and UJ. 

If UJ is regarded as a fixed parameter, then Weidele 
shows that the potential q(z,UJ) can be uniquely recovered 
from the impedance function d (s,UJ) provided that d (S,UJ) is 
real for real 5 and it has no poles in the right-hand side of the 
complex 5 plane. It can be shown that d (S,UJ) as given by Eq. 
(12) is not a real-valued function for all real g. The simplest 
example is a uniform half-space in which case 

(13) 

where i 2 = - 1, k = UJ/c, and the time harmonic conven
tion ehut has been used. 

However, if the independent variable 5 is changed to y 
by 

( 
UJ2 )112 

5= y2+ -2 ' 
Co 

(14) 

where Co is a constant which is smaller than the lowest shear 
wave velocity in the earth 

° < Co < min c(z), 
o,;;;,z<oo 

(15) 

then it is shown in the Appendix that d (y,UJ) is a real-valued 
function for real y, and it has no poles in the right-hand side 
of the complex y plane. In the particular example given by 
(13), the change of variables (14) with the constraint (15) 
show that 

d (y,UJ) = [y2 + UJ
2
( C~)2 - :2) t 112, (16) 

which is real for real y because Co < c. 
In the general case, Eq. (10) is modified to 

f"(y,z,UJ) - y2/(y,Z,UJ) = Q (z,UJ)/(y,z,UJ), (17) 

where 

Q(z,UJ) = 1]"(z) - .!i..-[ ~ - 1]. (18) 
1](z) C0

2 c2(z) 

Similarly, Eq. (11) is modified to 

'(0) 1 
/(y,O,UJ) = 1, f'(y,O,UJ) = '!L-. - --. (19) 

1](0) d (y,UJ) 

It now follows from Weide1t2 that for a fixed UJ, the 
potential Q (z,UJ) can be uniquely determined by the following 
procedure: 

2339 

Step 1: 

b (y,UJ) = HI - yd (y,UJ)]. 
Step 2: 

b (y,UJ) = (00 B (z,UJ)e ~- YZ dz. 
Jo 
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Step 3: 

A (z,y;UJ) = B (z + y;UJ) + f zA (z,x;UJ) 

Step 4: 

X [B (y + x;UJ) + B (y - x;UJ)] dx, 
Iyl .;;;; z, z> 0. 

d 
Q (z,UJ) = 2 -A (z,z;UJ), 0.;;;; z < 00. 

dz 

If this procedure is applied to d (y,UJ 1) and d (y,UJ2 ), 

Q (z,UJ I) and Q (Z,UJ2) will be obtained and Eq. (18) shows that 
the shear wave velocity profile can be recovered by 

c2(z) UJ/ - UJ/ 

C0
2 = UJI2-UJ/+co2[Q(z,UJ2)-Q(z,UJdl' 

° .;;;; z < 00, (20) 

from which the shear modulus profile or, more precisely, the 
square root of the shear modulus profile, 1](z) = Lu(z)] I /2 is 
obtained as the solution of the ordinary differential equation 

1]"(Z) - €(z)1](z) = 0, 0.;;;; Z < 00, (21) 

where 

UJ/[ C0
2 

] €(z) = Q(z,UJ I) + -2 -2- - 1 , 
Co c (z) 

(22) 

The initial conditions for (21) are 

1](0) = Lu(ojf 12, 1]'(0) = ~,u -1I2(0),u'(0), (23a) 

which are assumed to be known values. The referee suggests 
that 1](0) and 1]'(0) can be deduced from the data 
7(Y,UJ)/U(Y,0,UJ) because a WBK approximation for y---+oo 
yields 

f(y,UJ) = _1]2(0)[r+ 1]'(0)+ Q(0,UJ)+O(y-2)]. 
u(r,O,UJ) 1](0) 2y 

(23b) 
This completes the solution of the inverse problem; the 

shear wave velocity and shear modulus profiles have been 
obtained from the torsional stress under the vibrator and the 
torsional displacement of the surface of the earth at two fre
quencies. The density profile can be deduced from these by 
p(z) = ,u(z)/c2(z), 0.;;;; Z < 00. 

III. AN ILLUSTRATIVE EXAMPLE 

An example is now given in which the shear wave veloc
ity and shear modulus profiles are reconstructed from d (y,UJ) 
as given by Eq. (16). The inversion procedure now gives: 

Step 1: 

(r+h2)1/2_y 
b(y)=! (r+h2)1/2 ' 

Step 2: 

B (z) = {!h JI(hz), z > 0, 
0, z < 0, 

where J I (·) is the Bessel function of order 1. 
Step 3: 

A (z,y) = ~ z + Y I (h (Z2 _ y2)1/2) Iyl.;;;; z, z> 0, 
2 (Z2 _ y2)112 I 

where I I (.) is the modified Bessel function of the first kind of 
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order 1. 
Step 4: 

Q(z,w) = h 2. 

and Eq. (21) shows that 

r( (z) = 0, ° « z < 00, (25) 

because t(z) = 0, ° « z < 00, by Eq. (22). The general solu
tion of Eq. (25) is given by 

17(z) = a IZ + a 2, ° « Z < 00, (26) 

where a I and a 2 are to be determined by the initial condi
tions (23), which for this example are 17(0) = [,u(0)]1!2 and 
17'(0) = ° because the data d (y,w) corresponds to a uniform 
half-space. Applying the initial conditions results in 

17(Z) = 17(0), ° «z < 00, (27) 

which states the medium has a uniform shear modulus pro
file ,u(z) = ,u(0), ° < z < 00, and by Eq. (24) the medium has 
a uniform shear wave velocity profile c, O«z < 00, and, con
sequently, the density profile is uniform too. 

IV. DISCUSSION 

It has been demonstrated that the shear modulus and 
density profiles of a layered earth are uniquely determined 
by the torsional stress and displacement of the surface of the 
earth at two frequencies. This requires, however, an estimate 
of the lowest shear wave velocity within the earth and that 
the shear modulus and its derivative be known at the surface 
of the earth. 

For real data the most difficult part in the inversion 
procedure is Step 2. This requires the numerical inversion of 
the Laplace transform b (y,w). This is discussed by Coen. I 

It will be concluded by noting that the inversion proce
dure of this paper reduces to the inversion procedure for the 
static case l by setting w = 0. 
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This is obtained by noting that A (z,z) = ~h 2Z and then by 
differentiation. h 2 is by Step 1 equal to w 2(1/c0

2 - lIc2), in 
which Co < c. 

Equation (20) now shows that 

(24) 

APPENDIX 

Here it is shown that the impedance function d (5",w) as 
given by Eq. (12) is real for real y, and it has no poles in the 
right-hand side of the complex y plane, where y is related to 
5" by Eq. (14) and Co satisfies the constraints (15). 

If u(5",z,w) denotes the Hankel transform of u(r,z,w), 
then Eq. (1) shows that 

[ 
a2 2 w

2 
1 d,u(z) a] - ° 

az2 - 5" + c2(z) + Il(Z) --;;;- az u(5",z,w) = , 

o«z<oo, (AI) 

where 

u(5",z,w) = (00 u(r,z,w) r J I (r5") dr. 
Jo (A2) 

The depth z is now transformed to an apparent depth s 
by 

ds ,uta) 

dz ,u(z) 
(A3) 

and Eq. (A 1) is transformed to 

[ 
a2 _ ,u2(S)!;- 2 + w2 ,u2(S) ]u(!;- S W - ° 
as2 ,u2(0)':> ,U2(0)C2 (S) ,:>,,) - , 

° « s < 00, (A4) 

where 

s = (' ,u(0) dz'. (AS) 
Jo ,u(z') 

Note that because ,u(z') is a positive valued function, s = s(z) 
is a monotonic function of z. 

The independent variable 5" is next changed to y by Eq. 
(14); this changes Eq. (A4) into 

{
a" 2,u"(S) w

2 [co2 
] ,u2(S)} -

as" - y ,u2(0) + C
o

2 c2(s) - 1 ,u2(0) u(y,s,w) = 0, 

° « s < 00. (A6) 

Now multiply both sides of this equation by u*(y,s,w), where 
the asterisk denotes complex conjugate, and integrate with 
respect to s over (0, 00 ); upon integration by parts, this results 
In 

_ u*(y,O,w)u'(y,O,w) _ (00 lu'(y,s,wWds _ y2 (00 ,u~(s) lu(y,s,w)12ds + w: (OC [ ~o~ _ 1] «s) lu(y,s,wWds = 0. (A7) 
Jo Jo ,u-(O) co-Jo c-(s) ,u-(O) 

The poles and zeros of d (y,w) in the complex yplane are the zeros ofU'(y,O,w) and u(y,O,w), respectively, on the complex y 
plane because d (y,w) = - u(y,O,w)lu'(y,O,{u). Therefore, the poles and zerosofd (y,w) in the complex yplanearefrom Eq. (A 7) 
given by 
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r = - lu'(y,s,wWds - -2 1 - + ;-lu(y,s,wWds ;-lu(y,s,wW ds , { 100 - ui 100 

[ C 2] 2(S) } [100 

2(S) ] - I 
o Co a C (s) !-l (0) a !-l (0) 

(A8) 

which, in view of the constraints (15), namely ° < Co < mino<; s< 00 cIs), r < 0, and this states that the poles and zerosofd (y,w) 
are located on the imaginary axis of the complex yplane. So, d (y,w) has no poles in the right-hand side of the complex yplane. 

It will be next shown that d (y,w) is real for real y. If the constraints (15) is satisfied Eq. (A 7) shows that 

u(y,O,w)u'(y,O,w) < ° 
for real y. From the definition of d (y,w) it follows that u'(y,O,w) = - u(y,O,w)ld (y,w) and Eq. (A9) shows that 

lu*(y,O,wWld (y,w) > 0, 

from which it is concluded that d (y,w) is real and positive for real y. 

(A9) 
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Erratum: The Gel'fand-Levitan equation can give simple examples of non
self-adjoint operators with complete eigenfunctions and spectral 
representations. I. Ghosts and resonances [J. Math. Phys. 21, 1716 (1980)]. 
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